1
|
Kostic T, Schloter M, Arruda P, Berg G, Charles TC, Cotter PD, Kiran GS, Lange L, Maguin E, Meisner A, van Overbeek L, Sanz Y, Sarand I, Selvin J, Tsakalidou E, Smidt H, Wagner M, Sessitsch A. Concepts and criteria defining emerging microbiome applications. Microb Biotechnol 2024; 17:e14550. [PMID: 39236296 PMCID: PMC11376781 DOI: 10.1111/1751-7915.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
In recent years, microbiomes and their potential applications for human, animal or plant health, food production and environmental management came into the spotlight of major national and international policies and strategies. This has been accompanied by substantial R&D investments in both public and private sectors, with an increasing number of products entering the market. Despite widespread agreement on the potential of microbiomes and their uses across disciplines, stakeholders and countries, there is no consensus on what defines a microbiome application. This often results in non-comprehensive communication or insufficient documentation making commercialisation and acceptance of the novel products challenging. To showcase the complexity of this issue we discuss two selected, well-established applications and propose criteria defining a microbiome application and their conditions of use for clear communication, facilitating suitable regulatory frameworks and building trust among stakeholders.
Collapse
Affiliation(s)
- Tanja Kostic
- AIT Austrian Institute of Technology GmbHViennaAustria
| | | | | | | | | | - Paul D. Cotter
- Teagasc Food Research Centre, MooreparkAPC Microbiome Ireland and VistaMilkCorkIreland
| | | | - Lene Lange
- LL‐BioEconomy, Research and AdvisoryCopenhagenDenmark
| | - Emmanuelle Maguin
- Université Paris‐Saclay, INRAE, AgroParisTech, MICALIS UMR1319Jouy‐en‐JosasFrance
| | - Annelein Meisner
- Wageningen University & Research, Wageningen ResearchWageningenThe Netherlands
| | - Leo van Overbeek
- Wageningen University & Research, Wageningen ResearchWageningenThe Netherlands
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology – Spanish National Research Council (IATA‐CSIC)PaternaValenciaSpain
| | - Inga Sarand
- Tallinn University of TechnologyTallinnEstonia
| | | | | | - Hauke Smidt
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Martin Wagner
- FFoQSI GmbH – Austrian Competence Centre for Feed and Food Quality, Safety and InnovationTullnAustria
| | | |
Collapse
|
2
|
Sun WJ, Li Q, Luo BY, Sun R, Ke CY, Wang SC, Zhang QZ, Zhang XL. Pilot-scale field studies on activated microbial remediation of petroleum-contaminated soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:243. [PMID: 38850467 DOI: 10.1007/s10653-024-02062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Soil contamination by petroleum, including crude oil from various sources, is increasingly becoming a pressing global environmental concern, necessitating the exploration of innovative and sustainable remediation strategies. The present field-scale study developed a simple, cost-effective microbial remediation process for treating petroleum-contaminated soil. The soil treatment involves adding microbial activators to stimulate indigenous petroleum-degrading microorganisms, thereby enhancing the total petroleum hydrocarbons (TPH) degradation rate. The formulated microbial activator provided a growth-enhancing complex of nitrogen and phosphorus, trace elements, growth factors, biosurfactants, and soil pH regulators. The field trials, involving two 500 m3 soil samples with the initial TPH content of 5.01% and 2.15%, were reduced to 0.41% and 0.02% in 50 days, respectively, reaching the national standard for cultivated land category II. The treatment period was notably shorter than the commonly used composting and bioaugmentation methods (typically from 8 to 12 weeks). The results indicated that the activator could stimulate the functional microorganisms in the soil and reduce the phytotoxicity of the contaminated soil. After 40 days of treatment, the germination rate of rye seeds increased from 20 to 90%, indicating that the microbial activator could be effectively used for rapid on-site remediation of oil-contaminated soils.
Collapse
Affiliation(s)
- Wu-Juan Sun
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Qian Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Bo-Yun Luo
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Rui Sun
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Cong-Yu Ke
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China.
- Shaanxi Engineering Research Center of Green Low-Carbon Energy Materials and Processes, Xi'an, 710065, China.
| | - Si-Chang Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Qun-Zheng Zhang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Xun-Li Zhang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| |
Collapse
|
3
|
Gouveia AG, Salgueiro BA, Ranmar DO, Antunes WDT, Kirchweger P, Golani O, Wolf SG, Elbaum M, Matias PM, Romão CV. Unraveling the multifaceted resilience of arsenic resistant bacterium Deinococcus indicus. Front Microbiol 2023; 14:1240798. [PMID: 37692390 PMCID: PMC10483234 DOI: 10.3389/fmicb.2023.1240798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Arsenic (As) is a toxic heavy metal widely found in the environment that severely undermines the integrity of water resources. Bioremediation of toxic compounds is an appellative sustainable technology with a balanced cost-effective setup. To pave the way for the potential use of Deinococcus indicus, an arsenic resistant bacterium, as a platform for arsenic bioremediation, an extensive characterization of its resistance to cellular insults is paramount. A comparative analysis of D. indicus cells grown in two rich nutrient media conditions (M53 and TGY) revealed distinct resistance patterns when cells are subjected to stress via UV-C and methyl viologen (MV). Cells grown in M53 demonstrated higher resistance to both UV-C and MV. Moreover, cells grow to higher density upon exposure to 25 mM As(V) in M53 in comparison with TGY. This analysis is pivotal for the culture of microbial species in batch culture bioreactors for bioremediation purposes. We also demonstrate for the first time the presence of polyphosphate granules in D. indicus which are also found in a few Deinococcus species. To extend our analysis, we also characterized DiArsC2 (arsenate reductase) involved in arsenic detoxification and structurally determined different states, revealing the structural evidence for a catalytic cysteine triple redox system. These results contribute for our understanding into the D. indicus resistance mechanism against stress conditions.
Collapse
Affiliation(s)
- André G. Gouveia
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bruno A. Salgueiro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Dean O. Ranmar
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Wilson D. T. Antunes
- Instituto Universitário Militar, Centro de Investigação da Academia Militar (CINAMIL), Unidade Militar Laboratorial de Defesa Biológica e Química (UMLDBQ), Lisbon, Portugal
| | - Peter Kirchweger
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon G. Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Elbaum
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Pedro M. Matias
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal
| | - Célia V. Romão
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
4
|
Danyal Y, Mahmood K, Ullah S, Rahim A, Raheem G, Khan AH, Ullah A. Phytoremediation of industrial effluents assisted by plant growth promoting bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5296-5311. [PMID: 36402881 DOI: 10.1007/s11356-022-23967-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Industrialization plays a crucial role in the economic development of a country; however, the effluents produced as a byproduct generally contain toxic substances which are detrimental to living organisms. In this regard, it is essential to treat these toxic effluents before exposing them to the natural environment by selecting the most appropriate method accordingly. Several techniques are used to remediate industrial effluents including physical, chemical, and biological. Although some physical and chemical remediation technologies are of substantially important in remediation of industrial effluents, however, these technologies are either expensive to be applied by developing countries or not suitable for remediation of all kinds of effluents. In contrast, biological remediation is cost effective, nature friendly, and easy to use for almost all kinds of effluents. Among biological remediation strategies, phytoremediation is considered to be the most suitable method for remediation of industrial effluents; however, the phytoremediation process is slow, takes time in application and some effluents even affect plants growth and development. Alternately, plant microbe interactions could be a winning partner to remediate industrial effluents more efficiently. Among the microbes, plant growth promoting bacteria (PGPB) not only improve plant growth but also help in degradation, sequestration, volatilization, solubilization, mobilization, and bioleaching of industrial effluents which subsequently improve the phytoremediation process. The current study discusses the role of PGPB in enhancing the phytoremediation processes of industrial effluents.
Collapse
Affiliation(s)
- Youshaa Danyal
- Department of Botany, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Kainat Mahmood
- Department of Botany, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Shariat Ullah
- Department of Botany, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Abdur Rahim
- Department of Zoology, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Gul Raheem
- Department of Botany, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Abid Ullah
- Department of Botany, University of Malakand, Dir Lower, Chakdara, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
5
|
Bala S, Garg D, Thirumalesh BV, Sharma M, Sridhar K, Inbaraj BS, Tripathi M. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. TOXICS 2022; 10:toxics10080484. [PMID: 36006163 PMCID: PMC9413587 DOI: 10.3390/toxics10080484] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 05/04/2023]
Abstract
Environmental pollution brought on by xenobiotics and other related recalcitrant compounds have recently been identified as a major risk to both human health and the natural environment. Due to their toxicity and non-biodegradability, a wide range of pollutants, such as heavy metals, polychlorinated biphenyls, plastics, and various agrochemicals are present in the environment. Bioremediation is an effective cleaning technique for removing toxic waste from polluted environments that is gaining popularity. Various microorganisms, including aerobes and anaerobes, are used in bioremediation to treat contaminated sites. Microorganisms play a major role in bioremediation, given that it is a process in which hazardous wastes and pollutants are eliminated, degraded, detoxified, and immobilized. Pollutants are degraded and converted to less toxic forms, which is a primary goal of bioremediation. Ex situ or in situ bioremediation can be used, depending on a variety of factors, such as cost, pollutant types, and concentration. As a result, a suitable bioremediation method has been chosen. This review focuses on the most recent developments in bioremediation techniques, how microorganisms break down different pollutants, and what the future holds for bioremediation in order to reduce the amount of pollution in the world.
Collapse
Affiliation(s)
- Saroj Bala
- Department of Microbiology, Punjab Agriculture University, Ludhiana 141001, India
| | - Diksha Garg
- Department of Microbiology, Punjab Agriculture University, Ludhiana 141001, India
| | - Banjagere Veerabhadrappa Thirumalesh
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Minaxi Sharma
- Laboratoire de Chimie Verte et Produits Biobasés, Département Agro Bioscience et Chimie, Haute Ecole Provinciale de Hainaut-Condorcet, 11 Rue de la Sucrerie, 7800 Ath, Belgium
| | - Kandi Sridhar
- UMR1253, Science et Technologie du Lait et de l’œuf, INRAE, L’Institut Agro Rennes-Angers, 65 Rue de Saint Brieuc, F-35042 Rennes, France
| | - Baskaran Stephen Inbaraj
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Correspondence: (B.S.I.); (M.T.)
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
- Correspondence: (B.S.I.); (M.T.)
| |
Collapse
|
6
|
Manimekalai B, Arulmozhi R, Krishnan MA, Sivanesan S. Consequence of COVID-19 occurrences in wastewater with promising recognition and healing technologies: A review. ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY 2022; 42:e13937. [PMID: 35942312 PMCID: PMC9350101 DOI: 10.1002/ep.13937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/03/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Presently, the coronavirus (COVID-19) epidemic presents a major threat to global communal fitness also socio-financial development. Ignoring worldwide isolation as well as shutdown attempts, the occurrence of COVID-19 infected patients continues to be extremely large. Nonetheless, COVID-19's final course, combined with the prevalence of emerging contaminants (antibiotics, pharmaceuticals, nanoplastics, pesticides, and so forth) in wastewater treatment plants (WWTPs), presents a major problem in wastewater situations. The research, therefore, intends near examine an interdisciplinary as well as technical greet to succor COVID-19 with subsequent COVID cycles of an epidemic as a framework for wastewater treatment settings. This research investigated the potential for wastewater-based epidemiology to detect SARS-CoV-2 also the enzymes happening in wastewater conditions. In addition, a chance for the incorporation into the WWTPs of emerging and robust technologies such as mesmeric nanobiotechnology, electrochemical oxidation, microscopy, and membrane processes to enhance the overall likelihood of environmental consequences of COVID-19 also strengthen such quality of water is resolved.
Collapse
Affiliation(s)
- B. Manimekalai
- Centre for Environmental Studies, College of Engineering GuindyAnna UniversityChennaiIndia
| | - R. Arulmozhi
- Department of Applied Science and TechnologyAlagappa College of Technology, Anna UniversityChennaiIndia
| | | | - S. Sivanesan
- Department of Applied Science and TechnologyA.C.Tech, Anna UniversityChennaiIndia
| |
Collapse
|
7
|
Berillo D, Al-Jwaid A, Caplin J. Polymeric Materials Used for Immobilisation of Bacteria for the Bioremediation of Contaminants in Water. Polymers (Basel) 2021; 13:1073. [PMID: 33805360 PMCID: PMC8037671 DOI: 10.3390/polym13071073] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Bioremediation is a key process for reclaiming polluted soil and water by the use of biological agents. A commonly used approach aims to neutralise or remove harmful pollutants from contaminated areas using live microorganisms. Generally, immobilised microorganisms rather than planktonic cells have been used in bioremediation methods. Activated carbon, inorganic minerals (clays, metal oxides, zeolites), and agricultural waste products are acceptable substrates for the immobilisation of bacteria, although there are limitations with biomass loading and the issue with leaching of bacteria during the process. Various synthetic and natural polymers with different functional groups have been used successfully for the efficient immobilisation of microorganisms and cells. Promise has been shown using macroporous materials including cryogels with entrapped bacteria or cells in applications for water treatment and biotechnology. A cryogel is a macroporous polymeric gel formed at sub-zero temperatures through a process known as cryogelation. Macroporous hydrogels have been used to make scaffolds or supports for immobilising bacterial, viral, and other cells. The production of composite materials with immobilised cells possessing suitable mechanical and chemical stability, porosity, elasticity, and biocompatibility suggests that these materials are potential candidates for a range of applications within applied microbiology, biotechnology, and research. This review evaluates applications of macroporous cryogels as tools for the bioremediation of contaminants in wastewater.
Collapse
Affiliation(s)
- Dmitriy Berillo
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Areej Al-Jwaid
- School of Environment and Technology, University of Brighton, Brighton BN2 4GJ, UK; (A.A.-J.); (J.C.)
- Environment and Pollution Engineering Technical Department, Basrah Engineering Technical College, Southern Technical University, Basra 61003, Iraq
| | - Jonathan Caplin
- School of Environment and Technology, University of Brighton, Brighton BN2 4GJ, UK; (A.A.-J.); (J.C.)
| |
Collapse
|
8
|
Genomic and transcriptomic perspectives on mycoremediation of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 2020; 104:6919-6928. [PMID: 32572576 DOI: 10.1007/s00253-020-10746-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Mycoremediation holds great potential in remedying toxic environments contaminated with polyaromatic organic pollutants. To harness the natural process for practical applications, understanding the genetic and molecular basis of the remediation process is prerequisite. Compared to known bacterial degradation pathways of aromatic pollutants, however, the fungal degradation system is less studied and understanding of the genetic basis for biochemical activity is still incomplete. In this review, we surveyed recent findings from genomic and transcriptomic approaches to mycoremediation of aromatic pollutants, in company with the genomic basis of polycyclic aromatic hydrocarbon (PAH) degradation by basidiomycete fungi, Dentipellis sp. KUC8613. Unique features in the fungal degradation of PAHs were outlined by multiple cellular processes: (i) the initial oxidation of recalcitrant contaminants by various oxidoreductases including mono- and dioxygenases, (ii) the following detoxification, and (iii) the mineralization of activated pollutants that are common metabolism in many fungi. Along with the genomic data, the transcriptomic analysis not only posits a full repertoire of inducible genes that are common or specific to metabolize different PAHs but also leads to the discovery of uncharacterized genes with potential functions for bioremediation processes. In addition, the metagenomic study accesses community level of mycoremediation process to seek for the potential species or a microbial consortium in the natural environments. The comprehensive understanding of fungal degradation in multiple levels will accelerate practical application of mycoremediation. Key points • Mycoremediation of polyaromatic pollutants exploits a potent fungal degrader. • Fungal genomics provides a full repository of potential genes and enzymes. • Mycoremediation is a concerted cellular process involved with many novel genes. • Multi-omics approach enables the genome-scale reconstruction of remedying pathways.
Collapse
|