• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5050498)   Today's Articles (2397)
For: Choe EK, Rhee H, Lee S, Shin E, Oh SW, Lee JE, Choi SH. Metabolic Syndrome Prediction Using Machine Learning Models with Genetic and Clinical Information from a Nonobese Healthy Population. Genomics Inform 2018;16:e31. [PMID: 30602092 PMCID: PMC6440667 DOI: 10.5808/gi.2018.16.4.e31] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]  Open
Number Cited by Other Article(s)
1
Park JH, Jeong I, Ko GJ, Jeong S, Lee H. Development of a Predictive Model for Metabolic Syndrome Using Noninvasive Data and its Cardiovascular Disease Risk Assessments: Multicohort Validation Study. J Med Internet Res 2025;27:e67525. [PMID: 40315452 DOI: 10.2196/67525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/31/2024] [Accepted: 04/08/2025] [Indexed: 05/04/2025]  Open
2
Lee TK, Kim SY, Choi HJ, Choe EK, Sohn KA. Vision transformer based interpretable metabolic syndrome classification using retinal Images. NPJ Digit Med 2025;8:205. [PMID: 40216912 PMCID: PMC11992118 DOI: 10.1038/s41746-025-01588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025]  Open
3
Wu YS, Tzeng WC, Wu CW, Wu HY, Kang CY, Wang WY. Gender Differences in Predicting Metabolic Syndrome Among Hospital Employees Using Machine Learning Models: A Population-Based Study. J Nurs Res 2025;33:e381. [PMID: 40162697 DOI: 10.1097/jnr.0000000000000668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]  Open
4
Kawakita T, Greenland P, Pemberton VL, Grobman WA, Silver RM, Bairey Merz CN, McNeil RB, Haas DM, Reddy UM, Simhan H, Saade GR. Prediction of metabolic syndrome following a first pregnancy. Am J Obstet Gynecol 2024;231:649.e1-649.e19. [PMID: 38527600 PMCID: PMC11424779 DOI: 10.1016/j.ajog.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
5
Mariam A, Javidi H, Zabor EC, Zhao R, Radivoyevitch T, Rotroff DM. Unsupervised clustering of longitudinal clinical measurements in electronic health records. PLOS DIGITAL HEALTH 2024;3:e0000628. [PMID: 39405315 PMCID: PMC11478862 DOI: 10.1371/journal.pdig.0000628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
6
Shin D. Prediction of metabolic syndrome using machine learning approaches based on genetic and nutritional factors: a 14-year prospective-based cohort study. BMC Med Genomics 2024;17:224. [PMID: 39232768 PMCID: PMC11373243 DOI: 10.1186/s12920-024-01998-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]  Open
7
Lee M, Park T, Shin JY, Park M. A comprehensive multi-task deep learning approach for predicting metabolic syndrome with genetic, nutritional, and clinical data. Sci Rep 2024;14:17851. [PMID: 39090161 PMCID: PMC11294629 DOI: 10.1038/s41598-024-68541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]  Open
8
Mohseni-Takalloo S, Mohseni H, Mozaffari-Khosravi H, Mirzaei M, Hosseinzadeh M. The effect of data balancing approaches on the prediction of metabolic syndrome using non-invasive parameters based on random forest. BMC Bioinformatics 2024;25:18. [PMID: 38212697 PMCID: PMC10782700 DOI: 10.1186/s12859-024-05633-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]  Open
9
Mohseni-Takalloo S, Mozaffari-Khosravi H, Mohseni H, Mirzaei M, Hosseinzadeh M. Metabolic syndrome prediction using non-invasive and dietary parameters based on a support vector machine. Nutr Metab Cardiovasc Dis 2024;34:126-135. [PMID: 37949713 DOI: 10.1016/j.numecd.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/14/2023] [Accepted: 08/21/2023] [Indexed: 11/12/2023]
10
Zheng J, Zhang Z, Wang J, Zhao R, Liu S, Yang G, Liu Z, Deng Z. Metabolic syndrome prediction model using Bayesian optimization and XGBoost based on traditional Chinese medicine features. Heliyon 2023;9:e22727. [PMID: 38125549 PMCID: PMC10730568 DOI: 10.1016/j.heliyon.2023.e22727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]  Open
11
Zou G, Zhong Q, OUYang P, Li X, Lai X, Zhang H. Predictive analysis of metabolic syndrome based on 5-years continuous physical examination data. Sci Rep 2023;13:9132. [PMID: 37277414 DOI: 10.1038/s41598-023-35604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 05/20/2023] [Indexed: 06/07/2023]  Open
12
Kim H, Heo JH, Lim DH, Kim Y. Development of a Metabolic Syndrome Classification and Prediction Model for Koreans Using Deep Learning Technology: The Korea National Health and Nutrition Examination Survey (KNHANES) (2013-2018). Clin Nutr Res 2023;12:138-153. [PMID: 37214780 PMCID: PMC10193438 DOI: 10.7762/cnr.2023.12.2.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 05/24/2023]  Open
13
Hu X, Li XK, Wen S, Li X, Zeng TS, Zhang JY, Wang W, Bi Y, Zhang Q, Tian SH, Min J, Wang Y, Liu G, Huang H, Peng M, Zhang J, Wu C, Li YM, Sun H, Ning G, Chen LL. Predictive modeling the probability of suffering from metabolic syndrome using machine learning: A population-based study. Heliyon 2022;8:e12343. [PMID: 36643319 PMCID: PMC9834713 DOI: 10.1016/j.heliyon.2022.e12343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/16/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]  Open
14
Machine Learning Approach for Metabolic Syndrome Diagnosis Using Explainable Data-Augmentation-Based Classification. Diagnostics (Basel) 2022;12:diagnostics12123117. [PMID: 36553124 PMCID: PMC9777696 DOI: 10.3390/diagnostics12123117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]  Open
15
Kim H, Hwang S, Lee S, Kim Y. Classification and Prediction on Hypertension with Blood Pressure Determinants in a Deep Learning Algorithm. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022;19:15301. [PMID: 36430024 PMCID: PMC9690260 DOI: 10.3390/ijerph192215301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
16
Daniel Tavares L, Manoel A, Henrique Rizzi Donato T, Cesena F, André Minanni C, Miwa Kashiwagi N, Paiva da Silva L, Amaro E, Szlejf C. Prediction of metabolic syndrome: A machine learning approach to help primary prevention. Diabetes Res Clin Pract 2022;191:110047. [PMID: 36029889 DOI: 10.1016/j.diabres.2022.110047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022]
17
Hsu NW, Chou KC, Wang YTT, Hung CL, Kuo CF, Tsai SY. Building a model for predicting metabolic syndrome using artificial intelligence based on an investigation of whole-genome sequencing. J Transl Med 2022;20:190. [PMID: 35484552 PMCID: PMC9052619 DOI: 10.1186/s12967-022-03379-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022]  Open
18
Single-nucleotide polymorphisms in medical nutritional weight loss: Challenges and future directions. J Transl Int Med 2022;10:1-4. [PMID: 35702183 PMCID: PMC8997798 DOI: 10.2478/jtim-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]  Open
19
Ibrahim MS, Pang D, Randhawa G, Pappas Y. Development and Validation of a Simple Risk Model for Predicting Metabolic Syndrome (MetS) in Midlife: A Cohort Study. Diabetes Metab Syndr Obes 2022;15:1051-1075. [PMID: 35418767 PMCID: PMC8995775 DOI: 10.2147/dmso.s336384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/15/2022] [Indexed: 11/23/2022]  Open
20
Kim J, Mun S, Lee S, Jeong K, Baek Y. Prediction of metabolic and pre-metabolic syndromes using machine learning models with anthropometric, lifestyle, and biochemical factors from a middle-aged population in Korea. BMC Public Health 2022;22:664. [PMID: 35387629 PMCID: PMC8985311 DOI: 10.1186/s12889-022-13131-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/30/2022] [Indexed: 01/10/2023]  Open
21
Yang H, Yu B, OUYang P, Li X, Lai X, Zhang G, Zhang H. Machine learning-aided risk prediction for metabolic syndrome based on 3 years study. Sci Rep 2022;12:2248. [PMID: 35145200 PMCID: PMC8831522 DOI: 10.1038/s41598-022-06235-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022]  Open
22
Zhang Q, Wan NJ. Simple Method to Predict Insulin Resistance in Children Aged 6-12 Years by Using Machine Learning. Diabetes Metab Syndr Obes 2022;15:2963-2975. [PMID: 36193541 PMCID: PMC9526431 DOI: 10.2147/dmso.s380772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]  Open
23
Classification and Prediction on the Effects of Nutritional Intake on Overweight/Obesity, Dyslipidemia, Hypertension and Type 2 Diabetes Mellitus Using Deep Learning Model: 4-7th Korea National Health and Nutrition Examination Survey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021;18:ijerph18115597. [PMID: 34073854 PMCID: PMC8197245 DOI: 10.3390/ijerph18115597] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
24
Park JE, Mun S, Lee S. Metabolic Syndrome Prediction Models Using Machine Learning and Sasang Constitution Type. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021;2021:8315047. [PMID: 33628316 PMCID: PMC7886522 DOI: 10.1155/2021/8315047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/11/2020] [Accepted: 01/21/2021] [Indexed: 11/23/2022]
25
Wang J, Li C, Li J, Qin S, Liu C, Wang J, Chen Z, Wu J, Wang G. Development and internal validation of risk prediction model of metabolic syndrome in oil workers. BMC Public Health 2020;20:1828. [PMID: 33256679 PMCID: PMC7706262 DOI: 10.1186/s12889-020-09921-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/18/2020] [Indexed: 01/28/2023]  Open
26
Perry BI, Upthegrove R, Crawford O, Jang S, Lau E, McGill I, Carver E, Jones PB, Khandaker GM. Cardiometabolic risk prediction algorithms for young people with psychosis: a systematic review and exploratory analysis. Acta Psychiatr Scand 2020;142:215-232. [PMID: 32654119 DOI: 10.1111/acps.13212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/06/2020] [Indexed: 12/25/2022]
27
Genetic markers and continuity of healthy metabolic status: Tehran cardio-metabolic genetic study (TCGS). Sci Rep 2020;10:13600. [PMID: 32788640 PMCID: PMC7423921 DOI: 10.1038/s41598-020-70627-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 07/23/2020] [Indexed: 12/29/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA