1
|
Gill NB, Dowker-Key PD, Hedrick M, Bettaieb A. Unveiling the Role of Oxidative Stress in Cochlear Hair Cell Death: Prospective Phytochemical Therapeutics against Sensorineural Hearing Loss. Int J Mol Sci 2024; 25:4272. [PMID: 38673858 PMCID: PMC11050722 DOI: 10.3390/ijms25084272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Hearing loss represents a multifaceted and pervasive challenge that deeply impacts various aspects of an individual's life, spanning psychological, emotional, social, and economic realms. Understanding the molecular underpinnings that orchestrate hearing loss remains paramount in the quest for effective therapeutic strategies. This review aims to expound upon the physiological, biochemical, and molecular aspects of hearing loss, with a specific focus on its correlation with diabetes. Within this context, phytochemicals have surfaced as prospective contenders in the pursuit of potential adjuvant therapies. These compounds exhibit noteworthy antioxidant and anti-inflammatory properties, which hold the potential to counteract the detrimental effects induced by oxidative stress and inflammation-prominent contributors to hearing impairment. Furthermore, this review offers an up-to-date exploration of the diverse molecular pathways modulated by these compounds. However, the dynamic landscape of their efficacy warrants recognition as an ongoing investigative topic, inherently contingent upon specific experimental models. Ultimately, to ascertain the genuine potential of phytochemicals as agents in hearing loss treatment, a comprehensive grasp of the molecular mechanisms at play, coupled with rigorous clinical investigations, stands as an imperative quest.
Collapse
Affiliation(s)
- Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Mark Hedrick
- Department of Audiology & Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN 37996-0240, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| |
Collapse
|
2
|
Lee B, Kim MC, Kim YR, Kim JH, Kwon TJ, Jung DJ, Kim UK, Lee KY. Therapeutic effect of intraperitoneal dexamethasone on noise-induced permanent threshold shift in mice model. Exp Brain Res 2024; 242:257-265. [PMID: 38010535 DOI: 10.1007/s00221-023-06742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
The purpose of the study was to which investigate whether dexamethasone, which has anti-inflammatory and immune response suppression roles, could treat noise-induced hearing loss caused by damage to hair cells in the cochlea. The experiment used 8-week-old CBA mice exposed to white noise at an intensity of 110 dB SPL for 2 h, with hearing loss confirmed by the auditory brainstem response test. Dexamethasone was administered by intraperitoneal injection for 5 days, and the therapeutic effect was investigated for 3 weeks. The experimental groups were 3 mg/kg of dexamethasone (3 mpk) and 10 mg/kg of dexamethasone (10 mpk), and the control group was a saline-administered group. The results showed that compared to the control group, the hearing threshold value was recovered by 10 dB SPL compared to the saline group from the 14th day in the 3 mpk group. In the 10 mpk group, thresholds were recovered from the 7th day compared to the saline group. This difference was similar at 4 kHz, and in the case of the 10 mpk group, the threshold was recovered by 20 dB SPL compared to the saline group. The study also confirmed the restoration of nerve cell activity and showed a recovery effect of about 20 µV in the amplitude value change in the 10 mpk group. In conclusion, the study suggests that dexamethasone has a therapeutic effect for noise-induced hearing loss by increasing the activity of nerve cells and showing a recovery effect from hair cells damaged by noise.
Collapse
Affiliation(s)
- Byeonghyeon Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDI-Hub), Daegu, Korea
| | - Min-Cheol Kim
- Department of Biology, College of Natural Science, Kyungpook National University, Daegu, Korea
- School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Korea
| | - Ye-Ri Kim
- Department of Biology, College of Natural Science, Kyungpook National University, Daegu, Korea
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, Korea
| | - Jong-Heun Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDI-Hub), Daegu, Korea
| | - Tae-Jun Kwon
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDI-Hub), Daegu, Korea
| | - Da Jung Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Un-Kyung Kim
- Department of Biology, College of Natural Science, Kyungpook National University, Daegu, Korea.
- School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Korea.
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu, Korea.
| |
Collapse
|
3
|
Medical Therapy of Hearing Impairment and Tinnitus with Chinese Medicine: An Overview. Chin J Integr Med 2022:10.1007/s11655-022-3678-5. [PMID: 35419727 DOI: 10.1007/s11655-022-3678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 11/03/2022]
Abstract
The current review gives a comprehensive overview of the recent development in Chinese medicine (CM) for treating several kinds of acquired nerve deafness and tinnitus, as well as links the traditional principle to well-established pharmacological mechanisms for future research. To date, about 24 herbal species and 40 related ingredients used in CM to treat hearing loss and tinnitus are reported for the treatment of endocochlear potential, endolymph growth, lowering toxic and provocative substance aggregation, inhibiting sensory cell death, and retaining sensory transfer. However, there are a few herbal species that can be used for medicinal purposes. Nevertheless, clinical studies have been hampered by a limited population sample, a deficiency of a suitable control research group, or contradictory results. Enhanced cochlear blood flow, antiinflammatory antioxidant, neuroprotective effects, and anti-apoptotic, as well as multi-target approach on different auditory sections of the inner ear, are all possible benefits of CM medications. There are numerous unknown natural products for aural ailment and tinnitus identified in CM that are expected to be examined in the future utilizing various aural ailment models and processes.
Collapse
|
4
|
Gittleman SN, Le Prell CG, Hammill TL. Octave band noise exposure: Laboratory models and otoprotection efforts. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3800. [PMID: 31795706 PMCID: PMC7195864 DOI: 10.1121/1.5133393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/21/2019] [Indexed: 05/05/2023]
Abstract
With advances in the understanding of mechanisms of noise injury, the past 30 years have brought numerous efforts to identify drugs that prevent noise-induced hearing loss (NIHL). The diverse protocols used across investigations have made comparisons across drugs difficult. A systematic review of the literature by Hammill [(2017). Doctoral thesis, The University of Texas at Austin] identified original reports of chemical interventions to prevent or treat hearing loss caused by noise exposure. An initial search returned 3492 articles. After excluding duplicate articles and articles that did not meet the systematic review inclusion criteria, a total of 213 studies published between 1977 and 2016 remained. Reference information, noise exposure parameters, species, sex, method of NIHL assessment, and pharmaceutical intervention details for these 213 studies were entered into a database. Frequency-specific threshold shifts in control animals (i.e., in the absence of pharmaceutical intervention) are reported here. Specific patterns of hearing loss as a function of species and noise exposure parameters are provided to facilitate the selection of appropriate pre-clinical models. The emphasis of this report is octave band noise exposure, as this is one of the most common exposure protocols across pharmacological otoprotection studies.
Collapse
Affiliation(s)
- Sarah N Gittleman
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Tanisha L Hammill
- Department of Defense, Defense Health Agency, Falls Church, Virginia 22042, USA
| |
Collapse
|
5
|
Bahaloo M, Rezvani ME, Farashahi Yazd E, Davari MH, Mehrparvar AH. Effect of Myricetin on the Prevention of Noise-Induced Hearing Loss-An Animal Model. IRANIAN JOURNAL OF OTORHINOLARYNGOLOGY 2019; 31:273-279. [PMID: 31598494 PMCID: PMC6764812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Exposure to hazardous noise induces one of the forms of acquired and preventable hearing loss that is noise-induced hearing loss (NIHL). Considering oxidative stress as the main mechanism of NIHL, it is possible that myricetin can protect NIHL by its antioxidant effect. Therefore, the present study aimed to investigate the preventive effect of myricetin on NIHL. MATERIALS AND METHODS A total of 21 Wistar rats were randomly divided into five groups, namely (1) noise exposure only as control group, (2) noise exposure with the vehicle of myricetin as solvent group, (3) noise exposure with myricetin 5 mg/kg as myricetin 5 mg group, (4) noise exposure with myricetin 10 mg/kg as myricetin 10 mg group, (5) and non-exposed as sham group. The hearing status of each animal was assessed by Distortion Product Otoacoustic Emissions. RESULTS The levels of response amplitude decreased after the exposure to noise in all groups and returned to a higher level after 14 days of noise abstinence at most frequencies; however, the difference was not significant in the myricetin-receiving or control groups. CONCLUSION The results of this study showed that two doses of myricetin (5 and 10 mg/kg) administered intraperitoneally could not significantly decrease transient or permanent threshold shifts in rats exposed to loud noise.
Collapse
Affiliation(s)
- Maryam Bahaloo
- Industrial Diseases Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | | | - Ehsan Farashahi Yazd
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mohammad Hossein Davari
- Department of Occupational Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Amir Houshang Mehrparvar
- Industrial Diseases Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. ,Corresponding Author: Occupational Medicine Clinic, Shahid Rahnemoun Hospital, Farrokhi ave., Yazd, Iran. Tel: 00983536229193, E-mail:
| |
Collapse
|
6
|
Castañeda R, Natarajan S, Jeong SY, Hong BN, Kang TH. Traditional oriental medicine for sensorineural hearing loss: Can ethnopharmacology contribute to potential drug discovery? JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:409-428. [PMID: 30439402 DOI: 10.1016/j.jep.2018.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Traditional Oriental Medicine (TOM), the development of hearing pathologies is related to an inadequate nourishment of the ears by the kidney and other organs involved in regulation of bodily fluids and nutrients. Several herbal species have historically been prescribed for promoting the production of bodily fluids or as antiaging agents to treat deficiencies in hearing. AIM OF REVIEW The prevalence of hearing loss has been increasing in the last decade and is projected to grow considerably in the coming years. Recently, several herbal-derived products prescribed in TOM have demonstrated a therapeutic potential for acquired sensorineural hearing loss and tinnitus. Therefore, the aims of this review are to provide a comprehensive overview of the current known efficacy of the herbs used in TOM for preventing different forms of acquired sensorineural hearing loss and tinnitus, and associate the traditional principle with the demonstrated pharmacological mechanisms to establish a solid foundation for directing future research. METHODS The present review collected the literature related to herbs used in TOM or related compounds on hearing from Chinese, Korean, and Japanese herbal classics; library catalogs; and scientific databases (PubMed, Scopus, Google Scholar; and Science Direct). RESULTS This review shows that approximately 25 herbal species and 40 active compounds prescribed in TOM for hearing loss and tinnitus have shown in vitro or in vivo beneficial effects for acquired sensorineural hearing loss produced by noise, aging, ototoxic drugs or diabetes. The inner ear is highly vulnerable to ischemia and oxidative damage, where several TOM agents have revealed a direct effect on the auditory system by normalizing the blood supply to the cochlea and increasing the antioxidant defense in sensory hair cells. These strategies have shown a positive impact on maintaining the inner ear potential, sustaining the production of endolymph, reducing the accumulation of toxic and inflammatory substances, preventing sensory cell death and preserving sensory transmission. There are still several herbal species with demonstrated therapeutic efficacy whose mechanisms have not been deeply studied and others that have been traditionally used in hearing loss but have not been tested experimentally. In clinical studies, Ginkgo biloba, Panax ginseng, and Astragalus propinquus have demonstrated to improve hearing thresholds in patients with sensorineural hearing loss and alleviated the symptoms of tinnitus. However, some of these clinical studies have been limited by small sample sizes, lack of an adequate control group or contradictory results. CONCLUSIONS Current therapeutic strategies have proven that the goal of the traditional oriental medicine principle of increasing bodily fluids is a relevant approach for reducing the development of hearing loss by improving microcirculation in the blood-labyrinth barrier and increasing cochlear blood flow. The potential benefits of TOM agents expand to a multi-target approach on different auditory structures of the inner ear related to increased cochlear blood flow, antioxidant, anti-inflammatory, anti-apoptotic and neuroprotective activities. However, more research is required, given the evidence is very limited in terms of the mechanism of action at the preclinical in vivo level and the scarce number of clinical studies published.
Collapse
Affiliation(s)
- Rodrigo Castañeda
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Sathishkumar Natarajan
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Seo Yule Jeong
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Bin Na Hong
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea.
| | - Tong Ho Kang
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| |
Collapse
|
7
|
Tavanai E, Mohammadkhani G, Farahani S, Jalaie S. Protective Effects of Silymarin Against Age-Related Hearing Loss in an Aging Rat Model. Indian J Otolaryngol Head Neck Surg 2018; 71:1248-1257. [PMID: 31750160 DOI: 10.1007/s12070-018-1294-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/07/2018] [Indexed: 01/21/2023] Open
Abstract
Age-related hearing loss (ARHL) is one of the most common chronic degenerative disorders. Several studies have indicated that supplementation with some antioxidants can slow down the progression of ARHL. Despite several lines of evidence about the potent antioxidant and anti-aging effects of silymarin, its protective effect against ARHL has not evaluated yet. The aim of the current study was to investigate the effects of silymarin in prevention of ARHL in a d-Galactose-induced aging rat model for the first time. 45 male wistar rats aged 3-month old were divided into 5 groups: group 1, 2 and 3 received 500 mg/kg/day d-Gal plus 100, 200 and 300 mg/kg/day silymarin respectively for 8 weeks, placebo group received 500 mg/kg/day d-Gal plus propylene glycol as placebo, and control group received normal saline during this period of time. Auditory brainstem responses were measured at several frequencies (4, 6, 8, 12 and 16 kHz) before and after the intervention. Placebo group and group 3 showed significant ABR threshold increase across frequencies of 4, 6, 16 kHz compared with the other groups (P < 0.05). However, rats treated with silymarin 100 and 200 mg/kg/day plus d-Gal did not show any significant ABR threshold shifts. Similarly, ABR amplitude of P2 at 4, 8 kHz and P1, P4 at 4 kHz in the placebo group and group 3 were decreased significantly compared with other groups (P < 0.05). However, no significant differences are found in ABR absolute and inter-peak latencies between groups (P > 0.05). The findings indicates that silymarin with doses of 100 and 200 mg/kg/day has protective effect against ARHL and it can be supplemented into the diet of older people to slow down the progression of age-related hearing loss.
Collapse
Affiliation(s)
- Elham Tavanai
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Ave, Tehran, Iran
| | - Ghassem Mohammadkhani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Ave, Tehran, Iran
| | - Saeid Farahani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Ave, Tehran, Iran
| | - Shohreh Jalaie
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Pich-e-Shemiran, Enghelab Ave, Tehran, Iran
| |
Collapse
|
8
|
Tavanai E, Mohammadkhani G. Role of antioxidants in prevention of age-related hearing loss: a review of literature. Eur Arch Otorhinolaryngol 2016; 274:1821-1834. [PMID: 27858145 DOI: 10.1007/s00405-016-4378-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/08/2016] [Indexed: 01/21/2023]
Abstract
Age-related hearing loss (ARHL), also known as presbycusis, is one of the most prevalent chronic degenerative conditions. It is characterized by a decline in auditory function. ARHL is caused by the interaction of multiple factors, including cochlear aging, environment, genetic predisposition, and health comorbidities. The primary pathology of ARHL includes the hair cells loss, stria vascularis atrophy, and loss of spiral ganglion neurons as well as the changes in central auditory pathways. The research to date suggests that oxidative stress and mitochondrial DNA deletion (mtDNA) play a major role in pathophysiology of ARHL. Therefore, similar to other otological conditions, several studies have also showed that antioxidants can slow ARHL, but some also indicate that antioxidant therapy is not a magic elixir that will prevent or treat hearing loss associated with aging completely, but why? All available clinical trials, including animal and human studies, in English language that examined the protective effects of antioxidants against ARHL were reviewed. Materials were obtained by searching ELSEVIER, PubMed, Scopus, Web of knowledge, Google Scholar databases, Clinical trials, and Cochrane database of systematic reviews. Although ARHL has been shown to be slowed by supplementation with antioxidants, particularly in laboratory animals, a few studies have investigated the effect of interventions against ARHL in humans. High-quality clinical trials are needed to investigate if ARHL can be delayed or prevented in humans. However, it seems that targeting several cell-death pathways is better than targeting the only oxidative stress pathway.
Collapse
Affiliation(s)
- Elham Tavanai
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Piche-Shemiran, Enghelab Ave, Tehran, Iran
| | - Ghassem Mohammadkhani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Piche-Shemiran, Enghelab Ave, Tehran, Iran.
| |
Collapse
|
9
|
Pharmacological agents used for treatment and prevention in noise-induced hearing loss. Eur Arch Otorhinolaryngol 2016; 273:4089-4101. [DOI: 10.1007/s00405-016-3936-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/10/2016] [Indexed: 12/20/2022]
|
10
|
Koc ER, Ersoy A, Ilhan A, Erken HA, Sahın S. Is rosuvastatin protective against on noise-induced oxidative stress in rat serum? Noise Health 2015; 17:11-6. [PMID: 25599753 PMCID: PMC4918644 DOI: 10.4103/1463-1741.149565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Noise, one of the main components of modern society, has become an important environmental problem. Noise is not only an irritating sound, but also a stress factor leading to serious health problems. In this study, we have investigated possible effects of rosuvastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, thought to have an antioxidant effect, on noise-induced oxidative stress in the serum of rat models. Thirty-two male Wistar albino rats were used. In order to ease their adaptation, 2 weeks before the experiment, the rats were divided into four groups (with eight rats per each group): Noise exposure plus rosuvastatin usage, only noise exposure, only rosuvastatin usage and control. After the data had been collected, oxidant (Malondialdehyde, nitric oxide [NO], protein carbonyl [PC]) and antioxidant (superoxide dismutase [SOD], glutathione peroxidase [GSH-PX], catalase [CAT]) parameters were analyzed in the serum. Results indicated that SOD values were found to be significantly lower, while PC values in serum were remarkably higher in the group that was exposed to only noise. GSH-Px values in serum dramatically increased in the group on which only rosuvastatin was used. During noise exposure, the use of rosuvastatin caused significantly increased CAT values, whereas it resulted in reduced PC and NO values in serum. In conclusion, our data show that noise exposure leads to oxidative stress in rat serum; however, rosuvastatin therapy decreases the oxidative stress caused by noise exposure.
Collapse
Affiliation(s)
- Emine Rabia Koc
- Department of Neurology, Faculty of Medicine, Balıkesir University, Balıkesir, Turkey
| | | | | | | | | |
Collapse
|