1
|
Nilforoushzadeh MA, Khodaverdi Darian E, Afzali H, Amirkhani MA, Razzaghi M, Naser R, Amiri AB, Alimohammadi A, Nikkhah N, Zare S. Role of Cultured Skin Fibroblasts in Regenerative Dermatology. Aesthetic Plast Surg 2022; 46:1463-1471. [PMID: 35676559 DOI: 10.1007/s00266-022-02940-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/04/2022] [Indexed: 11/26/2022]
Abstract
The skin, as the largest organ, covers the entire outer part of the body, and since this organ is directly exposed to microbial, thermal, mechanical and chemical damage, it may be destroyed by factors such as acute trauma, chronic wounds or even surgical interventions. Cell therapy is one of the most important procedures to treat skin lesions. Fibroblasts are cells that are responsible for the synthesis of collagen, elastin, and the organization of extracellular matrix (ECM) components and have many vital functions in wound healing processes. Today, cultured autologous fibroblasts are used to treat wrinkles, scars, wounds and subcutaneous atrophy. The results of many studies have shown that fibroblasts can be effective and beneficial in the treatment of skin lesions. On the other hand, skin substitutes are used as a regenerative model to improve and regenerate the skin. The use of these alternatives, restorative medicine and therapeutic cells such as fibroblasts has tremendous potential in the treatment of skin diseases and can be a new window for the treatment of diseases with no definitive treatment. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description ofthese Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Mohammad Ali Nilforoushzadeh
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Jordan Dermatology and Hair Transplantation Center, Tehran, Iran
| | - Ebrahim Khodaverdi Darian
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamideh Afzali
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammadreza Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Naser
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Behtash Amiri
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alimohammad Alimohammadi
- Forensic Medicine Specialist, Research Center of Legal Medicine Organization of Iran, Tehran, Iran
| | - Nahid Nikkhah
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Alhayek A, Khan ES, Schönauer E, Däinghaus T, Shafiei R, Voos K, Han MK, Ducho C, Posselt G, Wessler S, Brandstetter H, Haupenthal J, del Campo A, Hirsch AK. Inhibition of Collagenase Q1 of Bacillus cereus as a Novel Antivirulence Strategy for the Treatment of Skin-Wound Infections. ADVANCED THERAPEUTICS 2022; 5:2100222. [PMID: 35310821 PMCID: PMC7612511 DOI: 10.1002/adtp.202100222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 01/02/2023]
Abstract
Despite the progress in surgical techniques and antibiotic prophylaxis, opportunistic wound infections with Bacillus cereus remain a public health problem. Secreted toxins are one of the main factors contributing to B. cereus pathogenicity. A promising strategy to treat such infections is to target these toxins and not the bacteria. Although the exoenzymes produced by B. cereus are thoroughly investigated, little is known about the role of B. cereus collagenases in wound infections. In this report, the collagenolytic activity of secreted collagenases (Col) is characterized in the B. cereus culture supernatant (csn) and its isolated recombinantly produced ColQ1 is characterized. The data reveals that ColQ1 causes damage on dermal collagen (COL). This results in gaps in the tissue, which might facilitate the spread of bacteria. The importance of B. cereus collagenases is also demonstrated in disease promotion using two inhibitors. Compound 2 shows high efficacy in peptidolytic, gelatinolytic, and COL degradation assays. It also preserves the fibrillar COLs in skin tissue challenged with ColQ1, as well as the viability of skin cells treated with B. cereus csn. A Galleria mellonella model highlights the significance of collagenase inhibition in vivo.
Collapse
Affiliation(s)
- Alaa Alhayek
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research (HZI) 38124 Saarbrücken, Germany; Department of Pharmacy Saarland University, Saarbrücken Campus Campus E8.1, 66123 Saarbrücken, Germany
| | - Essak S. Khan
- Leibniz Institute for New Materials (INM) Saarland University Campus D2 2, 66123 Saarbrücken, Germany
| | - Esther Schönauer
- Department of Biosciences and Medical Biology Hellbrunner Str. 34 University of Salzburg Salzburg 5020, Austria
| | - Tobias Däinghaus
- Leibniz Institute for New Materials (INM) Saarland University Campus D2 2, 66123 Saarbrücken, Germany
| | - Roya Shafiei
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research (HZI) 38124 Saarbrücken, Germany
| | - Katrin Voos
- Department of Pharmacy Pharmaceutical and Medicinal Chemistry Saarland University Campus C2 3, 66123 Saarbrücken, Germany
| | - Mitchell K.L. Han
- Leibniz Institute for New Materials (INM) Saarl and University Campus D2 2, 66123 Saarbrücken, Germany
| | - Christian Ducho
- Department of Pharmacy Pharmaceutical and Medicinal Chemistry Saarland University Campus C2 3, 66123 Saarbrücken, Germany
| | - Gernot Posselt
- Department of Biosciences and Medical Biology Hellbrunner Str. 34 University of Salzburg Salzburg 5020, Austria
| | - Silja Wessler
- Department of Biosciences and Medical Biology Hellbrunner Str. 34 University of Salzburg Salzburg 5020, Austria
| | - Hans Brandstetter
- Department of Biosciences and Medical Biology Hellbrunner Str. 34 University of Salzburg Salzburg 5020, Austria
| | - Jörg Haupenthal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research (HZI) 38124 Saarbrücken, Germany
| | - Aránzazu del Campo
- Leibniz Institute for New Materials (INM) Saarland University Campus D2 2, 66123 Saarbrücken, Germany; Chemistry Department Saarland University 66123 Saarbrücken, Germany
| | - Anna K.H. Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Centre for Infection Research (HZI) 38124 Saarbrücken, Germany; Department of Pharmacy Saarland University, Saarbrücken Campus Campus E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
3
|
Salman IS, Al-Shammari AM, Haba MK. Direct Reprogramming of Mice Skin Fibroblasts into Insulin-Producing Cells In Vitro. Cell Reprogram 2021; 24:271-282. [PMID: 34637623 DOI: 10.1089/cell.2021.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transdifferentiation means mature cell conversion into other mature cells. Ethical issues, epigenetic failure, or teratoma development are found in cellular reprogramming strategies. Thus, new methods are needed. This study aimed to develop a new novel formula of chemical molecules and growth factors that differentiate skin fibroblasts into insulin-producing cells (IPCs). Newborn mice fibroblasts differentiated using four induction methods into IPCs to search for the best method. Fibroblasts, stem cells, and pancreatic markers were identified using an immunocytochemistry (ICC) assay. Insulin was measured using ELISA and dithizone (DTZ) assays. The skin fibroblasts were induced successfully into IPCs. The best method to obtain IPCs was indicated by measuring insulin concentration in differentiated cell supernatant from all induced cells by the four methods. The protein expression of the pancreatic markers of induced cells increased with time, as indicated by the ICC assay. OCT3/4 increased on day 9, after which the expression tended to decrease. DTZ-positive clusters were observed on day 16. Secreted insulin of differentiated cells was injected in streptozotocin-induced diabetic mice, which decreased blood glucose levels after injection. This study indicated an efficient new chemical method for transdifferentiating skin fibroblasts into functional IPCs, which is a promising method for diabetes mellitus therapy.
Collapse
Affiliation(s)
- Israa S Salman
- Department of Biology, College of Science for Women, University of Baghdad, Baghdad, Iraq
| | - Ahmed Majeed Al-Shammari
- Experimental Therapy Department, Iraqi Center of Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
| | - Mukhtar Khamis Haba
- Department of Biology, College of Science for Women, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
4
|
Mohammed ASY, Dyab AKF, Taha F, Abd El-Mageed AIA. Encapsulation of folic acid (vitamin B 9) into sporopollenin microcapsules: Physico-chemical characterisation, in vitro controlled release and photoprotection study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112271. [PMID: 34474830 DOI: 10.1016/j.msec.2021.112271] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 02/03/2023]
Abstract
Folic acid (FA) is a crucial vitamin for all living creatures. However, it is susceptible to degradation under pH, heat, ultraviolet (UV) and day sunlight conditions, resulting in lowering its bioavailability. Therefore, a versatile protective encapsulation system for FA is highly required to overcome its inherent instability. We report the use of the robust Lycopodium clavatum sporopollenin (LCS) microcapsules, extracted from their natural micrometer-sized raw spores, for FA microencapsulation. The physico-chemical characterisation of the LCS microcapsules are comprehensively investigated before and after the microencapsulation using SEM, elemental, CLSM, FTIR, TGA/DTG and XRD analyses, revealing a successful FA encapsulation within the LCS in an amorphous form. The phenylpropanoid acids, responsible for the UV protection and the autofluorescence of the LCS, were found in the LCS as evidenced by FTIR analysis. TGA/DTG results revealed that the hemi-cellulose and cellulose are the major component of the LCS. A controlled and sustained release of FA from FA-loaded LCS were achieved where the release profile of FA-loaded LCS was found to be pH-dependent. The percentages of cumulative FA released after 10 h at 37 ± 0.5 °C were 45.5% and 76.1% in pH 1.2 and 7.4, respectively, ensuring controlled and slow release in simulated physiological conditions. The FA release kinetic studies indicated the prevalence of the Fickian diffusion mechanism in pH 1.2, while anomalous non-Fickian transport was ascribed for FA release in pH 7.4. The in vitro cytotoxicity assay revealed that the obtained formulations were biocompatible against the human skin fibroblast (HSF) cell line. The versatile LCS microcapsules exhibited intriguing photostability for FA under UV or sunlight irradiation. Concretely, the obtained FA sustained delivery and photoprotection properties of these LCS microcapsules validate their multifunctional characteristics, opening up intriguing applications in oral and topical drug delivery as well as in food industry.
Collapse
Affiliation(s)
- Al-Shymaa Y Mohammed
- Colloids & Advanced Materials Group, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Amro K F Dyab
- Colloids & Advanced Materials Group, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt.
| | - Fouad Taha
- Colloids & Advanced Materials Group, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Ahmed I A Abd El-Mageed
- Colloids & Advanced Materials Group, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; Nanoscience and Technology, Faculty of Science, GALALA University, Galala City, Suez 43711, Egypt
| |
Collapse
|
5
|
Zhang R, Teramura Y, Fukazawa K, Ishihara K. Phospholipid Polymer Hydrogel Matrices with Dually Immobilized Cytokines for Accelerating Secretion of the Extracellular Matrix by Encapsulated Cells. Macromol Biosci 2020; 20:e2000114. [PMID: 32567166 DOI: 10.1002/mabi.202000114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Construction of 3D tissues by various types of cells with specific characteristics is an important and fundamental technology in tissue reconstruction medicine and animal-free diagnosis system. To do so, an excellent extracellular matrix (ECM) is needed for encapsulation of cells and maintaining cell activity. Spontaneously forming hydrogel matrix is used by complexation between two water-soluble polymers, 2-methacryloyloxyethyl phosphorylcholine polymer bearing phenylboronic acid groups and poly(vinyl alcohol). Two cytokines for cell proliferation are immobilized in the hydrogel matrix to control the activities of the encapsulated cells. The cytokine-immobilized hydrogel matrix can encapsulate both L929 fibroblasts and normal human dermal fibroblasts under mild condition. The physical properties of the hydrogel matrix can follow the proliferation process of the encapsulated cells. The encapsulated cells secrete ECM in the polymer hydrogel networks upon 3D culturing for 7 days. Consequently, the tissue-mimicking ECM hybrid hydrogels are fabricated successfully.
Collapse
Affiliation(s)
- Ren Zhang
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Japan
| | - Yuji Teramura
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Japan.,Department of Immunology, Genetics, and Pathology (IGP), Uppsala University, Dag Hammarskjölds väg 20, Uppsala, SE-751 85, Sweden
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Japan
| | - Kazuhiko Ishihara
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Japan.,Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Japan
| |
Collapse
|
6
|
Shirkavand A, Farivar S, Mohajerani E, Ataie-Fashtami L, Ghazimoradi MH. Non-invasive Reflectance Spectroscopy for Normal and Cancerous Skin Cells Refractive Index Determination: An In Vitro Study. Lasers Surg Med 2019; 51:742-750. [PMID: 31094015 DOI: 10.1002/lsm.23095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Optical reflectance spectroscopy is a non-invasive technique for optical characterization of biological samples. Any alteration in a cell from normal or carcinogenic causes will change its refractive index. The aim of this study is to develop a computerized program for extraction of a refractive index of normal and cancerous skin cell lines, including melanoma, fibroblast, and adipose cells, using visible near-infrared reflectance spectra and the Kramers-Kronig (K-K) relations. MATERIALS AND METHOD A fiber optic reflectance spectrometer in visible near-infrared wavelength was used for spectrum acquisition in an in vitro study. Human skin cell lines for melanoma (A375), fibroblast, and adipose sample were cultured for optical spectroscopy. Following data acquisition, an analytical MATLAB code was developed to run the K-K relations. The program was validated for three biological samples using an Abbe refractometer. RESULTS The validation error (below 5%) and determination of changes in the refractive index of melanoma, normal fibroblasts, and adipose skin cells was carried out at wavelengths of 450-950 nm. The refractive index of melanoma was 1.59270 ± 0.0550 at 450 nm, the minimum amount of 1.27790 ± 0.0550 to 1.321 ± 0.0550 at 620 nm, and rose sharply to 1.44321 ± 0.0550 at 935 nm. The respective results for fibroblast and adipose tissue cells were 1.33282 ± 0.0134 and 1.28345 ± 0.0163 at 450 nm with an increasing trend to 1.30494 ± 0.0135 and 1.26716 ± 0.0163 at 935 nm. CONCLUSION Refractive index characteristics show potential for cancer screening and diagnosis. The results show that optical spectroscopy is a promising, non-invasive tool for assessment of the refractive index of living biological cells in in vitro settings. Tracking changes in the refractive index allows screening of normal and abnormal cells for probable alterations in a non-invasive label-free method. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Afshan Shirkavand
- POMP Lab, Photonics Department, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Shirin Farivar
- Genetics, Stem Cells, Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983963113, Iran
| | - Ezeddin Mohajerani
- POMP Lab, Photonics Department, Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Leila Ataie-Fashtami
- Department of Regenerative Medicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Mohammad H Ghazimoradi
- Genetics, Stem Cells, Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983963113, Iran
| |
Collapse
|