1
|
Sawashita Y, Kazuma S, Tokinaga Y, Kikuchi K, Hirata N, Masuda Y, Yamakage M. Albumin protects the ultrastructure of the endothelial glycocalyx of coronary arteries in myocardial ischemia-reperfusion injury in vivo. Biochem Biophys Res Commun 2023; 666:29-35. [PMID: 37172449 DOI: 10.1016/j.bbrc.2023.04.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Myocardial ischemia-reperfusion (I/R) injury induces endothelial glycocalyx (GCX) degradation. Several candidate GCX-protective factors including albumin have been identified, few have been demonstrated in in vivo studies and most albumins used to date have been heterologous. Albumin is a carrier protein for sphingosine 1-phosphate (S1P), which has protective effects on the cardiovascular system. However, changes inhibited by albumin in the endothelial GCX structure in I/R in vivo via the S1P receptor has not been reported. In this study, we aimed to determine whether albumin prevents the shedding of endothelial GCX in response to I/R in vivo. Rats were divided into four groups: control (CON), I/R, I/R with albumin preload (I/R + ALB), and I/R + ALB with S1P receptor agonist fingolimod (I/R + ALB + FIN). FIN acts as an initial agonist of S1P receptor 1 and downregulates the receptor in an inhibitory manner. The CON and I/R groups received saline and I/R + ALB and I/R + ALB + FIN groups received albumin solution before left anterior descending coronary artery ligation. Our study used rat albumin. Shedding of endothelial GCX was evaluated in the myocardium by electron microscopy, and the concentration of serum syndecan-1 was measured. Thus, albumin administration maintained the structure of endothelial GCX and prevented shedding of endothelial GCX via the S1P receptor in myocardial I/R, and FIN annihilated the protective effect of albumin against I/R injury.
Collapse
Affiliation(s)
- Yasuaki Sawashita
- Department of Anesthesiology, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
| | - Satoshi Kazuma
- Department of Intensive Care Medicine, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan.
| | - Yasuyuki Tokinaga
- Department of Anesthesiology, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Kenichiro Kikuchi
- Department of Anesthesiology, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
| | - Naoyuki Hirata
- Department of Anesthesiology, Kumamoto University, School of Medicine, Kumamoto, Kumamoto, Japan
| | - Yoshiki Masuda
- Department of Intensive Care Medicine, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
| | - Michiaki Yamakage
- Department of Anesthesiology, Sapporo Medical University, School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Abrahams C, Woudberg NJ, Lecour S. Anthracycline-induced cardiotoxicity: targeting high-density lipoproteins to limit the damage? Lipids Health Dis 2022; 21:85. [PMID: 36050733 PMCID: PMC9434835 DOI: 10.1186/s12944-022-01694-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/02/2022] [Indexed: 12/30/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic frequently used against a wide range of cancers, including breast cancer. Although the drug is effective as a treatment against cancer, many patients develop heart failure (HF) months to years following their last treatment with DOX. The challenge in preventing DOX-induced cardiotoxicity is that symptoms present after damage has already occurred in the myocardium. Therefore, early biomarkers to assess DOX-induced cardiotoxicity are urgently needed. A better understanding of the mechanisms involved in the toxicity is important as this may facilitate the development of novel early biomarkers or therapeutic approaches. In this review, we discuss the role of high-density lipoprotein (HDL) particles and its components as possible key players in the early development of DOX-induced cardiotoxicity. HDL particles exist in different subclasses which vary in composition and biological functionality. Multiple cardiovascular risk factors are associated with a change in HDL subclasses, resulting in modifications of their composition and physiological functions. There is growing evidence in the literature suggesting that cancer affects HDL subclasses and that healthy HDL particles enriched with sphingosine-1-phosphate (S1P) and apolipoprotein A1 (ApoA1) protect against DOX-induced cardiotoxicity. Here, we therefore discuss associations and relationships between HDL, DOX and cancer and discuss whether assessing HDL subclass/composition/function may be considered as a possible early biomarker to detect DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Carmelita Abrahams
- Cardioprotection Group, Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7935, South Africa
| | - Nicholas J Woudberg
- Cardioprotection Group, Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7935, South Africa
| | - Sandrine Lecour
- Cardioprotection Group, Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7935, South Africa.
| |
Collapse
|
3
|
Borodzicz-Jażdżyk S, Jażdżyk P, Łysik W, Cudnoch-Jȩdrzejewska A, Czarzasta K. Sphingolipid metabolism and signaling in cardiovascular diseases. Front Cardiovasc Med 2022; 9:915961. [PMID: 36119733 PMCID: PMC9471951 DOI: 10.3389/fcvm.2022.915961] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/05/2022] [Indexed: 01/10/2023] Open
Abstract
Sphingolipids are a structural component of the cell membrane, derived from sphingosine, an amino alcohol. Its sphingoid base undergoes various types of enzymatic transformations that lead to the formation of biologically active compounds, which play a crucial role in the essential pathways of cellular signaling, proliferation, maturation, and death. The constantly growing number of experimental and clinical studies emphasizes the pivotal role of sphingolipids in the pathophysiology of cardiovascular diseases, including, in particular, ischemic heart disease, hypertension, heart failure, and stroke. It has also been proven that altering the sphingolipid metabolism has cardioprotective properties in cardiac pathologies, including myocardial infarction. Recent studies suggest that selected sphingolipids may serve as valuable biomarkers useful in the prognosis of cardiovascular disorders in clinical practice. This review aims to provide an overview of the current knowledge of sphingolipid metabolism and signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Sonia Borodzicz-Jażdżyk
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Jażdżyk
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, Warsaw, Poland
| | - Wojciech Łysik
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jȩdrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Czarzasta
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Maslov LN, Popov SV, Mukhomedzyanov AV, Derkachev IA, Ryabov VV, Boshchenko AA, Prasad NR, Sufianova GZ, Khlestkina MS, Gareev I. Pharmacological Approaches to Limit Ischemic and Reperfusion Injuries of the Heart. Analysis of Experimental and Clinical Data on P2Y 12 Receptor Antagonists. Korean Circ J 2022; 52:737-754. [PMID: 36217596 PMCID: PMC9551227 DOI: 10.4070/kcj.2022.0162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 12/03/2022] Open
Abstract
High mortality among people with acute myocardial infarction is one of the most urgent problems of modern cardiology. And in recent years, much attention has been paid to the search for pharmacological approaches to prevent heart damage. In this review, we tried to analyze data on the effect of P2Y12 receptor antagonists on the ischemia/reperfusion tolerance of the heart. Ischemic and reperfusion injuries of the heart underlie the pathogenesis of acute myocardial infarction (AMI) and sudden cardiac death. The mortality rate is still high and is 5–7% in patients with ST-segment elevation myocardial infarction. The review is devoted to pharmacological approaches to limitation of ischemic and reperfusion injuries of the heart. The article analyzes experimental evidence and the clinical data on the effects of P2Y12 receptor antagonists on the heart’s tolerance to ischemia/reperfusion in animals with coronary artery occlusion and reperfusion and also in patients with AMI. Chronic administration of ticagrelor prevented adverse remodeling of the heart. There is evidence that sphingosine-1-phosphate is the molecule that mediates the infarct-reducing effect of P2Y12 receptor antagonists. It was discussed a role of adenosine in the cardioprotective effect of ticagrelor.
Collapse
Affiliation(s)
- Leonid N. Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Sergey V. Popov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | | | - Ivan A. Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Vyacheslav V. Ryabov
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Alla A. Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - N. Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | | | | | | |
Collapse
|
5
|
Maslov LN, Popov SV, Mukhomedzyanov AV, Naryzhnaya NV, Voronkov NS, Ryabov VV, Boshchenko AA, Khaliulin I, Prasad NR, Fu F, Pei JM, Logvinov SV, Oeltgen PR. Reperfusion Cardiac Injury: Receptors and the Signaling Mechanisms. Curr Cardiol Rev 2022; 18:63-79. [PMID: 35422224 PMCID: PMC9896422 DOI: 10.2174/1573403x18666220413121730] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 11/22/2022] Open
Abstract
It has been documented that Ca2+ overload and increased production of reactive oxygen species play a significant role in reperfusion injury (RI) of cardiomyocytes. Ischemia/reperfusion induces cell death as a result of necrosis, necroptosis, apoptosis, and possibly autophagy, pyroptosis and ferroptosis. It has also been demonstrated that the NLRP3 inflammasome is involved in RI of the heart. An increase in adrenergic system activity during the restoration of coronary perfusion negatively affected cardiac resistance to RI. Toll-like receptors are involved in RI of the heart. Angiotensin II and endothelin-1 aggravated ischemic/reperfusion injury of the heart. Activation of neutrophils, monocytes, CD4+ T-cells and platelets contributes to cardiac ischemia/reperfusion injury. Our review outlines the role of these factors in reperfusion cardiac injury.
Collapse
Affiliation(s)
- Leonid N. Maslov
- Address correspondence to this author at the Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Kyevskskaya 111A, 634012 Tomsk, Russia; Tel. +7 3822 262174; E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Morris G, Puri BK, Bortolasci CC, Carvalho A, Berk M, Walder K, Moreira EG, Maes M. The role of high-density lipoprotein cholesterol, apolipoprotein A and paraoxonase-1 in the pathophysiology of neuroprogressive disorders. Neurosci Biobehav Rev 2021; 125:244-263. [PMID: 33657433 DOI: 10.1016/j.neubiorev.2021.02.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/29/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Lowered high-density lipoprotein (HDL) cholesterol has been reported in major depressive disorder, bipolar disorder, first episode of psychosis, and schizophrenia. HDL, its major apolipoprotein component, ApoA1, and the antioxidant enzyme paraoxonase (PON)1 (which is normally bound to ApoA1) all have anti-atherogenic, antioxidant, anti-inflammatory, and immunomodulatory roles, which are discussed in this paper. The paper details the pathways mediating the anti-inflammatory effects of HDL, ApoA1 and PON1 and describes the mechanisms leading to compromised HDL and PON1 levels and function in an environment of chronic inflammation. The molecular mechanisms by which changes in HDL, ApoA1 and PON1 might contribute to the pathophysiology of the neuroprogressive disorders are explained. Moreover, the anti-inflammatory actions of ApoM-mediated sphingosine 1-phosphate (S1P) signalling are reviewed as well as the deleterious effects of chronic inflammation and oxidative stress on ApoM/S1P signalling. Finally, therapeutic interventions specifically aimed at improving the levels and function of HDL and PON1 while reducing levels of inflammation and oxidative stress are considered. These include the so-called Mediterranean diet, extra virgin olive oil, polyphenols, flavonoids, isoflavones, pomegranate juice, melatonin and the Mediterranean diet combined with the ketogenic diet.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Chiara C Bortolasci
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia.
| | - Andre Carvalho
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Berk
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Estefania G Moreira
- Post-Graduation Program in Health Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Michael Maes
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
7
|
Cirillo F, Piccoli M, Ghiroldi A, Monasky MM, Rota P, La Rocca P, Tarantino A, D'Imperio S, Signorelli P, Pappone C, Anastasia L. The antithetic role of ceramide and sphingosine-1-phosphate in cardiac dysfunction. J Cell Physiol 2021; 236:4857-4873. [PMID: 33432663 DOI: 10.1002/jcp.30235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally and the number of cardiovascular patients, which is estimated to be over 30 million in 2018, represent a challenging issue for the healthcare systems worldwide. Therefore, the identification of novel molecular targets to develop new treatments is an ongoing challenge for the scientific community. In this context, sphingolipids (SLs) have been progressively recognized as potent bioactive compounds that play crucial roles in the modulation of several key biological processes, such as proliferation, differentiation, and apoptosis. Furthermore, SLs involvement in cardiac physiology and pathophysiology attracted much attention, since these molecules could be crucial in the development of CVDs. Among SLs, ceramide and sphingosine-1-phosphate (S1P) represent the most studied bioactive lipid mediators, which are characterized by opposing activities in the regulation of the fate of cardiac cells. In particular, maintaining the balance of the so-called ceramide/S1P rheostat emerged as an important novel therapeutical target to counteract CVDs. Thus, this review aims at critically summarizing the current knowledge about the antithetic roles of ceramide and S1P in cardiomyocytes dysfunctions, highlighting how the modulation of their metabolism through specific molecules, such as myriocin and FTY720, could represent a novel and interesting therapeutic approach to improve the management of CVDs.
Collapse
Affiliation(s)
- Federica Cirillo
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy
| | - Marco Piccoli
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy
| | - Andrea Ghiroldi
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy
| | | | - Paola Rota
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Paolo La Rocca
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Adriana Tarantino
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy.,Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy
| | - Sara D'Imperio
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy.,Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy
| | - Paola Signorelli
- Department of Health Sciences, Biochemistry and Molecular Biology Laboratory, University of Milan, Milan, Italy
| | - Carlo Pappone
- Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| | - Luigi Anastasia
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, Milan, Italy.,Faculty of Medicine and Surgery, University of Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
8
|
Gwanyanya A, Godsmark CN, Kelly-Laubscher R. Ethanolamine: A Potential Promoiety with Additional Effects in the Brain. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 21:108-117. [PMID: 33319663 DOI: 10.2174/1871527319999201211204645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/14/2020] [Accepted: 09/11/2020] [Indexed: 11/22/2022]
Abstract
Ethanolamine is a bioactive molecule found in several cells, including those in the central nervous system (CNS). In the brain, ethanolamine and ethanolamine-related molecules have emerged as prodrug moieties that can promote drug movement across the blood-brain barrier. This improvement in the ability to target drugs to the brain may also mean that in the process ethanolamine concentrations in the brain are increased enough for ethanolamine to exert its own neurological ac-tions. Ethanolamine and its associated products have various positive functions ranging from cell signaling to molecular storage, and alterations in their levels have been linked to neurodegenerative conditions such as Alzheimer's disease. This mini-review focuses on the effects of ethanolamine in the CNS and highlights the possible implications of these effects for drug design.
Collapse
Affiliation(s)
- Asfree Gwanyanya
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town,. South Africa
| | - Christie Nicole Godsmark
- School of Public Health, College of Medicine and Health, University College Cork, Cork,. Ireland
| | - Roisin Kelly-Laubscher
- Department of Pharmacology and Therapeutics, School of Medicine, College of Medicine and Health, University College Cork, Cork,. Ireland
| |
Collapse
|
9
|
Jozefczuk E, Guzik TJ, Siedlinski M. Significance of sphingosine-1-phosphate in cardiovascular physiology and pathology. Pharmacol Res 2020; 156:104793. [PMID: 32278039 DOI: 10.1016/j.phrs.2020.104793] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a signaling lipid, synthetized by sphingosine kinases (SPHK1 and SPHK2), that affects cardiovascular function in various ways. S1P signaling is complex, particularly since its molecular action is reliant on the differential expression of its receptors (S1PR1, S1PR2, S1PR3, S1PR4, S1PR5) within various tissues. Significance of this sphingolipid is manifested early in vertebrate development as certain defects in S1P signaling result in embryonic lethality due to defective vasculo- or cardiogenesis. Similar in the mature organism, S1P orchestrates both physiological and pathological processes occurring in the heart and vasculature of higher eukaryotes. S1P regulates cell fate, vascular tone, endothelial function and integrity as well as lymphocyte trafficking, thus disbalance in its production and signaling has been linked with development of such pathologies as arterial hypertension, atherosclerosis, endothelial dysfunction and aberrant angiogenesis. Number of signaling mechanisms are critical - from endothelial nitric oxide synthase through STAT3, MAPK and Akt pathways to HDL particles involved in redox and inflammatory balance. Moreover, S1P controls both acute cardiac responses (cardiac inotropy and chronotropy), as well as chronic processes (such as apoptosis and hypertrophy), hence numerous studies demonstrate significance of S1P in the pathogenesis of hypertrophic/fibrotic heart disease, myocardial infarction and heart failure. This review presents current knowledge concerning the role of S1P in the cardiovascular system, as well as potential therapeutic approaches to target S1P signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- E Jozefczuk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - T J Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland; Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - M Siedlinski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland; Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.
| |
Collapse
|
10
|
Araibi H, van der Merwe E, Gwanyanya A, Kelly-Laubscher R. The effect of sphingosine-1-phosphate on the endothelial glycocalyx during ischemia-reperfusion injury in the isolated rat heart. Microcirculation 2020; 27:e12612. [PMID: 32017300 DOI: 10.1111/micc.12612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Sphingosine-1-phosphate is a natural metabolite that is cardioprotective, but its effects on endothelial glycocalyx damage during ischemia-reperfusion are unknown. Therefore, we investigated the effect of sphingosine-1-phosphate on the endothelial glycocalyx during ischemia-reperfusion. METHODS Isolated hearts from Wistar rats were perfused on a Langendorff system with Krebs-Henseleit buffer and pretreated with sphingosine-1-phosphate (10 nmol/L) before ischemia-reperfusion. Infarct size was measured by triphenyl tetrazolium chloride staining (n ≥ 6 per group). Cardiac edema was assessed by calculating total water content (n = 7 per group) and histologically quantifying the interstitial compartment (n ≥ 3 per group). The post-ischemic coronary release of syndecan-1 was quantified using ELISA. Syndecan-1 immunostaining intensity was assessed in perfusion-fixed hearts (n ≥ 3 per group). RESULTS Pretreatment with sphingosine-1-phosphate decreased infarct size in isolated hearts subjected to ischemia-reperfusion (P = .01 vs ischemia-reperfusion). However, sphingosine-1-phosphate had no effect on syndecan-1 levels in the coronary effluent or on the intensity of the syndecan-1 immunostaining signal in cardiac tissue. Heart total water content was not significantly different between control and ischemic groups but was significantly decreased in hearts treated with sphingosine-1-phosphate alone. CONCLUSION These results suggest that sphingosine-1-phosphate-induced cardioprotection against ischemia-reperfusion injury is not mediated by the maintenance of syndecan-1 in the endothelial glycocalyx.
Collapse
Affiliation(s)
- Hala Araibi
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Elizabeth van der Merwe
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Asfree Gwanyanya
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Roisin Kelly-Laubscher
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Biological Sciences, Faculty of Science, University of Cape Town, Cape Town, South Africa.,Department of Pharmacology & Therapeutics, The College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Plouffe B, Thomsen ARB, Irannejad R. Emerging Role of Compartmentalized G Protein-Coupled Receptor Signaling in the Cardiovascular Field. ACS Pharmacol Transl Sci 2020; 3:221-236. [PMID: 32296764 PMCID: PMC7155194 DOI: 10.1021/acsptsci.0c00006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Indexed: 02/06/2023]
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that for many years have been considered to function exclusively at the plasma membrane, where they bind to extracellular ligands and activate G protein signaling cascades. According to the conventional model, these signaling events are rapidly terminated by β-arrestin (β-arr) recruitment to the activated GPCR resulting in signal desensitization and receptor internalization. However, during the past decade, emerging evidence suggest that many GPCRs can continue to activate G proteins from intracellular compartments after they have been internalized. G protein signaling from intracellular compartments is in general more sustained compared to G protein signaling at the plasma membrane. Notably, the particular location closer to the nucleus is beneficial for selective cellular functions such as regulation of gene transcription. Here, we review key GPCRs that undergo compartmentalized G protein signaling and discuss molecular considerations and requirements for this signaling to occur. Our main focus will be on receptors involved in the regulation of important physiological and pathological cardiovascular functions. We also discuss how sustained G protein activation from intracellular compartments may be involved in cellular functions that are distinct from functions regulated by plasma membrane G protein signaling, and the corresponding significance in cardiovascular physiology.
Collapse
Affiliation(s)
- Bianca Plouffe
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Alex R B Thomsen
- Department of Basic Science and Craniofacial Biology, NYU College of Dentistry, New York, New York 10010, United States
| | - Roshanak Irannejad
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, California 94158, United States
| |
Collapse
|
12
|
Deshpande GP, Imamdin A, Lecour S, Opie LH. Sphingosine-1-phosphate (S1P) activates STAT3 to protect against de novo acute heart failure (AHF). Life Sci 2018; 196:127-132. [DOI: 10.1016/j.lfs.2018.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 01/23/2023]
|
13
|
van Vuuren D, Marais E, Genade S, Lochner A. The differential effects of FTY720 on functional recovery and infarct size following myocardial ischaemia/reperfusion. Cardiovasc J Afr 2017; 27:375-386. [PMID: 27966000 PMCID: PMC5408499 DOI: 10.5830/cvja-2016-039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/30/2016] [Indexed: 01/08/2023] Open
Abstract
AIM The aim of this study was to evaluate the effects of the sphingosine analogue, FTY720 (Fingolimod), on the outcomes of myocardial ischaemia/reperfusion (I/R) injury. METHODS Two concentrations of FTY720 (1 or 2.5 µM were administered either prior to (PreFTY), or following (PostFTY) 20 minutes' global (GI) or 35 minutes' regional ischaemia (RI) in the isolated, perfused, working rat heart. Functional recovery during reperfusion was assessed following both models of ischaemia, while infarct size (IFS) was determined following RI. RESULTS FTY720 at 1 µM exerted no effect on functional recovery, while 2.5 µM significantly impaired aortic output (AO) recovery when administered prior to GI (% recovery: control: 33.88 ± 6.12% vs PreFTY: 0%, n = 6-10; p < 0.001), as well as before and after RI ( % recovery: control: 27.86 ± 13.22% vs PreFTY: 0.62% ; p < 0.05; and PostFTY: 2.08%; p = 0.0585, n = 6). FTY720 at 1 µM administered during reperfusion reduced IFS (% of area at risk (AAR): control: 39.89 ± 3.93% vs PostFTY: 26.56 ± 4.32%, n = 6-8; p < 0.05), while 2.5 µM FTY720 reduced IFS irrespective of the time of administration ( % of AAR: control: 39.89 ± 3.93% vs PreFTY: 29.97 ± 1.03% ; and PostFTY: 30.45 ± 2.16%, n = 6; p < 0.05). CONCLUSION FTY720 exerted divergent outcomes on function and tissue survival depending on the concentration administered, as well as the timing of administration.
Collapse
Affiliation(s)
- Derick van Vuuren
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - Erna Marais
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Sonia Genade
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Amanda Lochner
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
14
|
Yang Y, Hu W, Di S, Ma Z, Fan C, Wang D, Jiang S, Li Y, Zhou Q, Li T, Luo E. Tackling myocardial ischemic injury: the signal transducer and activator of transcription 3 (STAT3) at a good site. Expert Opin Ther Targets 2017; 21:215-228. [PMID: 28001439 DOI: 10.1080/14728222.2017.1275566] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Myocardial ischemia is one of the main causes of cardiac remodeling and heart failure. As a highly evolutionarily conserved pathway, the signal transducer and activator of transcription 3 (STAT3) signaling controls intercellular communication, signaling transduction and gene transcription. Interestingly, STAT3 signaling has been demonstrated to take part in myocardial ischemia. Furthermore, activation of STAT3 signaling contributes to the protective efficacy of various interventions, including pharmacological and non-pharmacological treatment of myocardial ischemic injury. Areas covered: We first introduce the protective mechanisms of STAT3. We then discuss STAT3 signaling in various cells and the roles of STAT3 in myocardial processes during myocardial ischemia. Finally, the roles of STAT3 in myocardial ischemia and the upstream regulators of STAT3 activation are summarized. Expert opinion: In various animal experiments, STAT3 has been demonstrated to take part in myocardial responses to myocardial ischemic injury and to be activated during various modes of protection against myocardial ischemia and ischemia/reperfusion (I/R) injury. However, further clinical evidence on the role of STAT3 in such protection is needed. Treatments targeting STAT3 as a means of reducing myocardial ischemic injury need to be tested in a clinical setting. Furthermore, biotechnology can be used to develop effective drugs for this purpose.
Collapse
Affiliation(s)
- Yang Yang
- a Department of Biomedical Engineering , The Fourth Military Medical University , Xi'an , China
- b Department of Thoracic and Cardiovascular Surgery , Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , Jiangsu , China
| | - Wei Hu
- a Department of Biomedical Engineering , The Fourth Military Medical University , Xi'an , China
| | - Shouyin Di
- c Department of Thoracic Surgery , Tangdu Hospital, The Fourth Military Medical University , Xi'an , China
| | - Zhiqiang Ma
- c Department of Thoracic Surgery , Tangdu Hospital, The Fourth Military Medical University , Xi'an , China
| | - Chongxi Fan
- c Department of Thoracic Surgery , Tangdu Hospital, The Fourth Military Medical University , Xi'an , China
| | - Dongjin Wang
- b Department of Thoracic and Cardiovascular Surgery , Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , Jiangsu , China
| | - Shuai Jiang
- d Department of Aerospace Medicine , The Fourth Military Medical University , Xi'an , China
| | - Yue Li
- a Department of Biomedical Engineering , The Fourth Military Medical University , Xi'an , China
| | - Qing Zhou
- b Department of Thoracic and Cardiovascular Surgery , Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , Jiangsu , China
| | - Tian Li
- a Department of Biomedical Engineering , The Fourth Military Medical University , Xi'an , China
| | - Erping Luo
- a Department of Biomedical Engineering , The Fourth Military Medical University , Xi'an , China
| |
Collapse
|
15
|
Cabrera-Fuentes HA, Aragones J, Bernhagen J, Boening A, Boisvert WA, Bøtker HE, Bulluck H, Cook S, Di Lisa F, Engel FB, Engelmann B, Ferrazzi F, Ferdinandy P, Fong A, Fleming I, Gnaiger E, Hernández-Reséndiz S, Kalkhoran SB, Kim MH, Lecour S, Liehn EA, Marber MS, Mayr M, Miura T, Ong SB, Peter K, Sedding D, Singh MK, Suleiman MS, Schnittler HJ, Schulz R, Shim W, Tello D, Vogel CW, Walker M, Li QOY, Yellon DM, Hausenloy DJ, Preissner KT. From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on "New frontiers in cardiovascular research". Basic Res Cardiol 2016; 111:69. [PMID: 27743118 PMCID: PMC5065587 DOI: 10.1007/s00395-016-0586-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/02/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022]
Abstract
In this meeting report, particularly addressing the topic of protection of the cardiovascular system from ischemia/reperfusion injury, highlights are presented that relate to conditioning strategies of the heart with respect to molecular mechanisms and outcome in patients' cohorts, the influence of co-morbidities and medications, as well as the contribution of innate immune reactions in cardioprotection. Moreover, developmental or systems biology approaches bear great potential in systematically uncovering unexpected components involved in ischemia-reperfusion injury or heart regeneration. Based on the characterization of particular platelet integrins, mitochondrial redox-linked proteins, or lipid-diol compounds in cardiovascular diseases, their targeting by newly developed theranostics and technologies opens new avenues for diagnosis and therapy of myocardial infarction to improve the patients' outcome.
Collapse
Affiliation(s)
- Hector A Cabrera-Fuentes
- Institute of Biochemistry, Medical School, Justus-Liebig University, Giessen, Germany
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Department of Microbiology, Kazan Federal University, Kazan, Russian Federation
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, NL, Mexico
| | - Julian Aragones
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa, Autonomous University of Madrid, Madrid, Spain
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Ludwig-Maximilians-Universität, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Andreas Boening
- Department of Cardiovascular Surgery, Medical School, Justus-Liebig-University, Giessen, Germany
| | - William A Boisvert
- Department of Microbiology, Kazan Federal University, Kazan, Russian Federation
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA
| | - Hans E Bøtker
- Department of Cardiology, Aarhus University Hospital, Skejby, Aarhus N, Denmark
| | - Heerajnarain Bulluck
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Stuart Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Bernd Engelmann
- Institut für Laboratoriumsmedizin, Ludwig-Maximilians-Universität, Munich, Germany
| | - Fulvia Ferrazzi
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Alan Fong
- Department of Cardiology, Sarawak Heart Centre, Sarawak, Malaysia
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Frankfurt, Germany
| | - Erich Gnaiger
- D. Swarovski Research Lab, Department of Visceral, Transplant Thoracic Surgery, Medical Univ Innsbruck, Innsbruck, Austria
| | - Sauri Hernández-Reséndiz
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Department of Cardiovascular Medicine, National Institute of Cardiology, Ignacio Chavez, Mexico, D.F., Mexico
| | - Siavash Beikoghli Kalkhoran
- The Hatter Cardiovascular Institute, University College London, London, UK
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - Moo Hyun Kim
- Department of Cardiology, Dong-A University Hospital, Busan, Korea
| | - Sandrine Lecour
- Hatter Institute and MRC Inter-University Cape Heart Unit, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Elisa A Liehn
- Institute for Molecular Cardiovascular Research, RWTH University Hospital, Aachen, Germany
| | - Michael S Marber
- Department of Cardiology, The Rayne Institute, St Thomas' Campus, King's College London, London, UK
| | - Manuel Mayr
- The James Black Centre, King's College, University of London, London, UK
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Sang-Bing Ong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Karlheinz Peter
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Daniel Sedding
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Manvendra K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - M Saadeh Suleiman
- Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Bristol, UK
| | - Hans J Schnittler
- Institute of Anatomy and Vascular Biology, Westfalian-Wilhelms-University, Münster, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Winston Shim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Daniel Tello
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa, Autonomous University of Madrid, Madrid, Spain
| | - Carl-Wilhelm Vogel
- Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA
| | - Malcolm Walker
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Qilong Oscar Yang Li
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa, Autonomous University of Madrid, Madrid, Spain
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, UK
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - Derek J Hausenloy
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, 8 College Road, Singapore, 169857, Singapore.
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.
- The Hatter Cardiovascular Institute, University College London, London, UK.
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK.
| | - Klaus T Preissner
- Institute of Biochemistry, Medical School, Justus-Liebig University, Giessen, Germany
- Department of Microbiology, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
16
|
Nduhirabandi F, Lamont K, Albertyn Z, Opie LH, Lecour S. Role of toll-like receptor 4 in melatonin-induced cardioprotection. J Pineal Res 2016; 60:39-47. [PMID: 26465095 DOI: 10.1111/jpi.12286] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/08/2015] [Indexed: 12/19/2022]
Abstract
Melatonin protects the heart against myocardial ischemia/reperfusion injury via the activation of the survivor activating factor enhancement (SAFE) pathway which involves tumor necrosis factor alpha (TNFα) and the signal transducer and activator of transcription 3 (STAT3). Toll-like receptor 4 (TLR4) plays a crucial role in myocardial ischemia/reperfusion injury and activates TNFα. In this study, we investigated whether melatonin may target TLR4 to activate the SAFE pathway. Isolated hearts from rats or mice were subjected to ischemia/reperfusion injury. Melatonin (75 ng/L) and/or TAK242 (a specific inhibitor of TLR4 signaling, 500 nm) were administered to the rat hearts before the induction of ischemia. Pre-ischemic myocardial STAT3 was evaluated by Western blotting. Lipopolysaccharide (LPS, a stimulator of TLR4) was administered to wild type, TNFα receptor 2 knockout or cardiomyocyte-specific STAT3-deficient mice (2.8 mg/kg, i.p) 45 min before the heart isolation. Myocardial infarct size was measured as an endpoint. Compared to the control, administration of melatonin reduced myocardial infarct size (34.7 ± 2.8% versus 62.6 ± 2.7%, P < 0.01). This protective effect was abolished in the presence of TAK242 (49.2 ± 6.5%). Melatonin administered alone increased the pre-ischemic activation of mitochondrial STAT3, and this effect was attenuated with TAK242. Furthermore, stimulation of TLR4 with LPS pretreatment to mice reduced myocardial infarct size of the hearts isolated from wild-type animals but failed to protect the hearts isolated from TNFα receptor 2-knockout mice or cardiomyocyte-specific STAT3-deficient mice (P < 0.001). Taken together, these data suggest that cardioprotection induced by melatonin is mediated by TLR4 to activate the SAFE pathway.
Collapse
Affiliation(s)
- Frederic Nduhirabandi
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kim Lamont
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Zulfah Albertyn
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lionel H Opie
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sandrine Lecour
- Cardioprotection Group, Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Sun PP, Yuan F, Xu J, Sai K, Chen J, Guan S. Cryptotanshinone Ameliorates Hepatic Normothermic Ischemia and Reperfusion Injury in Rats by Anti-mitochondrial Apoptosis. Biol Pharm Bull 2015; 37:1758-65. [PMID: 25366482 DOI: 10.1248/bpb.b14-00389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cryptotanshinone (CT), isolated from the dried roots of Salvia militorrhiza, has been reported to have protective effects on myocardial and cerebral ischemia/reperfusion (I/R) injury both in vitro and in vivo. However, its effects and underlying mechanism on hepatic I/R injury remain unclear. To investigate its effects on hepatic I/R injury, thirty male Sprague-Dawley rats were randomized into 3 groups: a sham group, a vehicle-treated hepatic I/R group and a CT-treated (50 mg/kg) group. The hepatic I/R and CT-treated groups were subjected to 60 min of normothermic ischemia of the left lateral lobe of the liver, followed by 4 h of reperfusion. The animals were then sacrificed to collect the serum and the left liver lobe for assay. Hepatic function was protected, as evidenced by significantly reduced alanine aminotransferase (ALT), aspartate aminotransferase (AST) and malondialdehyde (MDA) levels in the CT-treated group as compared with I/R group. The terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) demonstrated significantly decreased apoptosis in the CT-administration animals. Western blotting demonstrated upregulation of the proapoptotic protein Bcl-2, as well as decreased levels of the activated form of caspase-3 and the cleaved form of its substrate, poly(ADP-ribose) polymerase (PARP) in the CT-treated group compared with those of the I/R group. In addition, the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPKs) was inhibited by CT. Our data suggest that CT attenuates hepatic I/R injury by inhibiting the intrinsic pathway of apoptosis, mediated partly through the inhibition of JNK and p38 MAPK phosporylation.
Collapse
Affiliation(s)
- Ping-Ping Sun
- Department of Pharmacy, the First Affiliated Hospital of Sun Yat-sen University
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Reperfusion is mandatory to salvage ischemic myocardium from infarction, but reperfusion per se contributes to injury and ultimate infarct size. Therefore, cardioprotection beyond that by timely reperfusion is needed to reduce infarct size and improve the prognosis of patients with acute myocardial infarction. The conditioning phenomena provide such cardioprotection, insofar as brief episodes of coronary occlusion/reperfusion preceding (ischemic preconditioning) or following (ischemic postconditioning) sustained myocardial ischemia with reperfusion reduce infarct size. Even ischemia/reperfusion in organs remote from the heart provides cardioprotection (remote ischemic conditioning). The present review characterizes the signal transduction underlying the conditioning phenomena, including their physical and chemical triggers, intracellular signal transduction, and effector mechanisms, notably in the mitochondria. Cardioprotective signal transduction appears as a highly concerted spatiotemporal program. Although the translation of ischemic postconditioning and remote ischemic conditioning protocols to patients with acute myocardial infarction has been fairly successful, the pharmacological recruitment of cardioprotective signaling has been largely disappointing to date.
Collapse
Affiliation(s)
- Gerd Heusch
- From the Institute for Pathophysiology, West German Heart and Vascular Centre, University of Essen Medical School, Essen, Germany.
| |
Collapse
|