1
|
Cairns M, Andrews J, Odendaal C, O'Brien C, Marais E, Maarman G, Sishi B, Joseph D, Rautenbach F, Marnewick JL, Essop MF. An investigation into the sex dependence of post-reperfusion cardiac mitochondrial function and redox balance in chronically stressed rats. Physiol Rep 2025; 13:e70185. [PMID: 40000919 PMCID: PMC11859663 DOI: 10.14814/phy2.70185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 02/27/2025] Open
Abstract
Although mitochondrial alterations are implicated in cardiac pathologies, sex-specific changes following chronic stress and ischemia-reperfusion injury are poorly characterized. Male and female Wistar rats underwent chronic restraint stress (CRS) for 4 weeks versus controls, whereafter ex vivo hearts were subjected to regional ischemia and reperfusion. Post-reperfusion hearts were dissected into ischemia-reperfused and non-ischemic regions with high-resolution mitochondrial respirometry, and oxidative stress assays performed. CRS males displayed increased routine and fatty acid β-oxidation respiration in non-ischemic tissues but lowered ETF-linked LEAK contributions to overall electron transfer system capacity ratios in ischemia-reperfused regions versus controls. CRS males exhibited lowered superoxide dismutase activity and increased lipid peroxidation in well-perfused regions versus controls. Female CRS hearts showed attenuated ETF-linked LEAK respiration and increased lipid peroxidation versus controls in non-ischemic tissue but a lowered RE ratio (measure of mitochondrial coupling) with ischemia-reperfusion. Our findings highlight the heart's sexually dimorphic response to chronic stress and ischemic injury, with female hearts showing oxidative damage in non-ischemic tissues together with relatively intact mitochondrial function in ischemia-reperfused tissues.
Collapse
Affiliation(s)
- Megan Cairns
- Centre for Cardio‐Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Jasmine Andrews
- Centre for Cardio‐Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Caitlin Odendaal
- Centre for Cardio‐Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Cassidy O'Brien
- Centre for Cardio‐Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Erna Marais
- Centre for Cardio‐Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Gerald Maarman
- Centre for Cardio‐Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Balindiwe Sishi
- Center for Cardio‐Metabolic Research in Africa (CARMA), Department of Physiological SciencesStellenbosch UniversityStellenboschSouth Africa
| | - Danzil Joseph
- Center for Cardio‐Metabolic Research in Africa (CARMA), Department of Physiological SciencesStellenbosch UniversityStellenboschSouth Africa
| | - Fanie Rautenbach
- Oxidative Stress Research Centre, Faculty of Health and Wellness SciencesInstitute of Biomedical and Microbial Biotechnology, Cape Peninsula University of TechnologyCape TownSouth Africa
| | - Jeanine L. Marnewick
- Oxidative Stress Research Centre, Faculty of Health and Wellness SciencesInstitute of Biomedical and Microbial Biotechnology, Cape Peninsula University of TechnologyCape TownSouth Africa
| | - M. Faadiel Essop
- Centre for Cardio‐Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
2
|
Alatrag F, Amoni M, Kelly-Laubscher R, Gwanyanya A. Cardioprotective effect of fingolimod against calcium paradox-induced myocardial injury in the isolated rat heart. Can J Physiol Pharmacol 2022; 100:134-141. [PMID: 34559972 DOI: 10.1139/cjpp-2021-0381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fingolimod (FTY720) inhibits Ca2+-permeable, Mg2+-sensitive channels called transient receptor potential melastatin 7 (TRPM7), but its effects on Ca2+ paradox (CP) - induced myocardial damage has not been evaluated. We studied the effect of FTY720 on CP-induced myocardial damage and used other TRPM7 channel inhibitors nordihydroguaiaretic acid (NDGA) and Mg2+ to test if any effect of FTY720 was via TRPM7 inhibition. Langendorff-perfused Wistar rat hearts were treated with FTY720 or NDGA and subjected to a CP protocol consisting of Ca2+ depletion followed by Ca2+ repletion. Hearts of rats pre-treated with MgSO4 were also subjected to CP. Hemodynamic parameters were measured using an intraventricular balloon, and myocardial infarct size was quantified using triphenyltetrazolium chloride stain. TRPM7 proteins in ventricular tissue were detected using immunoblot analysis. FTY720, but not NDGA, decreased CP-induced infarct size. Both FTY720 and NDGA minimized the CP-induced elevation of left ventricular end-diastolic pressure, but only FTY720 ultimately improved ventricular developed pressure. Mg2+ pre-treatment had no effect on CP-induced infarct size, nor hemodynamic parameters during CP, nor the level of TRPM7 protein expression in ventricular tissue. Overall, FTY720 attenuated CP-induced myocardial damage, with potential therapeutic implications on Ca2+-mediated cardiotoxicity; however, the cardioprotective mechanism of FTY720 seems to be unrelated to TRPM7 channel modulation.
Collapse
Affiliation(s)
- Fatma Alatrag
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Matthew Amoni
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| | - Roisin Kelly-Laubscher
- Department of Pharmacology and Therapeutics, The College of Medicine and Health, University College Cork, Ireland
- Department of Biological Sciences, Faculty of Science, University of Cape Town, Rondebosch 7700, Cape Town, South Africa
| | - Asfree Gwanyanya
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, Cape Town, South Africa
| |
Collapse
|
3
|
Sergienko NM, Donner DG, Delbridge LMD, McMullen JR, Weeks KL. Protein phosphatase 2A in the healthy and failing heart: New insights and therapeutic opportunities. Cell Signal 2021; 91:110213. [PMID: 34902541 DOI: 10.1016/j.cellsig.2021.110213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
Protein phosphatases have emerged as critical regulators of phosphoprotein homeostasis in settings of health and disease. Protein phosphatase 2A (PP2A) encompasses a large subfamily of enzymes that remove phosphate groups from serine/threonine residues within phosphoproteins. The heterogeneity in PP2A structure, which arises from the grouping of different catalytic, scaffolding and regulatory subunit isoforms, creates distinct populations of catalytically active enzymes (i.e. holoenzymes) that localise to different parts of the cell. This structural complexity, combined with other regulatory mechanisms, such as interaction of PP2A heterotrimers with accessory proteins and post-translational modification of the catalytic and/or regulatory subunits, enables PP2A holoenzymes to target phosphoprotein substrates in a highly specific manner. In this review, we summarise the roles of PP2A in cardiac physiology and disease. PP2A modulates numerous processes that are vital for heart function including calcium handling, contractility, β-adrenergic signalling, metabolism and transcription. Dysregulation of PP2A has been observed in human cardiac disease settings, including heart failure and atrial fibrillation. Efforts are underway, particularly in the cancer field, to develop therapeutics targeting PP2A activity. The development of small molecule activators of PP2A (SMAPs) and other compounds that selectively target specific PP2A holoenzymes (e.g. PP2A/B56α and PP2A/B56ε) will improve understanding of the function of different PP2A species in the heart, and may lead to the development of therapeutics for normalising aberrant protein phosphorylation in settings of cardiac remodelling and dysfunction.
Collapse
Affiliation(s)
- Nicola M Sergienko
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Central Clinical School, Monash University, Clayton VIC 3800, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Clayton VIC 3800, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora VIC 3086, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| | - Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| |
Collapse
|
4
|
Wang Z, Higashikawa K, Yasui H, Kuge Y, Ohno Y, Kihara A, Midori YA, Houkin K, Kawabori M. FTY720 Protects Against Ischemia-Reperfusion Injury by Preventing the Redistribution of Tight Junction Proteins and Decreases Inflammation in the Subacute Phase in an Experimental Stroke Model. Transl Stroke Res 2020; 11:1103-1116. [PMID: 32103462 PMCID: PMC7496052 DOI: 10.1007/s12975-020-00789-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 01/22/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
Injury due to brain ischemia followed by reperfusion (I/R) may be an important therapeutic target in the era of thrombectomy. FTY720, a widely known sphingosine-1-phosphate receptor agonist, exerts various neuroprotective effects. The aim of this study was to examine the protective effect of FTY720 with respect to I/R injury, especially focusing on blood-brain barrier (BBB) protection and anti-inflammatory effects. Male rats were subjected to transient ischemia and administered vehicle or 0.5 or 1.5 mg/kg of FTY720 immediately before reperfusion. Positron emission tomography (PET) with [18F]DPA-714 was performed 2 and 9 days after the insult to serially monitor neuroinflammation. Bovine and rat brain microvascular endothelial cells (MVECs) were also subjected to oxygen-glucose deprivation (OGD) and reperfusion, and administered FTY720, phosphorylated-FTY720 (FTY720-P), or their inhibitor. FTY720 dose-dependently reduced cell death, the infarct size, cell death including apoptosis, and inflammation. It also ameliorated BBB disruption and neurological deficits compared to in the vehicle group. PET indicated that FTY720 significantly inhibited the worsening of inflammation in later stages. FTY720-P significantly prevented the intracellular redistribution of tight junction proteins but did not increase their mRNA expression. These results suggest that FTY720 can ameliorate I/R injury by protecting the BBB and regulating neuroinflammation.
Collapse
Affiliation(s)
- Zifeng Wang
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Kei Higashikawa
- Central Institutes of Isotope Science (Laboratory of Integrated Molecular Imaging, Department of Biomedical Imaging, Graduate School of Biomedical Science and Engineering), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hironobu Yasui
- Central Institutes of Isotope Science (Laboratory of Integrated Molecular Imaging, Department of Biomedical Imaging, Graduate School of Biomedical Science and Engineering), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuji Kuge
- Central Institutes of Isotope Science (Laboratory of Integrated Molecular Imaging, Department of Biomedical Imaging, Graduate School of Biomedical Science and Engineering), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yenari A Midori
- Department of Neurology, University of California, San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Kiyohiro Houkin
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Masahito Kawabori
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
5
|
Mihanfar A, Nejabati HR, Fattahi A, Latifi Z, Pezeshkian M, Afrasiabi A, Safaie N, Jodati AR, Nouri M. The role of sphingosine 1 phosphate in coronary artery disease and ischemia reperfusion injury. J Cell Physiol 2018; 234:2083-2094. [PMID: 30341893 DOI: 10.1002/jcp.27353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 08/17/2018] [Indexed: 12/15/2022]
Abstract
Coronary artery disease (CAD) is a common cause of morbidity and mortality worldwide. Atherosclerotic plaques, as a hallmark of CAD, cause chronic narrowing of coronary arteries over time and could also result in acute myocardial infarction (AMI). The standard treatments for ameliorating AMI are reperfusion strategies, which paradoxically result in ischemic reperfusion (I/R) injury. Sphingosine 1 phosphate (S1P), as a potent lysophospholipid, plays an important role in various organs, including immune and cardiovascular systems. In addition, high-density lipoprotein, as a negative predictor of atherosclerosis and CAD, is a major carrier of S1P in blood circulation. S1P mediates its effects through binding to specific G protein-coupled receptors, and its signaling contributes to a variety of responses, including cardiac inflammation, dysfunction, and I/R injury protection. In this review, we will focus on the role of S1P in CAD and I/R injury as a potential therapeutic target.
Collapse
Affiliation(s)
- Aynaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamid Reza Nejabati
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Pezeshkian
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Afrasiabi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Reza Jodati
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Iwasawa E, Ishibashi S, Suzuki M, Li F, Ichijo M, Miki K, Yokota T. Sphingosine-1-Phosphate Receptor 1 Activation Enhances Leptomeningeal Collateral Development and Improves Outcome after Stroke in Mice. J Stroke Cerebrovasc Dis 2018; 27:1237-1251. [PMID: 29337049 DOI: 10.1016/j.jstrokecerebrovasdis.2017.11.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/19/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Development of collateral circulation after acute ischemic stroke is triggered by shear stress that occurs in pre-existing arterioles. Recently, sphingosine-1-phosphate receptor 1 (S1P1) on endothelial cells was reported to sense shear stress and transduce its signaling pathways. METHODS BALB/c mice (n = 118) were subjected to permanent middle cerebral artery occlusion (pMCAO) or sham operation. We investigated the effect of an S1P1-selective agonist SEW2871 on leptomeningeal collateral arteries and neurological outcome after pMCAO. RESULTS Immunohistochemistry showed that without treatment, the expression of S1P1 on endothelial cells of leptomeningeal arteries and capillaries increased early after pMCAO, peaking at 6 hours, whereas a significant increase in the expression of S1P1 in neurons was seen from 24 hours later. After intraperitoneal administration of SEW2871 for 7 days after pMCAO, the number of leptomeningeal collateral arteries was significantly increased, cerebral blood flow improved, infarct volume was decreased, and neurological outcome improved compared with the controls. Significantly increased phosphorylation of endothelial nitric oxide synthase (eNOS) as early as 6 hours after pMCAO and higher expression of tight junction proteins at postoperative day 3 were observed with SEW2871 treatment as assessed by Western blot. Daily administration of SEW2871 also increased capillary density in peri-infarct regions and promoted monocyte/macrophage mobilization to the surface of ischemic cortex at 7 days after pMCAO. CONCLUSIONS An S1P1-selective agonist enhanced leptomeningeal collateral circulation via eNOS phosphorylation and promoted postischemic angiogenesis with reinforced blood-brain barrier integrity in a mouse model of acute ischemic stroke, leading to smaller infarct volume and better neurological outcome.
Collapse
Affiliation(s)
- Eri Iwasawa
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Ishibashi
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Motohiro Suzuki
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - FuYing Li
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiko Ichijo
- Department of Neurology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Kazunori Miki
- Department of Endovascular Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
7
|
Mizuma A, Yenari MA. Anti-Inflammatory Targets for the Treatment of Reperfusion Injury in Stroke. Front Neurol 2017; 8:467. [PMID: 28936196 PMCID: PMC5594066 DOI: 10.3389/fneur.2017.00467] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
While the mainstay of acute stroke treatment includes revascularization via recombinant tissue plasminogen activator or mechanical thrombectomy, only a minority of stroke patients are eligible for treatment, as delayed treatment can lead to worsened outcome. This worsened outcome at the experimental level has been attributed to an entity known as reperfusion injury (R/I). R/I is occurred when revascularization is delayed after critical brain and vascular injury has occurred, so that when oxygenated blood is restored, ischemic damage is increased, rather than decreased. R/I can increase lesion size and also worsen blood barrier breakdown and lead to brain edema and hemorrhage. A major mechanism underlying R/I is that of poststroke inflammation. The poststroke immune response consists of the aberrant activation of glial cell, infiltration of peripheral leukocytes, and the release of damage-associated molecular pattern (DAMP) molecules elaborated by ischemic cells of the brain. Inflammatory mediators involved in this response include cytokines, chemokines, adhesion molecules, and several immune molecule effectors such as matrix metalloproteinases-9, inducible nitric oxide synthase, nitric oxide, and reactive oxygen species. Several experimental studies over the years have characterized these molecules and have shown that their inhibition improves neurological outcome. Yet, numerous clinical studies failed to demonstrate any positive outcomes in stroke patients. However, many of these clinical trials were carried out before the routine use of revascularization therapies. In this review, we cover mechanisms of inflammation involved in R/I, therapeutic targets, and relevant experimental and clinical studies, which might stimulate renewed interest in designing clinical trials to specifically target R/I. We propose that by targeting anti-inflammatory targets in R/I as a combined therapy, it may be possible to further improve outcomes from pharmacological thrombolysis or mechanical thrombectomy.
Collapse
Affiliation(s)
- Atsushi Mizuma
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Midori A Yenari
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, CA, United States
| |
Collapse
|