1
|
Nadi A, Shiravi AA, Mohammadi Z, Aslani A, Zeinalian M. Thymus vulgaris, a natural pharmacy against COVID-19: A molecular review. J Herb Med 2023; 38:100635. [PMID: 36718131 PMCID: PMC9877322 DOI: 10.1016/j.hermed.2023.100635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 06/28/2021] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
Introduction A worldwide pandemic infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a deadly disease called COVID-19. Interaction of the virus and the Angiotensin converting-enzyme 2 (ACE2) receptor leads to an inflammatory-induced tissue damage. Thymus vulgaris L. (TvL) is a plant with a long history in traditional medicine that has antimicrobial, antiseptic, and antiviral properties. Thymol and Carvacrol are two important biological components in Thyme that have anti-inflammatory, antioxidant, and immunomodulatory properties. This study is a molecular review on the potential effects of TvL and its active compounds on SARS-COV2 infection. Method This is a narrative review in which using PubMed, Scopus, ISI, Cochrane, ScienceDirect, Google scholar, and Arxiv preprint databases, the molecular mechanisms of therapeutic and protective effects of TvL and its active compounds have been discussed regarding the molecular pathogenesis in COVID-19. Results Thyme could suppress TNF-alpha, IL-6, and other inflammatory cytokines. It also enhances the anti-inflammatory cytokines like TGF-beta and IL-10. Thyme extract acts also as an inhibitor of cytokines IL-1-beta and IL-8, at both mRNA and protein levels. Thymol may also control the progression of neuro-inflammation toward neurological disease by reducing some factors. Thyme and its active ingredients, especially Thymol and Carvacrol, have also positive effects on the renin-angiotensin system (RAS) and intestinal microbiota. Conclusions Accordingly, TvL and its bioactive components may prevent COVID-19 complications and has a potential protective role against the deleterious consequences of the disease.
Collapse
Key Words
- ACE, angiotensin-converting enzyme
- ACE2, angiotensin-converting enzyme II
- ACEIs, ACE inhibitors
- ALI, acute lung injury
- ARBs, angiotensin receptor blockers
- ARDS, acute respiratory distress syndrome
- AT1R, angiotensin II receptor type 1
- AngII, angiotensin II
- BALF, brochalveolar lavage fluid
- COVID-19
- CVD, cardio vascular disease
- IL, Interleukin
- Infection
- RAS, renin-angiotensin system
- SARS-COV2
- TGF-β, Transforming growth factor beta
- TMPRSS2, transmembrane serine protease 2
- TNF, tumor necrosis factor
- Th, T helper
- Thyme
- Thymus vulgaris L
- Treatment
- TvL, Thymus vulgaris L.
Collapse
Affiliation(s)
- Ali Nadi
- School of Nutrition and Food Sciences, Isfahan University of Medical sciences, Isfahan, Iran
| | - Amir Abbas Shiravi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical sciences, Isfahan, Iran
| | - Zahra Mohammadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Amin Aslani
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical sciences, Isfahan, Iran
| | - Mehrdad Zeinalian
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical sciences, Isfahan, Iran,Iranian Cancer Control and Prevention Center (MACSA), Isfahan, Iran,Corresponding author at: Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical sciences, Isfahan, Iran
| |
Collapse
|
2
|
He YY, Zhou HF, Chen L, Wang YT, Xie WL, Xu ZZ, Xiong Y, Feng YQ, Liu GY, Li X, Liu J, Wu QP. The Fra-1: Novel role in regulating extensive immune cell states and affecting inflammatory diseases. Front Immunol 2022; 13:954744. [PMID: 36032067 PMCID: PMC9404335 DOI: 10.3389/fimmu.2022.954744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Fra-1(Fos-related antigen1), a member of transcription factor activator protein (AP-1), plays an important role in cell proliferation, apoptosis, differentiation, inflammation, oncogenesis and tumor metastasis. Accumulating evidence suggest that the malignancy and invasive ability of tumors can be significantly changed by directly targeting Fra-1. Besides, the effects of Fra-1 are gradually revealed in immune and inflammatory settings, such as arthritis, pneumonia, psoriasis and cardiovascular disease. These regulatory mechanisms that orchestrate immune and non-immune cells underlie Fra-1 as a potential therapeutic target for a variety of human diseases. In this review, we focus on the current knowledge of Fra-1 in immune system, highlighting its unique importance in regulating tissue homeostasis. In addition, we also discuss the possible critical intervention strategy in diseases, which also outline future research and development avenues.
Collapse
|
3
|
Alharbi KS, Fuloria NK, Fuloria S, Rahman SB, Al-Malki WH, Javed Shaikh MA, Thangavelu L, Singh SK, Rama Raju Allam VS, Jha NK, Chellappan DK, Dua K, Gupta G. Nuclear factor-kappa B and its role in inflammatory lung disease. Chem Biol Interact 2021; 345:109568. [PMID: 34181887 DOI: 10.1016/j.cbi.2021.109568] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/24/2021] [Indexed: 12/28/2022]
Abstract
Nuclear factor-kappa B, involved in inflammation, host immune response, cell adhesion, growth signals, cell proliferation, cell differentiation, and apoptosis defense, is a dimeric transcription factor. Inflammation is a key component of many common respiratory disorders, including asthma, chronic obstructive pulmonary disease (COPD), bronchiectasis, and acute respiratory distress syndrome. Many basic transcription factors are found in NF-κB signaling, which is a member of the Rel protein family. Five members of this family c-REL, NF-κB2 (p100/p52), RelA (p65), NF-κB1 (p105/p50), RelB, and RelA (p65) produce 5 transcriptionally active molecules. Proinflammatory cytokines, T lymphocyte, and B lymphocyte cell mitogens, lipopolysaccharides, bacteria, viral proteins, viruses, double-stranded RNA, oxidative stress, physical exertion, various chemotherapeutics are the stimulus responsible for NF-κB activation. NF-κB act as a principal component for several common respiratory illnesses, such as asthma, lung cancer, pulmonary fibrosis, COPD as well as infectious diseases like pneumonia, tuberculosis, COVID-19. Inflammatory lung disease, especially COVID-19, can make NF-κB a key target for drug production.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | | | - Sk Batin Rahman
- Bengal School of Technology, Churchura, Hooghly, West Bengal, India
| | - Waleed Hassan Al-Malki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha University, Chennai, India
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Venkata Sita Rama Raju Allam
- Department of Medical Biochemistry and Microbiology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34, Knowledge Park III, Greater Noida, 201310, Uttar Pradesh, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia.
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017, Mahal Road, Jaipur, India.
| |
Collapse
|
4
|
Norooznezhad AH, Mansouri K. Endothelial cell dysfunction, coagulation, and angiogenesis in coronavirus disease 2019 (COVID-19). Microvasc Res 2021; 137:104188. [PMID: 34022205 PMCID: PMC8135191 DOI: 10.1016/j.mvr.2021.104188] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been led to a pandemic emergency. So far, different pathological pathways for SARS-CoV-2 infection have been introduced in which the excess release of pro-inflammatory cytokines (such as interleukin 1 β [IL-1β], IL-6, and tumor necrosis factor α [TNFα]) has earned most of the attentions. However, recent studies have identified new pathways with at least the same level of importance as cytokine storm in which endothelial cell (EC) dysfunction is one of them. In COVID-19, two main pathologic phenomena have been seen as a result of EC dysfunction: hyper-coagulation state and pathologic angiogenesis. The EC dysfunction-induced hypercoagulation state seems to be caused by alteration in the levels of different factors such as plasminogen activator inhibitor 1 (PAI-1), von Willebrand factor (vWF) antigen, soluble thrombomodulin, and tissue factor pathway inhibitor (TFPI). As data have shown, these thromboembolic events are associated with severity of disease severity or even death in COVID-19 patients. Other than thromboembolic events, pathologic angiogenesis is among the recent findings. Furthermore, over-expression/higher levels of different proangiogenic factors such as vascular endothelial growth factor (VEGF), hypoxia-inducible factor 1 α (HIF-1α), IL-6, TNF receptor super family 1A and 12, and angiotensin-converting enzyme 2 (ACE2) have been found in the lung biopsies/sera of both survived and non-survived COVID-19 patients. Also, there are some hypotheses regarding the role of nitric oxide in EC dysfunction and acute respiratory distress syndrome (ARDS) in SARS-CoV-2 infection. It has been demonstrated that different pathways involved in inflammation are generally common with EC dysfunction and angiogenesis. Altogether, considering the common possible upstream pathways in cytokine storm, pathologic angiogenesis, and EC dysfunction, it seems that targeting these molecules (such as nuclear factor κB) could be more effective in the management of patients with COVID-19.
Collapse
Affiliation(s)
- Amir Hossein Norooznezhad
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Wan L, Meng D, Wang H, Wan S, Jiang S, Huang S, Wei L, Yu P. Preventive and Therapeutic Effects of Thymol in a Lipopolysaccharide-Induced Acute Lung Injury Mice Model. Inflammation 2018; 41:183-192. [PMID: 29019091 DOI: 10.1007/s10753-017-0676-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome which causes a high mortality rate worldwide. In traditional medicine, lots of aromatic plants-such as some Thymus species-are used for treatment of various lung diseases including pertussis, bronchitis, and asthma. Thymol, one of the primary active constituent derived from Thymus vulgaris (thyme), has been reported to exhibit potent anti-microbial, anti-oxidant, and anti-inflammatory activities in vivo and in vitro. The present study aims to investigate the protective effects of thymol in lipopolysaccharide (LPS)-induced lung injury mice model. In LPS-challenged mice, treatment with thymol (100 mg/kg) before or after LPS challenge significantly improved pathological changes in lung tissues. Thymol also inhibited the LPS-induced inflammatory cells influx, TNF-α and IL-6 releases, and protein concentration in bronchoalveolar lavage fluid (BALF). Additionally, thymol markedly inhibited LPS-induced elevation of MDA and MPO levels, as well as reduction of SOD activity. Further study demonstrated that thymol effectively inhibited the NF-κB activation in the lung. Taken together, these results suggested that thymol might be useful in the therapy of acute lung injury.
Collapse
Affiliation(s)
- Limei Wan
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Dongmei Meng
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hong Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, China
| | - Shunjun Jiang
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shanshan Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Li Wei
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Pengjiu Yu
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
6
|
Mishra RK, Potteti HR, Tamatam CR, Elangovan I, Reddy SP. c-Jun Is Required for Nuclear Factor-κB-Dependent, LPS-Stimulated Fos-Related Antigen-1 Transcription in Alveolar Macrophages. Am J Respir Cell Mol Biol 2017; 55:667-674. [PMID: 27286066 DOI: 10.1165/rcmb.2016-0028oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previously, we have reported that Fos-related antigen-1 (Fra-1) transcription factor promotes LPS-induced acute lung injury and mortality, and that LPS-induced Fra-1 expression in the lung occurs predominantly in alveolar macrophages. Nuclear factor-κB (NF-κB) and c-Jun transcription factors play key roles in modulating inflammatory and immune responses induced by infectious and non-infectious insults. Here, we report that NF-κB and c-Jun coregulate Fra-1 induction by LPS in alveolar macrophages and that this regulation occurs through both the NF-κB and the extracellular signal-regulated protein kinase (ERK) signaling pathways. Transient transfections with Fra-1 promoter-reporter constructs and inhibitor studies revealed that the transcriptional activation of Fra-1 by LPS in alveolar macrophages is mediated by NF-κB and ERK1/2 signaling. Importantly, chromatin immunoprecipitation assays revealed the recruitment of c-Jun and NF-κB to the endogenous Fra-1 promoter after LPS stimulation. We found that inhibition of ERK1/2 signaling reduced LPS-stimulated c-Jun and NF-κB recruitment to the promoter. Likewise, NF-κB inhibitor blocked LPS-induced NF-κB and c-Jun binding to the promoter. ERK1/2 inhibition had no effect on c-Jun activation but suppressed LPS-stimulated NF-κB phosphorylation. Finally, functional assays showed reduced levels of LPS-stimulated NF-κB regulated proinflammatory IL-1β and macrophage inflammatory protein-1α expression and increased antiinflammatory IL-10 expression in lung alveolar macrophages of Fra-1-null mice in vivo. Thus, our studies indicate that NF-κB and c-Jun coregulate LPS-induced Fra-1 transcription and that Fra-1 selectively modulates LPS-stimulated inflammatory cytokine expression in lung alveolar macrophages during inflammatory lung injury.
Collapse
Affiliation(s)
- Rakesh K Mishra
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Haranatha R Potteti
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | | | - Indira Elangovan
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Sekhar P Reddy
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
7
|
Lingappan K, Jiang W, Wang L, Moorthy B. Sex-specific differences in neonatal hyperoxic lung injury. Am J Physiol Lung Cell Mol Physiol 2016; 311:L481-93. [PMID: 27343189 DOI: 10.1152/ajplung.00047.2016] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/24/2016] [Indexed: 11/22/2022] Open
Abstract
Male sex is considered an independent predictor for the development of bronchopulmonary dysplasia (BPD) after adjusting for other confounders. BPD is characterized by an arrest in lung development with marked impairment of alveolar septation and vascular development. The reasons underlying sexually dimorphic outcomes in premature neonates are not known. In this investigation, we tested the hypothesis that male neonatal mice will be more susceptible to hyperoxic lung injury and will display larger arrest in lung alveolarization. Neonatal male and female mice (C57BL/6) were exposed to hyperoxia [95% FiO2, postnatal day (PND) 1-5] and euthanized on PND 7 and 21. Extent of alveolarization, pulmonary vascularization, inflammation, and modulation of the NF-κB pathway were determined and compared with room air controls. Macrophage and neutrophil infiltration was significantly increased in hyperoxia-exposed animals but was increased to a larger extent in males compared with females. Lung morphometry showed a higher mean linear intercept (MLI) and a lower radial alveolar count (RAC) and therefore greater arrest in lung development in male mice. This was accompanied by a significant decrease in the expression of markers of angiogenesis (PECAM1 and VEGFR2) in males after hyperoxia exposure compared with females. Interestingly, female mice showed increased activation of the NF-κB pathway in the lungs compared with males. These results support the hypothesis that sex plays a crucial role in hyperoxia-mediated lung injury in this model. Elucidation of the sex-specific molecular mechanisms may aid in the development of novel individualized therapies to prevent/treat BPD.
Collapse
Affiliation(s)
- Krithika Lingappan
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Weiwu Jiang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Lihua Wang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Bhagavatula Moorthy
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
8
|
Moodley Y, Sturm M, Shaw K, Shimbori C, Tan DBA, Kolb M, Graham R. Human mesenchymal stem cells attenuate early damage in a ventilated pig model of acute lung injury. Stem Cell Res 2016; 17:25-31. [PMID: 27231985 DOI: 10.1016/j.scr.2016.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 01/15/2023] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a major cause of global morbidity and mortality. Mesenchymal stem cells (MSC) have shown promise in treating inflammatory lung conditions. We hypothesised that human MSC (hMSC) can improve ALI/ARDS through their anti-inflammatory actions. We subjected pigs (n=6) to intravenous oleic acid (OA) injury, ventilation and hMSC infusion, while the controls (n=5) had intravenous OA, ventilation and an infusion vehicle control. hMSC were infused 1h after the administration of OA. The animals were monitored for additional 4h. Nuclear translocation of nuclear factor-light chain enhancer of activated B cells (NF-κB), a transcription factor that mediates several inflammatory pathways was reduced in hMSC treated pigs compared to controls (p=0.04). There was no significant difference in lung injury, assessed by histological scoring in hMSC treated pigs versus controls (p=0.063). There was no difference in neutrophil counts between hMSC-treated pigs and controls. Within 4h, there was no difference in the levels of IL-10 and IL-8 pre- and post-treatment with hMSC. In addition, there was no difference in hemodynamics, lung mechanics or arterial blood gases between hMSC treated animals and controls. Subsequent studies are required to determine if the observed decrease in inflammatory transcription factors will translate into improvement in inflammation and in physiological parameters over the long term.
Collapse
Affiliation(s)
- Yuben Moodley
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia; Department of Respiratory Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia; Stem Cell Unit, Institute for Respiratory Health, Nedlands, Western Australia, Australia.
| | - Marian Sturm
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia; Cell and Tissue Therapies WA, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Kathryn Shaw
- Cell and Tissue Therapies WA, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Chiko Shimbori
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dino B A Tan
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia; Stem Cell Unit, Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - Martin Kolb
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ruth Graham
- Department of Anesthesia, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
9
|
Rajasekaran S, Tamatam CR, Potteti HR, Raman V, Lee JW, Matthay MA, Mehta D, Reddy NM, Reddy SP. Visualization of Fra-1/AP-1 activation during LPS-induced inflammatory lung injury using fluorescence optical imaging. Am J Physiol Lung Cell Mol Physiol 2015; 309:L414-24. [PMID: 26071555 DOI: 10.1152/ajplung.00315.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 06/08/2015] [Indexed: 01/11/2023] Open
Abstract
Inappropriate lung inflammatory response following oxidant and toxicant exposure can lead to abnormal repair and disease pathogenesis, including fibrosis. Thus early detection of molecular and cellular processes and mediators promoting lung inflammation is necessary to develop better strategies for therapeutic intervention and disease management. Previously, we have shown that transcription factor Fra-1/AP-1 plays key roles in lung inflammatory response, as Fra-1-null mice are less susceptible than wild-type mice to LPS-induced lung injury and mortality. Herein, we developed a transgenic reporter mouse model expressing tdTomato under the control of FRA-1 (human) promoter (referred to as FRA-1(TdTg) mice) to monitor its activation during inflammatory lung injury using fluorescence protein-based optical imaging and molecular analysis in vivo and ex vivo. A higher red fluorescent signal was observed in the lungs of LPS-treated FRA-1(TdTg) mice compared with vehicle controls, and Western blot and qRT-PCR analyses revealed a significant correlation with the FRA-1-tdTomato reporter expression. Immunocolocalization demonstrated expression of FRA-1-tdTomato largely in lung alveolar macrophages and to some extent in epithelial cells. Moreover, we validated these results with a second reporter mouse model that expressed green fluorescent protein upon activation of endogenous Fra-1 promoter. Additionally, we demonstrated increased expression of FRA-1 in alveolar macrophages in human lung instilled with Escherichia coli ex vivo. Collectively, our data obtained from two independent reporter mouse models and from human samples underscore the significance of Fra-1 activation in alveolar macrophages during inflammatory lung injury and may aid in developing strategies to target this transcription factor in lung injury and repair.
Collapse
Affiliation(s)
- Subbiah Rajasekaran
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Chandramohan R Tamatam
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Haranatha R Potteti
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Venu Raman
- Division of Cancer Imaging Research, Department of Radiology and Radiological Sciences, The Johns Hopkins University, Baltimore, Maryland
| | - Jae-Woo Lee
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Dolly Mehta
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Narsa M Reddy
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois;
| | - Sekhar P Reddy
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
10
|
Abstract
Acute lung injury is a complex clinical syndrome involving acute inflammation, microvascular damage, and increased pulmonary vascular and epithelial permeability, frequently resulting in acute respiratory failure culminating in often-fatal acute respiratory distress syndrome. Interleukin 8 (IL-8), a potent neutrophil attractant and activator, plays a significant role in acute lung injury via the formation of anti-IL-8 autoantibody:IL-8 complexes and those complexes' interaction with FcγRIIa receptors, leading to the development of acute lung injury by, among other possible mechanisms, effecting neutrophil apoptosis. These complexes may also interact with lung endothelial cells in patients with acute respiratory distress syndrome. Continuing research of the role of neutrophils, IL-8, anti-IL-8 autoantibody:IL-8 complexes, and FcγRIIa receptors may ultimately provide molecular therapies that could lower acute respiratory distress syndrome mortality, as well as reduce or even prevent the development of acute lung injury altogether.
Collapse
Affiliation(s)
- Timothy Craig Allen
- From the Departments of Pathology (Dr Allen) and Biochemistry (Dr Kurdowska), University of Texas Health Science Center at Tyler. Dr Allen is now located at the University of Texas Medical Branch at Galveston, Texas
| | | |
Collapse
|
11
|
Wu X, Song X, Li N, Zhan L, Meng Q, Xia Z. Protective effects of dexmedetomidine on blunt chest trauma–induced pulmonary contusion in rats. J Trauma Acute Care Surg 2013; 74:524-30. [DOI: 10.1097/ta.0b013e31827d5de3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|