1
|
Russano M, La Cava G, Cortellini A, Citarella F, Galletti A, Di Fazio GR, Santo V, Brunetti L, Vendittelli A, Fioroni I, Pantano F, Tonini G, Vincenzi B. Immunotherapy for Metastatic Non-Small Cell Lung Cancer: Therapeutic Advances and Biomarkers. Curr Oncol 2023; 30:2366-2387. [PMID: 36826142 PMCID: PMC9955173 DOI: 10.3390/curroncol30020181] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Immunotherapy has revolutionized the treatment paradigm of non-small cell lung cancer and improved patients' prognosis. Immune checkpoint inhibitors have quickly become standard frontline treatment for metastatic non-oncogene addicted disease, either as a single agent or in combination strategies. However, only a few patients have long-term benefits, and most of them do not respond or develop progressive disease during treatment. Thus, the identification of reliable predictive and prognostic biomarkers remains crucial for patient selection and guiding therapeutic choices. In this review, we provide an overview of the current strategies, highlighting the main clinical challenges and novel potential biomarkers.
Collapse
Affiliation(s)
- Marco Russano
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Giulia La Cava
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Alessio Cortellini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Fabrizio Citarella
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Alessandro Galletti
- Division of Medical Oncology, San Camillo Forlanini Hospital, 00152 Roma, Italy
| | - Giuseppina Rita Di Fazio
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Valentina Santo
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Leonardo Brunetti
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Alessia Vendittelli
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Iacopo Fioroni
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Francesco Pantano
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Giuseppe Tonini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Bruno Vincenzi
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
2
|
Chen L, Zhang R, Lin Z, Tan Q, Huang Z, Liang B. Radiation therapy in the era of immune treatment for hepatocellular carcinoma. Front Immunol 2023; 14:1100079. [PMID: 36742293 PMCID: PMC9895775 DOI: 10.3389/fimmu.2023.1100079] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment in recent years and provide new opportunities to treat hepatocellular carcinoma (HCC). To date, several ICIs have been approved by the FDA for advanced HCC in first-line or second-line therapy. Downstaging conversion therapy for potentially resectable HCC to provide opportunities for surgical intervention is challenging. ICIs have become a hot spot in this field due to their high response rate. However, HCC has various etiologies and can evade the immune system through multiple mechanisms, which limit the efficacy of ICI monotherapy and demand novel combination strategies. Radiation therapy (RT) is also a candidate for conversion therapy in HCC and is currently gaining increasing attention as a good combination partner with ICIs due to its ability to modulate the tumor microenvironment. In this review, we illustrate the current indications for ICIs and RT in HCC, the rationale for their synergistic combination, and the current clinical trials in combination therapy. We also speculate on predictive biomarkers and novel future strategies to further enhance the efficacy of this combination. This review aims to provide references for future research on radiation and immunotherapy to arrive at a promising new era of HCC treatment.
Collapse
Affiliation(s)
- Lingjuan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruiguang Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Lin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiaoyun Tan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Huang
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binyong Liang
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Pourhamzeh M, Asadian S, Mirzaei H, Minaei A, Shahriari E, Shpichka A, Es HA, Timashev P, Hassan M, Vosough M. Novel antigens for targeted radioimmunotherapy in hepatocellular carcinoma. Mol Cell Biochem 2023; 478:23-37. [PMID: 35708866 DOI: 10.1007/s11010-022-04483-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
Liver cancer is the sixth common cancer and forth cause of cancer-related death worldwide. Based on usually advanced stages of hepatocellular carcinoma (HCC) at the time of diagnosis, therapeutic options are limited and, in many cases, not effective, and typically result in the tumor recurrence with a poor prognosis. Radioimmunotherapy (RIT) offers a selective internal radiation therapy approach using beta or alpha emitting radionuclides conjugated with tumor-specific monoclonal antibodies (mAbs), or specific selective peptides. When compared to chemotherapy or radiotherapy, radiolabeled mAbs against cancer-associated antigens could provide a high therapeutic and exclusive radiation dose for cancerous cells while decreasing the exposure-induced side effects to healthy tissues. The recent advances in cancer immunotherapy, such as blockade of immune-checkpoint inhibitors (ICIs), has changed the landscape of cancer therapy, and the efficacy of different classes of immunotherapy has been tested in many clinical trials. Taking into account the use of ICIs in the liver tumor microenvironment, combined therapies with different approaches may enhance the outcome in the future clinical studies. With the development of novel immunotherapy treatment options in the recent years, there has been a great deal of information about combining the diverse treatment modalities to boost the effectiveness of immunomodulatory drugs. In this opinion review, we will discuss the recent advancements in RIT. The current status of immunotherapy and internal radiotherapy will be updated, and we will propose novel approaches for the combination of both techniques. Potential target antigens for radioimmunotherapy in Hepatocellular carcinoma (HCC). HCC radioimmunotherapy target antigens are the most specific and commonly accessible antigens on the surface of HCC cells. CTLA-4 ligand and receptor, TAMs, PD-1/PD-L, TIM-3, specific IEXs/TEXs, ROBO1, and cluster of differentiation antigens CD105, CD147 could all be used in HCC radioimmunotherapy. Abbreviations: TAMs, tumor-associated macrophages; CTLA-4, cytotoxic T-lymphocyte associated antigen-4; PD-1, Programmed cell death protein 1; PD-L, programmed death-ligand1; TIM-3, T-cell immunoglobulin (Ig) and mucin-domain containing protein-3; IEXs, immune cell-derived exosomes; TEXs, tumor-derived exosomes.
Collapse
Affiliation(s)
- Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Samieh Asadian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Azita Minaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Elahe Shahriari
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Anastasia Shpichka
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | | | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia. .,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia. .,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
4
|
Venkatas J, Singh M. Nanomedicine-mediated optimization of immunotherapeutic approaches in cervical cancer. Nanomedicine (Lond) 2021; 16:1311-1328. [PMID: 34027672 DOI: 10.2217/nnm-2021-0044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cervical cancer shows immense complexity at the epigenetic, genetic and cellular levels, limiting conventional treatment. Immunotherapy has revolutionized nanomedicine and rejuvenated the field of tumor immunology. Although several immunotherapeutic approaches have shown favorable clinical responses, their efficacies vary, with subsets of patients benefitting. The success of cancer immunotherapy requires the enhancement of cytokines and antitumor effector cell production and activation. Recently, the feasibility of nanoparticle-based cytokine approaches in tumor immunotherapy has been highlighted. Immunotherapeutic nanoparticle-based platforms form a novel strategy enabling researchers to co-deliver immunomodulatory agents, target tumors, improve pharmacokinetics and minimize collateral toxicity to healthy cells. This review looks at the potential of immunotherapy and nanotechnologically enhanced immunotherapeutic approaches for cervical cancer.
Collapse
Affiliation(s)
- Jeaneen Venkatas
- Nano-Gene & Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, KwaZulu-Natal, South Africa
| | - Moganavelli Singh
- Nano-Gene & Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, KwaZulu-Natal, South Africa
| |
Collapse
|
5
|
Choi C, Yoo GS, Cho WK, Park HC. Optimizing radiotherapy with immune checkpoint blockade in hepatocellular carcinoma. World J Gastroenterol 2019; 25:2416-2429. [PMID: 31171886 PMCID: PMC6543238 DOI: 10.3748/wjg.v25.i20.2416] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer, and its incidence is rapidly increasing in North America and Western Europe as well as South-East Asia. Patients with advanced stage HCC have very poor outcomes; therefore, the discovery of new innovative approaches is urgently needed. Cancer immunotherapy has become a game-changer and revolutionized cancer treatment. A comprehensive understanding of tumor-immune interactions led to the development of immune checkpoint inhibitors (ICIs) as new therapeutic tools, which have been used with great success. Targeting immune checkpoint molecules such as programmed cell death-1 (PD-1) and cytotoxic T lymphocyte-associated protein-4 (CTLA-4) reinvigorates anti-tumor immunity by restoring exhausted T cells. Despite their effectiveness in several types of cancer, of the many immune suppressive mechanisms limit the efficacy of ICI monotherapy. Radiation therapy (RT) is an essential local treatment modality for a broad range of malignancies, and it is currently gaining extensive attention as a promising combination partner with ICIs because of its ability to trigger immunogenic cell death. The efficacy of combination approaches using RT and ICIs has been well documented in numerous preclinical and clinical studies on various types of cancers but not HCC. The application of ICIs has now expanded to HCC, and RT is recognized as a promising modality in HCC. This review will highlight the current roles of PD-1 and CTLA-4 therapies and their combination with RT in the treatment of cancers, including HCC. In addition, this review will discuss the future perspectives of the combination of ICIs and RT in HCC treatment.
Collapse
Affiliation(s)
- Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, South Korea
| | - Gyu Sang Yoo
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, South Korea
| | - Won Kyung Cho
- Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, South Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| |
Collapse
|
6
|
Wang M, Yu L, Wei X, Wei Y. Role of tumor gene mutations in treatment response to immune checkpoint blockades. PRECISION CLINICAL MEDICINE 2019; 2:100-109. [PMID: 35692451 PMCID: PMC8985804 DOI: 10.1093/pcmedi/pbz006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/09/2019] [Accepted: 03/07/2019] [Indexed: 02/05/2023] Open
Abstract
Early studies shed light on the immune suppression of immune checkpoint molecules in the cancer microenvironment, with later studies applying immune checkpoint blockade (ICB) in treatment of various malignancies. Despite the encouraging efficacy of ICBs in a substantial subset of cancer patients, the treatment response varies. Gene mutations of both tumor cells and immune cells in the tumor microenvironment have recently been identified as potential predictors of the ICB response. Recent developments in gene expression profiling of tumors have allowed identification of a panel of mutated genes that may affect tumor cell response to ICB treatment. In this review, we discuss the association of the ICB response with gene expression and mutation profiles in tumor cells, which it is hoped will help to optimize the clinical application of ICBs in cancer patients.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, PR China
| | - Liu Yu
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, PR China
| |
Collapse
|
7
|
Implementing liquid biopsies into clinical decision making for cancer immunotherapy. Oncotarget 2018; 8:48507-48520. [PMID: 28501851 PMCID: PMC5564665 DOI: 10.18632/oncotarget.17397] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
During the last decade, novel immunotherapeutic strategies, in particular antibodies directed against immune checkpoint inhibitors, have revolutionized the treatment of different malignancies leading to an improved survival of patients. Identification of immune-related biomarkers for diagnosis, prognosis, monitoring of immune responses and selection of patients for specific cancer immunotherapies is urgently required and therefore areas of intensive research. Easily accessible samples in particular liquid biopsies (body fluids), such as blood, saliva or urine, are preferred for serial tumor biopsies. Although monitoring of immune and tumor responses prior, during and post immunotherapy has led to significant advances of patients’ outcome, valid and stable prognostic biomarkers are still missing. This might be due to the limited capacity of the technologies employed, reproducibility of results as well as assay stability and validation of results. Therefore solid approaches to assess immune regulation and modulation as well as to follow up the nature of the tumor in liquid biopsies are urgently required to discover valuable and relevant biomarkers including sample preparation, timing of the collection and the type of liquid samples. This article summarizes our knowledge of the well-known liquid material in a new context as liquid biopsy and focuses on collection and assay requirements for the analysis and the technical developments that allow the implementation of different high-throughput assays to detect alterations at the genetic and immunologic level, which could be used for monitoring treatment efficiency, acquired therapy resistance mechanisms and the prognostic value of the liquid biopsies.
Collapse
|
8
|
Zhang H, Chen J. Current status and future directions of cancer immunotherapy. J Cancer 2018; 9:1773-1781. [PMID: 29805703 PMCID: PMC5968765 DOI: 10.7150/jca.24577] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/05/2018] [Indexed: 12/16/2022] Open
Abstract
In the past decades, our knowledge about the relationship between cancer and the immune system has increased considerably. Recent years' success of cancer immunotherapy including monoclonal antibodies (mAbs), cancer vaccines, adoptive cancer therapy and the immune checkpoint therapy has revolutionized traditional cancer treatment. However, challenges still exist in this field. Personalized combination therapies via new techniques will be the next promising strategies for the future cancer treatment direction.
Collapse
Affiliation(s)
- Hongming Zhang
- Department of Respiratory Medicine, Yancheng Third People's Hospital, the Affiliated Yancheng Hospital of Southeast University Medical College, Yancheng, Jiangsu, China
| | - Jibei Chen
- Department of Respiratory Medicine, Yancheng Third People's Hospital, the Affiliated Yancheng Hospital of Southeast University Medical College, Yancheng, Jiangsu, China
| |
Collapse
|
9
|
Procaccio L, Schirripa M, Fassan M, Vecchione L, Bergamo F, Prete AA, Intini R, Manai C, Dadduzio V, Boscolo A, Zagonel V, Lonardi S. Immunotherapy in Gastrointestinal Cancers. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4346576. [PMID: 28758114 PMCID: PMC5512095 DOI: 10.1155/2017/4346576] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/18/2017] [Indexed: 12/29/2022]
Abstract
Gastrointestinal cancers represent a major public health problem worldwide. Immunotherapeutic strategies are currently under investigation in this setting and preliminary results of ongoing trials adopting checkpoint inhibitors are striking. Indeed, although a poor immunogenicity for GI has been reported, a strong biological rationale supports the development of immunotherapy in this field. The clinical and translational research on immunotherapy for the treatment of GI cancers started firstly with the identification of immune-related mechanisms possibly relevant to GI tumours and secondly with the development of immunotherapy-based agents in clinical trials. In the present review a general overview is firstly provided followed by a focus on major findings on gastric, colorectal, and hepatocellular carcinomas. Finally, pathological and molecular perspectives are provided since many efforts are ongoing in order to identify possible predictive biomarkers and to improve patients' selection. Many issues are still unsolved in this field; however, we strongly believe that immunotherapy might positively affect the natural history of a subgroup of GI cancer patients improving outcome and the overall quality of life.
Collapse
Affiliation(s)
- Letizia Procaccio
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Marta Schirripa
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padova, Padova, Italy
| | - Loredana Vecchione
- Division of Molecular Carcinogenesis, Cancer Genomics Center Netherlands, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Francesca Bergamo
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
| | - Alessandra Anna Prete
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I University Hospital, Rome, Italy
| | - Rossana Intini
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Chiara Manai
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I University Hospital, Rome, Italy
| | - Vincenzo Dadduzio
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
- Department of Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alice Boscolo
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Vittorina Zagonel
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
| | - Sara Lonardi
- Division of Medical Oncology 1, Istituto Oncologico Veneto, IRCCS, Padova, Italy
| |
Collapse
|
10
|
Guan J, Lim KS, Mekhail T, Chang CC. Programmed Death Ligand-1 (PD-L1) Expression in the Programmed Death Receptor-1 (PD-1)/PD-L1 Blockade: A Key Player Against Various Cancers. Arch Pathol Lab Med 2017; 141:851-861. [DOI: 10.5858/arpa.2016-0361-ra] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Context.—
Immune checkpoint pathways, including programmed death receptor-1/programmed death ligand-1 (PD-1/PD-L1) signaling pathway, which are important in mediating self-tolerance and controlling self-damage, can sometimes be manipulated by cancer cells to evade immune surveillance. Recent clinical trials further demonstrate the efficacy of PD-1/PD-L1–targeted therapy in various cancers and reveal a new era of cancer immunotherapy.
Objective.—
To review the mechanism of the PD-1/PD-L1 signaling pathway, the regulation of this pathway, PD-1/PD-L1 as a predictive and/or prognostic marker in various cancers, and strategies of measuring PD-L1 expression.
Data Sources.—
Representative medical literature regarding PD-L1 expression in various cancers, including the preliminary results of the Blue Proposal, which compares different immunohistochemical stains for PD-L1 reported in the recent American Association of Cancer Research (AACR) Annual Meeting (April 16–20, 2016).
Conclusion.—
Either PD-1/PD-L1–targeted therapy alone or in combination with other treatment modalities provides benefit for patients with advanced cancers. Because of the complexity of cancer immunity, we still do not have a reliable biomarker to predict the response of PD-1/PD-L1–targeted therapy. Future studies, including methods beyond immunohistochemical stains, are needed to develop reliable biomarker/biomarkers for pathology laboratories to aid in selecting patients who will benefit most from PD-1/PD-L1–targeted therapy.
Collapse
Affiliation(s)
| | | | | | - Chung-Che Chang
- From the Departments of Internal Medicine (Drs Guan, Lim, and Mekhail) and Pathology and Laboratory Medicine (Dr Chang), Florida Hospital, Orlando; and the Department of Pathology, University of Central Florida College of Medicine, Orlando (Dr Chang)
| |
Collapse
|