1
|
Elfving H, Yu H, Fessehatsion KK, Brunnström H, Botling J, Gulyas M, Backman M, Lindberg A, Strell C, Micke P. Spatial distribution of tertiary lymphoid structures in the molecular and clinical context of non-small cell lung cancer. Cell Oncol (Dordr) 2025; 48:801-813. [PMID: 40029549 PMCID: PMC12119696 DOI: 10.1007/s13402-025-01052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
INTRODUCTION Tertiary lymphoid structures (TLS) are lymphocyte aggregates resembling secondary lymphoid organs and are pivotal in cancer immunity. The ambiguous morphological definition of TLS makes it challenging to ascertain their clinical impact on patient survival and response to immunotherapy. OBJECTIVES This study aimed to characterize TLS in hematoxylin-eosin tissue sections from lung cancer patients, assessing their occurrence in relation to the local immune environment, mutational background, and patient outcome. METHODS Two pathologists evaluated one whole tissue section from resection specimens of 680 NSCLC patients. TLS were spatially quantified within the tumor area or periphery and further categorized based on the presence of germinal centers (mature TLS). Metrics were integrated with immune cell counts, genomic and transcriptomic data, and correlated with clinical parameters. RESULTS TLS were present in 86% of 536 evaluable cases, predominantly in the tumor periphery, with a median of eight TLS per case. Mature TLS were found in 24% of cases. TLS presence correlated positively with increased plasma cell (CD138+) and lymphocytic cell (CD3+, CD8+, FOXP3+) infiltration. Tumors with higher tumor mutational burden exhibited higher numbers of peripheral TLS. The overall TLS quantity was independently associated with improved patient survival, irrespective of TLS maturation status. This prognostic association held true for peripheral TLS but not for tumor TLS. CONCLUSION TLS in NSCLC is common and their correlation with a specific immune phenotype suggests biological relevance in the local immune reaction. The prognostic significance of this scoring system on routine hematoxylin-eosin sections has the potential to augment diagnostic algorithms for NSCLC patients.
Collapse
Affiliation(s)
- Hedvig Elfving
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, 751 85, Sweden.
| | - Hui Yu
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, 751 85, Sweden
| | | | - Hans Brunnström
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Johan Botling
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, 751 85, Sweden
| | - Miklos Gulyas
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, 751 85, Sweden
| | - Max Backman
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, 751 85, Sweden
| | - Amanda Lindberg
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, 751 85, Sweden
| | - Carina Strell
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, 751 85, Sweden
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Patrick Micke
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, 751 85, Sweden
| |
Collapse
|
2
|
Molero A, Hernandez S, Alonso M, Peressini M, Curto D, Lopez-Rios F, Conde E. Assessment of PD-L1 expression and tumour infiltrating lymphocytes in early-stage non-small cell lung carcinoma with artificial intelligence algorithms. J Clin Pathol 2024:jcp-2024-209766. [PMID: 39419594 DOI: 10.1136/jcp-2024-209766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
AIMS To study programmed death ligand 1 (PD-L1) expression and tumour infiltrating lymphocytes (TILs) in patients with early-stage non-small cell lung carcinoma (NSCLC) with artificial intelligence (AI) algorithms. METHODS The study included samples from 50 early-stage NSCLCs. PD-L1 immunohistochemistry (IHC) stained slides (clone SP263) were scored manually and with two different AI tools (PathAI and Navify Digital Pathology) by three pathologists. TILs were digitally assessed on H&E and CD8 IHC stained sections with two different algorithms (PathAI and Navify Digital Pathology, respectively). The agreement between observers and methods for each biomarker was analysed. For PD-L1, the turn-around time (TAT) for manual versus AI-assisted scoring was recorded. RESULTS Agreement was higher in tumours with low PD-L1 expression regardless of the approach. Both AI-powered tools identified a significantly higher number of cases equal or above 1% PD-L1 tumour proportion score as compared with manual scoring (p=0.00015), a finding with potential therapeutic implications. Regarding TAT, there were significant differences between manual scoring and AI use (p value <0.0001 for all comparisons). The total TILs density with the PathAI algorithm and the total density of CD8+ cells with the Navify Digital Pathology software were significantly correlated (τ=0.49 (95% CI 0.37, 0.61), p value<0.0001). CONCLUSIONS This preliminary study supports the use of AI algorithms for the scoring of PD-L1 and TILs in patients with NSCLC.
Collapse
Affiliation(s)
- Aida Molero
- Pathology, Complejo Asistencial de Segovia, Segovia, Spain
| | - Susana Hernandez
- Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Marta Alonso
- Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Melina Peressini
- Tumor Microenvironment and Immunotherapy Research Group, Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Daniel Curto
- Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fernando Lopez-Rios
- Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), CIBERONC, Universidad Complutense de Madrid, Madrid, Spain
| | - Esther Conde
- Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), CIBERONC, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|