1
|
Saeed Y. Title: Immunotherapy; a ground-breaking remedy for spinal cord injury with stumbling blocks: An overview. Front Pharmacol 2023; 14:1110008. [PMID: 36778022 PMCID: PMC9909832 DOI: 10.3389/fphar.2023.1110008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Spinal cord injury (SCI) is a debilitating disorder with no known standard and effective treatment. Despite its ability to exacerbate SCI sequel by accelerating auto-reactive immune cells, an immune response is also considered essential to the healing process. Therefore, immunotherapeutic strategies targeting spinal cord injuries may benefit from the dual nature of immune responses. An increasing body of research suggests that immunization against myelin inhibitors can promote axon remyelination after SCI. However, despite advancements in our understanding of neuroimmune responses, immunoregulation-based therapeutic strategies have yet to receive widespread acceptance. Therefore, it is a prerequisite to enhance the understanding of immune regulation to ensure the safety and efficacy of immunotherapeutic treatments. The objective of the present study was to provide an overview of previous studies regarding the advantages and limitations of immunotherapeutic strategies for functional recovery after spinal cord injury, especially in light of limiting factors related to DNA and cell-based vaccination strategies by providing a novel prospect to lay the foundation for future studies that will help devise a safe and effective treatment for spinal cord injury.
Collapse
Affiliation(s)
- Yasmeen Saeed
- Provincial Key Laboratory for Utilization and Conservation of Food and Medicinal Resources in Northern Guangdong, 288 University Ave. Zhenjiang District, Shaoguan City, Guangdong Province, China
| |
Collapse
|
2
|
Xu X, Liang Z, Lin Y, Rao J, Lin F, Yang Z, Wang R, Chen C. Comparing the Efficacy and Safety of Cell Transplantation for Spinal Cord Injury: A Systematic Review and Bayesian Network Meta-Analysis. Front Cell Neurosci 2022; 16:860131. [PMID: 35444516 PMCID: PMC9013778 DOI: 10.3389/fncel.2022.860131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo compare the safety and effectiveness of transplanted cells from different sources for spinal cord injury (SCI).DesignA systematic review and Bayesian network meta-analysis.Data SourcesMedline, Embase, and the Cochrane Central Register of Controlled Trials.Study SelectionWe included randomized controlled trials, case–control studies, and case series related to cell transplantation for SCI patients, that included at least 1 of the following outcome measures: American Spinal Cord Injury Association (ASIA) Impairment Scale (AIS grade), ASIA motor score, ASIA sensory score, the Functional Independence Measure score (FIM), International Association of Neurorestoratology Spinal Cord Injury Functional Rating Scale (IANR-SCIFRS), or adverse events. Follow-up data were analyzed at 6 and 12 months.ResultsForty-four eligible trials, involving 1,266 patients, investigated 6 treatments: olfactory ensheathing cells (OECs), neural stem cells/ neural progenitor cells (NSCs), mesenchymal stem cells (MSCs), Schwann cells, macrophages, and combinations of cells (MSCs plus Schwann cells). Macrophages improved the AIS grade at 12 months (mean 0.42, 95% credible interval: 0–0.91, low certainty) and FIM score at 12 months (42.83, 36.33–49.18, very low certainty). MSCs improved the AIS grade at 6 months (0.42, 0.15–0.73, moderate certainty), the motor score at 6 months (4.43, 0.91–7.78, moderate certainty), light touch at 6 (10.01, 5.81–13.88, moderate certainty) and 12 months (11.48, 6.31–16.64, moderate certainty), pinprick score at 6 (14.54, 9.76–19.46, moderate certainty) and 12 months (12.48, 7.09–18.12, moderate certainty), and the IANR-SCIFRS at 6 (3.96, 0.62–6.97, moderate certainty) and 12 months (5.54, 2.45–8.42, moderate certainty). OECs improved the FIM score at 6 months (9.35, 1.71–17.00, moderate certainty). No intervention improved the motor score significantly at 12 months. The certainty of other interventions was low or very low. Overall, the number of adverse events associated with transplanted cells was low.ConclusionsPatients with SCI who receive transplantation of macrophages, MSCs, NSCs, or OECs may have improved disease prognosis. MSCs are the primary recommendations. Further exploration of the mechanism of cell transplantation in the treatment of SCI, transplantation time window, transplantation methods, and monitoring of the number of transplanted cells and cell survival is needed.Systematic Review Registrationhttps://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier: CRD 42021282043.
Collapse
|
3
|
Natural Membrane Differentiates Human Adipose-Derived Mesenchymal Stem Cells to Neurospheres by Mechanotransduction Related to YAP and AMOT Proteins. MEMBRANES 2021; 11:membranes11090687. [PMID: 34564504 PMCID: PMC8469618 DOI: 10.3390/membranes11090687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022]
Abstract
Adipose tissue-derived mesenchymal stem cells (ADMSCs) are promising candidates for regenerative medicine, as they have good cell yield and can differentiate into several cell lines. When induced to the neuronal differentiation, they form neurospheres composed of neural precursors (NPs) that can be an alternative in treating neurodegenerative diseases. This study aimed to characterize NPs from neurospheres obtained after seeding ADMSCs on a natural polyisoprene-based membrane. The ADMSCs were isolated from adipose tissue by enzymatic dissociation, were subjected to trilineage differentiation, and were characterized by flow cytometry for specific ADMSC surface markers. For neuronal differentiation, the cells were seeded on polystyrene flasks coated with the membrane and were characterized by immunocytochemistry and RT-PCR. The results demonstrated that the isolated cells showed characteristics of ADMSCs. At 15 to 25 days, ADMSCs seeded on the natural membrane developed neurospheres. Then, after dissociation, the cells demonstrated characteristic neuronal markers expressed on NPs: nestin, ß-III tubulin, GFAP, NeuN, and the YAP1/AMOT in the cytoplasm. In conclusion, it was demonstrated that this membrane differentiates the ADMSCs to NPs without any induction factors, and suggests that their differentiation mechanisms are related to mechanotransduction regulated by the YAP and AMOT proteins.
Collapse
|
4
|
Kaboodkhani R, Mehrabani D, Karimi-Busheri F. Achievements and Challenges in Transplantation of Mesenchymal Stem Cells in Otorhinolaryngology. J Clin Med 2021; 10:2940. [PMID: 34209041 PMCID: PMC8267672 DOI: 10.3390/jcm10132940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Otorhinolaryngology enrolls head and neck surgery in various tissues such as ear, nose, and throat (ENT) that govern different activities such as hearing, breathing, smelling, production of vocal sounds, the balance, deglutition, facial animation, air filtration and humidification, and articulation during speech, while absence of these functions can lead to high morbidity and even mortality. Conventional therapies for head and neck damaged tissues include grafts, transplants, and artificial materials, but grafts have limited availability and cause morbidity in the donor site. To improve these limitations, regenerative medicine, as a novel and rapidly growing field, has opened a new therapeutic window in otorhinolaryngology by using cell transplantation to target the healing and replacement of injured tissues. There is a high risk of rejection and tumor formation for transplantation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs); mesenchymal stem cells (MSCs) lack these drawbacks. They have easy expansion and antiapoptotic properties with a wide range of healing and aesthetic functions that make them a novel candidate in otorhinolaryngology for craniofacial defects and diseases and hold immense promise for bone tissue healing; even the tissue sources and types of MSCs, the method of cell introduction and their preparation quality can influence the final outcome in the injured tissue. In this review, we demonstrated the anti-inflammatory and immunomodulatory properties of MSCs, from different sources, to be safely used for cell-based therapies in otorhinolaryngology, while their achievements and challenges have been described too.
Collapse
Affiliation(s)
- Reza Kaboodkhani
- Otorhinolaryngology Research Center, Department of Otorhinolaryngology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71936-36981, Iran;
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71987-74731, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Feridoun Karimi-Busheri
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
5
|
Behl T, Kaur I, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Babes EE, Brisc C, Stoicescu M, Toma MM, Sava C, Bungau SG. Bioinformatics Accelerates the Major Tetrad: A Real Boost for the Pharmaceutical Industry. Int J Mol Sci 2021; 22:6184. [PMID: 34201152 PMCID: PMC8227524 DOI: 10.3390/ijms22126184] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/01/2023] Open
Abstract
With advanced technology and its development, bioinformatics is one of the avant-garde fields that has managed to make amazing progress in the pharmaceutical-medical field by modeling the infrastructural dimensions of healthcare and integrating computing tools in drug innovation, facilitating prevention, detection/more accurate diagnosis, and treatment of disorders, while saving time and money. By association, bioinformatics and pharmacovigilance promoted both sample analyzes and interpretation of drug side effects, also focusing on drug discovery and development (DDD), in which systems biology, a personalized approach, and drug repositioning were considered together with translational medicine. The role of bioinformatics has been highlighted in DDD, proteomics, genetics, modeling, miRNA discovery and assessment, and clinical genome sequencing. The authors have collated significant data from the most known online databases and publishers, also narrowing the diversified applications, in order to target four major areas (tetrad): DDD, anti-microbial research, genomic sequencing, and miRNA research and its significance in the management of current pandemic context. Our analysis aims to provide optimal data in the field by stratification of the information related to the published data in key sectors and to capture the attention of researchers interested in bioinformatics, a field that has succeeded in advancing the healthcare paradigm by introducing developing techniques and multiple database platforms, addressed in the manuscript.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram 122413, India;
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 616, Oman;
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 616, Oman;
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, 42130 Konya, Turkey;
| | - Elena Emilia Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Cristian Sava
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
6
|
Pourteymourfard Tabrizi Z, Jami MS. Selection of suitable bioinformatic tools in micro-RNA research. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Farnoosh G, Mahmoudian-Sani MR. Effects of Growth Factors and the MicroRNA-183 Family on Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells Towards Auditory Neuron-Like Cells. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2020; 13:79-89. [PMID: 32982315 PMCID: PMC7490102 DOI: 10.2147/sccaa.s248526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022]
Abstract
Introduction Hearing Loss (HL) is known as the most common sensory processing disorder across the world. An effective treatment which has been currently used for patients suffering from this condition is cochlear implant (CI). The major limitation of this treatment is the need for a healthy auditory neuron (AN). Accordingly, mesenchymal cells (MCs) are regarded as good candidates for cell-based therapeutic approaches. The present study aimed to investigate the potentials of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) for differentiation towards ANs along with using treatments with growth factors and microRNA (miRNA) transfection in vitro. Methods To this end, neurospheres derived from hBM-MSCs were treated via basic fibroblast growth factor (bFGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF) as growth factors N2 and B27 supplements, as well as miRNA-96, -182, -183 transfected into hBM-MSCs in order to evaluate the differentiation of such cells into ANs. Results Treatments with growth factors demonstrated a significant increase in neurogenin 1 (Ngn1) and sex determining region Y-box 2 (SOX2) markers; but tubulin, microtubule-associated protein 2 (MAP2), and GATA binding protein 3 (GATA3) markers were not statistically significant. The findings also revealed that miRNA-182 expression in miRNA-183 family could boost the expressions of some AN marker (ie, Ngn1, SOX2, peripherin, and nestin) in vitro. Discussion It can be concluded that miRNA is probably a good substitute for growth factors used in differentiating into ANs. Transdifferentiation of hBM-MSCs into ANs, which does not occur under normal conditions, may be thus facilitated by miRNAs, especially miRNA-182, or via a combination of miRNA and growth factors.
Collapse
Affiliation(s)
- Gholamreza Farnoosh
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
8
|
Mehri Ghahfarrokhi A, Jami MS, Hashemzadeh Chaleshtori M. Upregulation of Neuroprogenitor and Neural Markers via Enforced miR-124 and Growth Factor Treatment. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2020; 9:62-70. [PMID: 32832485 PMCID: PMC7422846 DOI: 10.22088/ijmcm.bums.9.1.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previous studies have shown that miR-124 plays an important role in the development of auditory neurons, which are degenerated in the sensorineural hearing loss. However, whether the combined use of miR-124 and growth factors can increase the expression of neural related markers in human dental pulp stem cells has been remained unknown so far. In this study, human dental pulp stem cells were transfected with miR-124 following treatment with brain-derived neurotrophic factor or epidermal growth factor/basic fibroblast growth factor. The expression of some neural related markers (nestin, SOX2, β-tubulin III, MAP2, and peripherin) was analyzed in two groups by qRT-PCR or immunofluorescence. Cellular treatment resulted in morphological changes including neurosphere-like colonies formation. Nestin and SOX2 were up-regulated, and MAP2 and peripherin were down-regulated in dental pulp stem cells transfected by miR-124 following treatment with brain-derived neurotrophic factor. Replacement of brain-derived neurotrophic factor with epidermal growth factor/ basic fibroblast growth factor resulted in the up-regulation of nestin, MAP2, peripherin, and β-tubulin III and down-regulation of SOX2. The expression of SOX2 and nestin was also confirmed by immunofluorescence. The combination of miR-124 and growth factors would provide a promising starting point for upregulating the neural progenitor markers in human dental pulp stem cells.
Collapse
Affiliation(s)
- Ameneh Mehri Ghahfarrokhi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Saeid Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Morteza Hashemzadeh Chaleshtori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
9
|
Ghanavatinejad F, Pourteymourfard-Tabrizi Z, Mahnam K, Doosti A, Mehri-Ghahfarrokhi A, Pourhadi M, Azimeh Hosseini S, Hashemzadeh Chaleshtori M, Soltanzadeh P, Jami MS. In silico and in vitro effects of the I30T mutation on myelin protein zero instability in the cell membrane. Cell Biol Int 2019; 44:671-683. [PMID: 31769568 DOI: 10.1002/cbin.11268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/14/2019] [Indexed: 01/22/2023]
Abstract
Charcot-Marie-Tooth (CMT) diseases are a heterogeneous group of genetic peripheral neuropathies caused by mutations in a variety of genes, which are involved in the development and maintenance of peripheral nerves. Myelin protein zero (MPZ) is expressed by Schwann cells, and MPZ mutations can lead to primarily demyelinating polyneuropathies including CMT type 1B. Different mutations demonstrate various forms of disease pathomechanisms, which may be beneficial in understanding the disease cellular pathology. Our molecular dynamics simulation study on the possible impacts of I30T mutation on the MPZ protein structure suggested a higher hydrophobicity and thus lower stability in the membranous structures. A study was also conducted to predict native/mutant MPZ interactions. To validate the results of the simulation study, the native and mutant forms of the MPZ protein were separately expressed in a cellular model, and the protein trafficking was chased down in a time course pattern. In vitro studies provided more evidence on the instability of the MPZ protein due to the mutation. In this study, qualitative and quantitative approaches were adopted to confirm the instability of mutant MPZ in cellular membranes.
Collapse
Affiliation(s)
- Fatemeh Ghanavatinejad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Zahra Pourteymourfard-Tabrizi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Karim Mahnam
- Department of Biology, Faculty of Science, Shahrekord University, Rahbar Blvd, Shahrekord, Chaharmahal and Bakhtiari Province, Iran
| | - Abbas Doosti
- Biotechnology Research Center, School of Basic Sciences, Islamic Azad University, Shahrekord Branch, Rahmatieh, Shahrekord, Chaharmahal and Bakhtiari Province, Iran
| | - Ameneh Mehri-Ghahfarrokhi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Rahmatieh, Shahrekord, Chaharmahal and Bakhtiari Province, Iran
| | - Masoumeh Pourhadi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Sayedeh Azimeh Hosseini
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Morteza Hashemzadeh Chaleshtori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Payam Soltanzadeh
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles (UCLA), 710 Westwood Plaza, Los Angeles, California, 90095, USA
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles (UCLA), 710 Westwood Plaza, Los Angeles, California, 90095, USA
| |
Collapse
|
10
|
Rafiee F, Pourteymourfard-Tabrizi Z, Mahmoudian-Sani MR, Mehri-Ghahfarrokhi A, Soltani A, Hashemzadeh-Chaleshtori M, Jami MS. Differentiation of dental pulp stem cells into neuron-like cells. Int J Neurosci 2019; 130:107-116. [PMID: 31599165 DOI: 10.1080/00207454.2019.1664518] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background and objectives: With regard to their ease of harvest and common developmental origin, dental pulp stem cells (DPSCs) may act as a favorable source of stem cells in generation of nerves. Moreover; cellular migration and differentiation as well as survival, self-renewal, and proliferation of neuroprogenitor species require the presence of the central nervous system (CNS) mitogens including EGF and bFGF. Accordingly, the possibility of the induction of neuronal differentiation of DPSCs by EGF and bFGF was evaluated in the present study.Materials and methods: DPSCs were treated with 20 ng/ml EGF, 20 ng/ml bFGF, and 10 µg/ml heparin. In order to further induce the neuroprogenitor differentiation, DPSC-derived spheres were also incubated in serum-free media for three days. The resulting spheres were then cultured in high-glucose Dulbecco's Modified Eagle Medium (DMEM) with 10% FBS. The morphology of the cells and the expression of the differentiation markers were correspondingly analyzed by quantitative polymerase chain reaction (qPCR), western blotting, and immunofluorescence (IF).Results: The EGF/bFGF-treated DPSCs showed significant increase in the expression of the neuroprogenitor markers of Nestin and SRY (sex determining region Y)-box 2 (SOX2), 72 h after treatment. The up-regulation of Nestin and SOX2 induced by growth factors was confirmed using western blotting and IF. The cultures also yielded some neuron-like cells with a significant rise in Nestin, microtubule-associated protein 2 (MAP2), and Neurogenin 1 (Ngn1) transcript levels; compared with cells maintained in the control media (p < 0.05).Conclusion: DPSCs seemed to potentially differentiate into neuron-like cells under the herein-mentioned treatment conditions.
Collapse
Affiliation(s)
- Fatemeh Rafiee
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Pourteymourfard-Tabrizi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ameneh Mehri-Ghahfarrokhi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Hashemzadeh-Chaleshtori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Increased levels of miR-124 in human dental pulp stem cells alter the expression of neural markers. J Otol 2019; 14:121-127. [PMID: 32742271 PMCID: PMC7387844 DOI: 10.1016/j.joto.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/10/2019] [Accepted: 04/10/2019] [Indexed: 12/22/2022] Open
Abstract
Auditory neuropathy is the particular form of deafness in humans which cannot be treated by replacement therapy. Human dental pulp stem cells (hDPSCs) are derived from an ectomesenchymal neural crest cell population. Therefore, they possess a promising capacity for neuronal differentiation and repair. miR-124, a key regulator of neuronal development in the inner ear, is expressed at high levels in auditory and vestibular neurons. Here, we evaluated the possible effect of miR-124 in alteration of neural protein markers expression. Using quantitative reverse transcription-PCR (qRT-PCR) analyses and immunofluorescence staining, we studied the expression patterns of neural progenitor markers (Nestin, NOTCH1, and SOX2) and neural markers (β-tubulin III, GATA-3, and peripherin) upon transfection of hDPSCs with miR-124. The qRT-PCR results showed that Nestin was upregulated 6 h post-transfection. In contrast, Nestin expression exhibited a decreasing trend 24 h and 48 h post-transfection. Higher levels of β-tubulin III, 6 h and 16 h post transfection in RNA level as compared with control cells, were determined in transfected DPSCs. However, β-tubulin-III expression decreased 48 h post-transfection. The immunoflourescence results indicated that transfection of hDPSCs with miR-124, only affected Nestin among the studied neural progenitor and neural marker expression in protein level.
Collapse
Key Words
- DPSCs
- Nestin
- Sensorineural hearing loss
- Spiral ganglion neurons
- basic fibroblast growth factor, bFGF
- bone morphogenetic protein 4, BMP4
- bovin serum albumin, BSA
- brain derived neurotrophic factor, BDNF
- epidermal growth factor, EGF
- human dental pulp stem cells, hDPSCs
- miR-124
- neurotrophin-3, NT3
- quantitative reverse transcription-PCR, qRT-PCR
- sonic hedgehog, SHH
- spiral ganglion neurons, SGNs
Collapse
|
12
|
Xu P, Yang X. The Efficacy and Safety of Mesenchymal Stem Cell Transplantation for Spinal Cord Injury Patients: A Meta-Analysis and Systematic Review. Cell Transplant 2019; 28:36-46. [PMID: 30362373 PMCID: PMC6322141 DOI: 10.1177/0963689718808471] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating disease, with a high rate of disability. In this meta-analysis, we aimed to comprehensively assess the efficacy and safety of mesenchymal stem cells (MSCs) in treating clinical SCI patients. We systematically searched the PUBMED, EMBASE, Chinese Biomedical (CBM), Web of Science and Cochrane databases using the strategy of combination of free-text words and MeSH terms. The indicators of the American Spinal Injury Association (ASIA) impairment scale (AIS)-grading improvement rate and adverse effects were displayed with an overall relative risk (RR). For the continuous variables of the ASIA motor score, light-touch score, pinprick score, activities of daily living (ADL) score, and residual urine volume, we used odds ratio (OR) to analyze the data. Eleven studies comprising 499 patients meeting all inclusion and exclusion criteria were included. No serious heterogeneity or publication bias was observed across each study. The results showed that significant improvements of total AIS grade (RR: 3.70; P < 0.001), AIS grade A (RR: 3.57; P < 0.001), ASIA sensory score (OR: 8.63; P < 0.001) and reduction of residual urine volume (OR: -36.37; P = 0.03) were observed in experimental group compared with control group. However, no significant differences of motor score (OR: 1.37, P = 0.19) and ADL score (OR: 2.61, P = 0.27) were observed between experimental and control groups. In addition, there were no serious and permanent adverse effects after cell transplantation. Cell transplantation with MSCs is effective and safe in improving the sensory and bladder functions of SCI patients.
Collapse
Affiliation(s)
- Panfeng Xu
- Department of Spine Surgery, Affiliated Wenling Hospital of Wenzhou Medical University, China
| | - Xianliang Yang
- Department of Spine Surgery, Affiliated Wenling Hospital of Wenzhou Medical University, China
| |
Collapse
|