1
|
Gross J, Knipper M, Mazurek B. Candidate Key Proteins in Tinnitus: A Bioinformatic Study of Synaptic Transmission in Spiral Ganglion Neurons. Cell Mol Neurobiol 2023; 43:4189-4207. [PMID: 37736859 PMCID: PMC10661836 DOI: 10.1007/s10571-023-01405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023]
Abstract
To study key proteins associated with changes in synaptic transmission in the spiral ganglion in tinnitus, we build three gene lists from the GeneCard database: 1. Perception of sound (PoS), 2. Acoustic stimulation (AcouStim), and 3. Tinnitus (Tin). Enrichment analysis by the DAVID database resulted in similar Gene Ontology (GO) terms for cellular components in all gene lists, reflecting synaptic structures known to be involved in auditory processing. The STRING protein-protein interaction (PPI) network and the Cytoscape data analyzer were used to identify the top two high-degree proteins (HDPs) and their high-score interaction proteins (HSIPs) identified by the combined score (CS) of the corresponding edges. The top two protein pairs (key proteins) for the PoS are BDNF-GDNF and OTOF-CACNA1D and for the AcouStim process BDNF-NTRK2 and TH-CALB1. The Tin process showed BDNF and NGF as HDPs, with high-score interactions with NTRK1 and NGFR at a comparable level. Compared to the PoS and AcouStim process, the number of HSIPs of key proteins (CS > 90. percentile) increases strongly in Tin. In the PoS and AcouStim networks, BDNF receptor signaling is the dominant pathway, and in the Tin network, the NGF-signaling pathway is of similar importance. Key proteins and their HSIPs are good indicators of biological processes and of signaling pathways characteristic for the normal hearing on the one hand and tinnitus on the other.
Collapse
Affiliation(s)
- Johann Gross
- Tinnitus Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Leibniz Society of Science Berlin, Berlin, Germany.
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
- Leibniz Society of Science Berlin, Berlin, Germany
| | - Birgit Mazurek
- Tinnitus Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Jami MS, Murata H, Barnhill LM, Li S, Bronstein JM. Diesel exhaust exposure alters the expression of networks implicated in neurodegeneration in zebrafish brains. Cell Biol Toxicol 2023; 39:641-655. [PMID: 34057650 PMCID: PMC10406705 DOI: 10.1007/s10565-021-09618-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 05/12/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases are a major cause of disability in the world, but their etiologies largely remain elusive. Genetic factors can only account for a minority of risk for most of these disorders, suggesting environmental factors play a significant role in the development of these diseases. Prolonged exposure to air pollution has recently been identified to increase the risk of Alzheimer's and Parkinson's diseases, but the molecular mechanisms by which it acts are not well understood. Zebrafish embryos exposed to diesel exhaust particle extract (DEPe) lead to dysfunctional autophagy and neuronal loss. Here, we exposed zebrafish embryos to DEPe and performed high throughput proteomic and transcriptomic expression analyses from their brains to identify pathogenic pathways induced by air pollution. DEPe treatment altered several biological processes and signaling pathways relevant to neurodegenerative processes, including xenobiotic metabolism, phagosome maturation, and amyloid processing. The biggest induction of gene expression in brains was in Cyp1A (over 30-fold). The relevance of this expression change was confirmed by blocking induction using CRISPR/Cas9, which resulted in a dramatic increase in sensitivity to DEPe toxicity, confirming that Cyp1A induction was a compensatory protective mechanism. These studies identified disrupted molecular pathways that may contribute to the pathogenesis of neurodegenerative disorders. Ultimately, determining the molecular basis of how air pollution increases the risk of neurodegeneration will help in the development of disease-modifying therapies.
Collapse
Affiliation(s)
- M Saeid Jami
- Department of Neurology, David Geffen School of Medicine At UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Hiromi Murata
- Molecular Toxicology IDP, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA
| | - Lisa M Barnhill
- Department of Neurology, David Geffen School of Medicine At UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
- Molecular Toxicology IDP, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA
| | - Sharon Li
- Department of Neurology, David Geffen School of Medicine At UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Jeff M Bronstein
- Department of Neurology, David Geffen School of Medicine At UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.
- Molecular Toxicology IDP, David Geffen School of Medicine At UCLA, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Dehghan F, Zamani S, Barreiro C, Jami MS. Irisin injection mimics exercise effects on the brain proteome. Eur J Neurosci 2021; 54:7422-7441. [PMID: 34655501 DOI: 10.1111/ejn.15493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022]
Abstract
Physical inactivity can endanger human health and increase the incidence of neurodegenerative disease. Exercise has tremendous beneficial effects on brain health and cognitive function, especially in older adults. It also improves brain-related outcomes in depression, epilepsy and neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease. Irisin is a mediator of the beneficial effects of exercise. This study aimed to assess the proteome alterations in adult male National Maritime Research Institute (NMRI) mice brain tissue upon three different conditions including endurance exercise, resistance exercise and irisin injection. Quantification of irisin levels in blood was performed using irisin-ELISA Kit. Quantification and identification of proteins via two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS)/MS showed the alteration of at least 21 proteins due to different treatments. Cellular pathway analysis revealed common beneficial effects of sole irisin treatment and different exercise procedures suggesting the capability of irisin injection to substitute the exercise when physical activity is not possible.
Collapse
Affiliation(s)
- Fariba Dehghan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Saeed Zamani
- Department of Anatomical Sciences, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León), León, Spain.,Biochemistry and Molecular Biology Area, Department of Molecular Biology, University of León, Vegazana Campus, León, Spain
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,QIANBIOTEC, Research and Development Center for Biotechnology, Isfahan, Iran.,Department of Neurology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California, USA
| |
Collapse
|
4
|
Ajdari S, Saffari-Chaleshtori J, Pourteymourfard-Tabrizi Z, Ghasemi-Dehkordi P, Samani MG, Validi M, Kabiri H, Chaleshtori MH, Jami MS. Rare mutations in Atoh1 lead to hearing loss. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Momenzadeh S, Zamani S, Pourteymourfard-Tabrizi Z, Barreiro C, Jami MS. Muscles proteome analysis; irisin administration mimics some molecular effects of exercise in quadriceps muscle. Biochimie 2021; 189:144-157. [PMID: 34217820 DOI: 10.1016/j.biochi.2021.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022]
Abstract
Because of health-promoting effects, the adaptation of skeletal muscles to exercise is considered a therapeutic strategy for metabolic complications and musculoskeletal disabilities. Myokines display many beneficial effects of different exercise modalities. Among them, irisin is known as a systemic effector that positively influences several organs. There are a few studies about the effects of irisin on skeletal muscles, and irisin prosperities need to be well-defined for being an exercise mimetic. To aim this purpose, we assessed the proteome profile of mouse skeletal muscle after eight weeks of irisin injection comparing to resistance and endurance exercise treated groups. In the current study, two-dimensional gel electrophoresis was used to evaluate the protein content of the quadriceps muscle. The results were analyzed with Image Master 2D Platinum V6 software. Differentially expressed proteins were characterized by mass spectrometry (MALDI TOF/TOF) and interpreted using protein data banks and co-expression network. Irisin increases cellular ATP content by driving its overproduction through glycolysis and oxidative phosphorylation similar to two exercise protocols and as a specific property, decreases ATP consumption through creatine kinase downregulation. It also improves the microstructural properties of quadriceps muscle by increasing fiber proteins and might induce cellular proliferation and differentiation. Network analysis of differentially expressed proteins also revealed the co-expression of Irisin precursor with structural and metabolic-related proteins. The protein alterations after irisin administration display the potential of this myokine to mimic some molecular effects of exercise, suggesting it a promising candidate to improve muscle metabolism and structure.
Collapse
Affiliation(s)
- Sedigheh Momenzadeh
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Saeed Zamani
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Pourteymourfard-Tabrizi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; QIANBIOTEC, Research and Development Center for Biotechnology, Isfahan, Iran
| | - Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León 24006, León, Spain; Departamento de Biología Molecular, Universidad de León, Campus de Ponferrada, Avda. Astorga s/n, 24401, Ponferrada, Spain
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; QIANBIOTEC, Research and Development Center for Biotechnology, Isfahan, Iran; Department of Neurology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA.
| |
Collapse
|
6
|
Chen M, Huang J. Retinoic acid induces differentiation of cochlear neural progenitor cells into hair cells. Braz J Otorhinolaryngol 2021; 88:962-967. [PMID: 33707121 PMCID: PMC9615533 DOI: 10.1016/j.bjorl.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 01/05/2021] [Accepted: 01/30/2021] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Inner ear progenitor cells have the potential for multi-directional differentiation. Retinoic acid is an important requirement for the development of the inner ear. Blocking the Curtyr's retinoic acid signaling pathway can significantly reduce the number of hair cells. Therefore, we believe that retinoic acid may induce the regeneration of inner ear hair cells. OBJECTIVE To investigate whether the cochlear neural progenitor cells maintain the characteristics of stem cells during recovery and subculture, whether retinoic acid can induce cochlear neural progenitor cells into hair cells in vitro, and whether retinoic acid promotes or inhibits the proliferation of cochlear neural progenitor cells during differentiation. METHODS Cochlear neural progenitor cells were cultured and induced in DMEM/F12+RA (10-6M) and then detected the expressions of hair cell markers (Math1 and MyosinVIIa) by immunofluorescence cytochemistry and realtime-polymerase chain reaction, and the proliferation of cochlear neural progenitor cells was detected by Brdu. RESULTS The nestin of cochlear neural progenitor cells was positively expressed. The ratios of Math1-positive cells in the control group and experimental group were 1.5% and 63%, respectively; the ratios of MyosinVIIa-positive cells in the control group and experimental group were 0.96% and 56%, respectively (p<0.05). The ratios of Brdu+-labeled cells in retinoic acid group, group PBS, and group FBS were 20.6%, 29.9%, and 54.3%, respectively; however, the proliferation rate in the experimental group decreased. CONCLUSION Retinoic acid can promote cochlear neural progenitor cells to differentiate into the hair cells.
Collapse
Affiliation(s)
- Minyun Chen
- The Second Affiliated Hospital of Fujian Medical University, Department of Otolaryngology, Fujian, China
| | - Jianmin Huang
- Fujian Medical University Union Hospital, Department of Otolaryngology, Fujian, China.
| |
Collapse
|
7
|
Maharajan N, Cho GW, Jang CH. Therapeutic Application of Mesenchymal Stem Cells for Cochlear Regeneration. In Vivo 2021; 35:13-22. [PMID: 33402445 PMCID: PMC7880755 DOI: 10.21873/invivo.12227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022]
Abstract
Hearing loss is one of the major worldwide health problems that seriously affects human social and cognitive development. In the auditory system, three components outer ear, middle ear and inner ear are essential for the hearing mechanism. In the inner ear, sensory hair cells and ganglion neuronal cells are the essential supporters for hearing mechanism. Damage to these cells can be caused by long-term exposure of excessive noise, ototoxic drugs (aminoglycosides), ear tumors, infections, heredity and aging. Since mammalian cochlear hair cells do not regenerate naturally, some therapeutic interventions may be required to replace the damaged or lost cells. Cochlear implants and hearing aids are the temporary solutions for people suffering from severe hearing loss. The current discoveries in gene therapy may provide a deeper understanding in essential genes for the inner ear regeneration. Stem cell migration, survival and differentiation to supporting cells, cochlear hair cells and spiral ganglion neurons are the important foundation in understanding stem cell therapy. Moreover, mesenchymal stem cells (MSCs) from different sources (bone marrow, umbilical cord, adipose tissue and placenta) could be used in inner ear therapy. Transplanted MSCs in the inner ear can recruit homing factors at the damaged sites to induce transdifferentiation into inner hair cells and ganglion neurons or regeneration of sensory hair cells, thus enhancing the cochlear function. This review summarizes the potential application of mesenchymal stem cells in hearing restoration and combining stem cell and molecular therapeutic strategies can also be used in the recovery of cochlear function.
Collapse
Affiliation(s)
- Nagarajan Maharajan
- Department of Biology, College of Natural Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Gwang Won Cho
- Department of Biology, College of Natural Science, BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Chul Ho Jang
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
8
|
Pourteymourfard Tabrizi Z, Jami MS. Selection of suitable bioinformatic tools in micro-RNA research. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Farnoosh G, Mahmoudian-Sani MR. Effects of Growth Factors and the MicroRNA-183 Family on Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells Towards Auditory Neuron-Like Cells. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2020; 13:79-89. [PMID: 32982315 PMCID: PMC7490102 DOI: 10.2147/sccaa.s248526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022]
Abstract
Introduction Hearing Loss (HL) is known as the most common sensory processing disorder across the world. An effective treatment which has been currently used for patients suffering from this condition is cochlear implant (CI). The major limitation of this treatment is the need for a healthy auditory neuron (AN). Accordingly, mesenchymal cells (MCs) are regarded as good candidates for cell-based therapeutic approaches. The present study aimed to investigate the potentials of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) for differentiation towards ANs along with using treatments with growth factors and microRNA (miRNA) transfection in vitro. Methods To this end, neurospheres derived from hBM-MSCs were treated via basic fibroblast growth factor (bFGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF) as growth factors N2 and B27 supplements, as well as miRNA-96, -182, -183 transfected into hBM-MSCs in order to evaluate the differentiation of such cells into ANs. Results Treatments with growth factors demonstrated a significant increase in neurogenin 1 (Ngn1) and sex determining region Y-box 2 (SOX2) markers; but tubulin, microtubule-associated protein 2 (MAP2), and GATA binding protein 3 (GATA3) markers were not statistically significant. The findings also revealed that miRNA-182 expression in miRNA-183 family could boost the expressions of some AN marker (ie, Ngn1, SOX2, peripherin, and nestin) in vitro. Discussion It can be concluded that miRNA is probably a good substitute for growth factors used in differentiating into ANs. Transdifferentiation of hBM-MSCs into ANs, which does not occur under normal conditions, may be thus facilitated by miRNAs, especially miRNA-182, or via a combination of miRNA and growth factors.
Collapse
Affiliation(s)
- Gholamreza Farnoosh
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Rafiee F, Pourteymourfard-Tabrizi Z, Mahmoudian-Sani MR, Mehri-Ghahfarrokhi A, Soltani A, Hashemzadeh-Chaleshtori M, Jami MS. Differentiation of dental pulp stem cells into neuron-like cells. Int J Neurosci 2019; 130:107-116. [PMID: 31599165 DOI: 10.1080/00207454.2019.1664518] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background and objectives: With regard to their ease of harvest and common developmental origin, dental pulp stem cells (DPSCs) may act as a favorable source of stem cells in generation of nerves. Moreover; cellular migration and differentiation as well as survival, self-renewal, and proliferation of neuroprogenitor species require the presence of the central nervous system (CNS) mitogens including EGF and bFGF. Accordingly, the possibility of the induction of neuronal differentiation of DPSCs by EGF and bFGF was evaluated in the present study.Materials and methods: DPSCs were treated with 20 ng/ml EGF, 20 ng/ml bFGF, and 10 µg/ml heparin. In order to further induce the neuroprogenitor differentiation, DPSC-derived spheres were also incubated in serum-free media for three days. The resulting spheres were then cultured in high-glucose Dulbecco's Modified Eagle Medium (DMEM) with 10% FBS. The morphology of the cells and the expression of the differentiation markers were correspondingly analyzed by quantitative polymerase chain reaction (qPCR), western blotting, and immunofluorescence (IF).Results: The EGF/bFGF-treated DPSCs showed significant increase in the expression of the neuroprogenitor markers of Nestin and SRY (sex determining region Y)-box 2 (SOX2), 72 h after treatment. The up-regulation of Nestin and SOX2 induced by growth factors was confirmed using western blotting and IF. The cultures also yielded some neuron-like cells with a significant rise in Nestin, microtubule-associated protein 2 (MAP2), and Neurogenin 1 (Ngn1) transcript levels; compared with cells maintained in the control media (p < 0.05).Conclusion: DPSCs seemed to potentially differentiate into neuron-like cells under the herein-mentioned treatment conditions.
Collapse
Affiliation(s)
- Fatemeh Rafiee
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Pourteymourfard-Tabrizi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ameneh Mehri-Ghahfarrokhi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Hashemzadeh-Chaleshtori
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Increased levels of miR-124 in human dental pulp stem cells alter the expression of neural markers. J Otol 2019; 14:121-127. [PMID: 32742271 PMCID: PMC7387844 DOI: 10.1016/j.joto.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/10/2019] [Accepted: 04/10/2019] [Indexed: 12/22/2022] Open
Abstract
Auditory neuropathy is the particular form of deafness in humans which cannot be treated by replacement therapy. Human dental pulp stem cells (hDPSCs) are derived from an ectomesenchymal neural crest cell population. Therefore, they possess a promising capacity for neuronal differentiation and repair. miR-124, a key regulator of neuronal development in the inner ear, is expressed at high levels in auditory and vestibular neurons. Here, we evaluated the possible effect of miR-124 in alteration of neural protein markers expression. Using quantitative reverse transcription-PCR (qRT-PCR) analyses and immunofluorescence staining, we studied the expression patterns of neural progenitor markers (Nestin, NOTCH1, and SOX2) and neural markers (β-tubulin III, GATA-3, and peripherin) upon transfection of hDPSCs with miR-124. The qRT-PCR results showed that Nestin was upregulated 6 h post-transfection. In contrast, Nestin expression exhibited a decreasing trend 24 h and 48 h post-transfection. Higher levels of β-tubulin III, 6 h and 16 h post transfection in RNA level as compared with control cells, were determined in transfected DPSCs. However, β-tubulin-III expression decreased 48 h post-transfection. The immunoflourescence results indicated that transfection of hDPSCs with miR-124, only affected Nestin among the studied neural progenitor and neural marker expression in protein level.
Collapse
Key Words
- DPSCs
- Nestin
- Sensorineural hearing loss
- Spiral ganglion neurons
- basic fibroblast growth factor, bFGF
- bone morphogenetic protein 4, BMP4
- bovin serum albumin, BSA
- brain derived neurotrophic factor, BDNF
- epidermal growth factor, EGF
- human dental pulp stem cells, hDPSCs
- miR-124
- neurotrophin-3, NT3
- quantitative reverse transcription-PCR, qRT-PCR
- sonic hedgehog, SHH
- spiral ganglion neurons, SGNs
Collapse
|