1
|
Jeong E, Abdellaoui N, Lim JY, Seo JA. The presence of a significant endophytic fungus in mycobiome of rice seed compartments. Sci Rep 2024; 14:23367. [PMID: 39375368 PMCID: PMC11458573 DOI: 10.1038/s41598-024-73550-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024] Open
Abstract
Seed microbial communities have been known to have a crucial role in the life cycle of a plant. In this study, we examined the distribution of the fungal communities in three compartments (husk, brown rice, and milled rice) of the fourteen rice seed samples. Ten fungal genera distributed throughout the three compartments of the rice seeds were identified as the core mycobiome of the rice seeds, regardless of collecting regions or cultivars. Based on the diversity analysis, the distribution of the fungal community in milled rice was found to be more diversified, evenly distributed, and differently clustered from the other two compartments. Among the core mycobiome, Moesziomyces dominated almost 80% of the fungal communities in the outer compartments of rice seeds, whereas the abundances of other endophytic pathogenic fungi declined. Our results provide that antagonistic yeast Moesziomyces may be able to control the endogenous pathogenic fungal communities in rice seeds, hence maintaining the quality of rice seeds. In addition, the distribution of fungal communities differs depending on the rice seed's compartment, indicating that the compartment can affect the distribution of the seed microbial community.
Collapse
Affiliation(s)
- Eunji Jeong
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Najib Abdellaoui
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Jae Yun Lim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Jeong-Ah Seo
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Wang Q, Zhang K, Yu L, Lin Q, Zhou W. Volatile Organic Compounds Produced by Bacillus sp. Strain R2 Inhibit Aspergillus flavus Growth In Vitro and in Unhulled Rice. Foods 2024; 13:2898. [PMID: 39335827 PMCID: PMC11431171 DOI: 10.3390/foods13182898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Volatile organic compounds (VOCs) produced by Bacillus species exhibit biocontrol activity against fungal pathogens of fruits and vegetables. However, research on the effect of VOCs on Aspergillus flavus in stored grains is limited. This study aimed to investigate the effects of VOCs extracted from the strain R2, which was isolated from unhulled rice and identified as Bacillus paramycoides on A. flavus in vitro and unhulled rice. R2 VOCs effectively inhibited conidial germination and the hyphal growth of A. flavus in vitro. Moreover, R2 VOCs reduced the fungal population, aflatoxin B1 (AFB1) levels, and free fatty acid (FFA) value by 90.8%, 67%, and 38.7%, respectively, in unhulled rice. Eighteen R2 VOCs were identified using headspace solid-phase micro-extraction gas chromatography-mass spectrometry, and the individual activity of the VOCs against A. flavus was tested in vitro. Benzaldehyde (Ben) and 3,7-dimethyl-1-octanol (Dmo) showed strong inhibitory activities against A. flavus on PDA plates, with inhibition rates of 100% and 91.2%, respectively, at a concentration of 20 μL/dish. Ben at the concentration of 0.09 mg/mL, Dmo at the concentration of 0.07 mg/mL, or a mixture of both at halved concentrations could reduce the fungal population, AFB1 levels, and FFA content in unhulled rice. Our findings suggest that R2 VOCs are good alternatives to traditional chemical fumigants for suppressing A. flavus in stored grains. However, further research is necessary to establish the optimal fumigation concentration of these two components in unhulled rice. The impact of their residues on grain quality should be explored through sensory evaluation and nutritional analysis, and their safety to the environment and human body should be evaluated through safety assessment.
Collapse
Affiliation(s)
- Qingyun Wang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (K.Z.); (L.Y.); (Q.L.); (W.Z.)
- National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha 410004, China
| | - Kaige Zhang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (K.Z.); (L.Y.); (Q.L.); (W.Z.)
| | - Lu Yu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (K.Z.); (L.Y.); (Q.L.); (W.Z.)
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (K.Z.); (L.Y.); (Q.L.); (W.Z.)
- National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha 410004, China
| | - Wenhua Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (K.Z.); (L.Y.); (Q.L.); (W.Z.)
- National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha 410004, China
| |
Collapse
|
3
|
Mannaa M, Mansour A, Park I, Lee DW, Seo YS. Insect-based agri-food waste valorization: Agricultural applications and roles of insect gut microbiota. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100287. [PMID: 37333762 PMCID: PMC10275724 DOI: 10.1016/j.ese.2023.100287] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Meeting the demands of the growing population requires increased food and feed production, leading to higher levels of agri-food waste. As this type of waste seriously threatens public health and the environment, novel approaches to waste management should be developed. Insects have been proposed as efficient agents for biorefining waste, producing biomass that can be used for commercial products. However, challenges in achieving optimal outcomes and maximizing beneficial results remain. Microbial symbionts associated with insects are known to have a critical role in the development, fitness, and versatility of insects, and as such, they can be utilized as targets for the optimization of agri-food waste insect-based biorefinery systems. This review discusses insect-based biorefineries, focusing on the agricultural applications of edible insects, mainly as animal feed and organic fertilizers. We also describe the interplay between agri-food waste-utilizing insects and associated microbiota and the microbial contribution in enhancing insect growth, development, and involvement in organic waste bioconversion processes. The potential contribution of insect gut microbiota in eliminating pathogens, toxins, and pollutants and microbe-mediated approaches for enhancing insect growth and the bioconversion of organic waste are also discussed. The present review outlines the benefits of using insects in agri-food and organic waste biorefinery systems, describes the roles of insect-associated microbial symbionts in waste bioconversion processes, and highlights the potential of such biorefinery systems in addressing the current agri-food waste-related challenges.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
- Department of Plant Pathology, Cairo University, Faculty of Agriculture, Giza, 12613, Egypt
| | - Abdelaziz Mansour
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Inmyoung Park
- School of Food and Culinary Arts, Youngsan University, Bansong Beltway, Busan, 48015, Republic of Korea
| | - Dae-Weon Lee
- Department of SmartBio, Kyungsung University, Busan, 48434, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
4
|
Tang X, Cai YF, Yu XM, Zhou WW. Detoxification of aflatoxin B1 by Bacillus aryabhattai through conversion of double bond in terminal furan. J Appl Microbiol 2023; 134:lxad192. [PMID: 37634085 DOI: 10.1093/jambio/lxad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/07/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
AIMS This study aimed to screen a bacterial strain with high detoxifying capability for aflatoxin B1 (AFB1), verify its biotransformation efficiency, and detoxification process. METHODS AND RESULTS A total of 350 samples collected from different environmental niche were screened using coumarin as the sole carbon source. High Performance Liquid Chromatography (HPLC) was used to detect residues of AFB1, and 16S rRNA sequencing was performed on the isolated strain with the highest AFB1 removal ratio for identification. The detoxified products of this strain were tested for toxicity in Escherichia coli as well as LO2, Caco-2, and HaCaT human cell lines. HPLC-MS was applied to further confirm the AFB1 removal and detoxification process. CONCLUSIONS We identified a strain from plant leaf designated as DT with high AFB1-detoxifying ability that is highly homologous to Bacillus aryabhattai. The optimum detoxification conditions of this strain were 37°C and pH 8.0, resulting in 82.92% removal ratio of 2 μg mL-1 AFB1 in 72 h. The detoxified products were nontoxic for E. coli and significantly less toxic for the LO2, Caco-2, and HaCaT human cell lines. HPLC-MS analysis also confirmed the significant drop of the AFB1 characteristic peak. Two possible metabolic products, C19H15O8 (m/z 371) and C19H19O8 (m/z 375), were observed by mass spectrometry. Potential biotransformation pathway was based on the cleavage of double bond in the terminal furan of AFB1. These generated components had different chemical structures with AFB1, manifesting that the attenuation of AFB1 toxicity would be attributed to the destruction of lactone structure of AFB1 during the conversion process.
Collapse
Affiliation(s)
- Xi Tang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yi-Fan Cai
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiao-Mei Yu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wen-Wen Zhou
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
5
|
Zhang J, Tang X, Cai Y, Zhou WW. Mycotoxin Contamination Status of Cereals in China and Potential Microbial Decontamination Methods. Metabolites 2023; 13:metabo13040551. [PMID: 37110209 PMCID: PMC10143121 DOI: 10.3390/metabo13040551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The presence of mycotoxins in cereals can pose a significant health risk to animals and humans. China is one of the countries that is facing cereal contamination by mycotoxins. Treating mycotoxin-contaminated cereals with established physical and chemical methods can lead to negative effects, such as the loss of nutrients, chemical residues, and high energy consumption. Therefore, microbial detoxification techniques are being considered for reducing and treating mycotoxins in cereals. This paper reviews the contamination of aflatoxins, zearalenone, deoxynivalenol, fumonisins, and ochratoxin A in major cereals (rice, wheat, and maize). Our discussion is based on 8700 samples from 30 provincial areas in China between 2005 and 2021. Previous research suggests that the temperature and humidity in the highly contaminated Chinese cereal-growing regions match the growth conditions of potential antagonists. Therefore, this review takes biological detoxification as the starting point and summarizes the methods of microbial detoxification, microbial active substance detoxification, and other microbial inhibition methods for treating contaminated cereals. Furthermore, their respective mechanisms are systematically analyzed, and a series of strategies for combining the above methods with the treatment of contaminated cereals in China are proposed. It is hoped that this review will provide a reference for subsequent solutions to cereal contamination problems and for the development of safer and more efficient methods of biological detoxification.
Collapse
Affiliation(s)
- Jing Zhang
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xi Tang
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yifan Cai
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Wen-Wen Zhou
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Green and sustainable technologies for the decontamination of fungi and mycotoxins in rice: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Mohammadi Shad Z, Venkitasamy C, Atungulu GG. Fungi and Mycotoxin in Rice: Concerns, Causes, and Prevention Strategies. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Scholtz V, Jirešová J, Šerá B, Julák J. A Review of Microbial Decontamination of Cereals by Non-Thermal Plasma. Foods 2021; 10:foods10122927. [PMID: 34945478 PMCID: PMC8701285 DOI: 10.3390/foods10122927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 01/20/2023] Open
Abstract
Cereals, an important food for humans and animals, may carry microbial contamination undesirable to the consumer or to the next generation of plants. Currently, non-thermal plasma (NTP) is often considered a new and safe microbicidal agent without or with very low adverse side effects. NTP is a partially or fully ionized gas at room temperature, typically generated by various electric discharges and rich in reactive particles. This review summarizes the effects of NTP on various types of cereals and products. NTP has undisputed beneficial effects with high potential for future practical use in decontamination and disinfection.
Collapse
Affiliation(s)
- Vladimír Scholtz
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
| | - Jana Jirešová
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic;
- Correspondence:
| | - Božena Šerá
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Jaroslav Julák
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 7, 128 00 Prague, Czech Republic;
| |
Collapse
|
9
|
Moore GG. Practical considerations will ensure the continued success of pre-harvest biocontrol using non-aflatoxigenic Aspergillus flavus strains. Crit Rev Food Sci Nutr 2021; 62:4208-4225. [PMID: 33506687 DOI: 10.1080/10408398.2021.1873731] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is an important reason for the accelerated use of non-aflatoxigenic Aspergillus flavus to mitigate pre-harvest aflatoxin contamination… it effectively addresses the imperative need for safer food and feed. Now that we have decades of proof of the effectiveness of A. flavus as biocontrol, it is time to improve several aspects of this strategy. If we are to continue relying heavily on this form of aflatoxin mitigation, there are considerations we must acknowledge, and actions we must take, to ensure that we are best wielding this strategy to our advantage. These include its: (1) potential to produce other mycotoxins, (2) persistence in the field in light of several ecological factors, (3) its reproductive and genetic stability, (4) the mechanism(s) employed that allow it to elicit control over aflatoxigenic strains and species of agricultural importance and (5) supplemental alternatives that increase its effectiveness. There is a need to be consistent, practical and thoughtful when it comes to implementing this method of mycotoxin mitigation since these fungi are living organisms that have been adapting, evolving and surviving on this planet for tens-of-millions of years. This document will serve as a critical review of the literature regarding pre-harvest A. flavus biocontrol and will discuss opportunities for improvements.
Collapse
Affiliation(s)
- Geromy G Moore
- United States Department of Agriculture, Agricultural Research Service, New Orleans, USA
| |
Collapse
|
10
|
Liu Y, Galani Yamdeu JH, Gong YY, Orfila C. A review of postharvest approaches to reduce fungal and mycotoxin contamination of foods. Compr Rev Food Sci Food Saf 2020; 19:1521-1560. [DOI: 10.1111/1541-4337.12562] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/07/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Yue Liu
- Nutritional Science and Epidemiology Group, School of Food Science and NutritionUniversity of Leeds Leeds UK
| | - Joseph Hubert Galani Yamdeu
- Nutritional Science and Epidemiology Group, School of Food Science and NutritionUniversity of Leeds Leeds UK
| | - Yun Yun Gong
- Nutritional Science and Epidemiology Group, School of Food Science and NutritionUniversity of Leeds Leeds UK
| | - Caroline Orfila
- Nutritional Science and Epidemiology Group, School of Food Science and NutritionUniversity of Leeds Leeds UK
| |
Collapse
|
11
|
Zhu G, Liu H, Xie Y, Liao Q, Lin Y, Liu Y, Liu Y, Xiao H, Gao Z, Hu S. Postharvest Processing and Storage Methods for Camellia oleifera Seeds. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1649688] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Guangfei Zhu
- College of Engineering, China Agricultural University, Beijing, China
| | - Hai Liu
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Yucen Xie
- College of Engineering, China Agricultural University, Beijing, China
| | - Qian Liao
- College of Engineering, China Agricultural University, Beijing, China
| | - Yawen Lin
- College of Engineering, China Agricultural University, Beijing, China
| | - Yanhong Liu
- College of Engineering, China Agricultural University, Beijing, China
| | - Yunhua Liu
- Grain and Oil Quality Supervision and Inspection Station, Ganzhou Agricultural Grain Bureau, Ganzhou, China
| | - Hongwei Xiao
- College of Engineering, China Agricultural University, Beijing, China
| | - Zhenjiang Gao
- College of Engineering, China Agricultural University, Beijing, China
| | - Shuzhen Hu
- Oil and Fat Equipment Research Institute, Chinese Academy of Agricultural Mechanization Sciences, Beijing, China
| |
Collapse
|
12
|
Zhou Y, Wang J, Gao X, Wang K, Wang W, Wang Q, Yan P. Isolation of a novel deep-sea Bacillus circulus strain and uniform design for optimization of its anti-aflatoxigenic bioactive metabolites production. Bioengineered 2019; 10:13-22. [PMID: 30836830 PMCID: PMC6527075 DOI: 10.1080/21655979.2019.1586055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The deep-sea bacterium strain FA13 was isolated from the sediment of the South Atlantic Ocean and identified as Bacillus circulans based on 16S ribosomal DNA sequence. Through liquid fermentation with five media, the cell-free supernatant fermented with ISP2 showed the highest inhibition activities against mycelial growth of Aspergillus parasiticus mutant strain NFRI-95 and accumulation of norsolorinic acid, a precursor for aflatoxin production. Based on ISP2, uniform design was used to optimize medium formula and fermentation conditions. After optimization, the inhibition efficacy of the 20-time diluted supernatant against A. parasiticus NFRI-95 mycelial growth and aflatoxin production was increased from 0–23.1% to 100%. Moreover, compared to the original protocol, medium cost and fermentation temperature were significantly reduced, and dependence on seawater was completely relieved, thus preventing the fermentor from corrosion. This is the first report of a deep-sea microorganism which can inhibit A. parasiticus NFRI-95 mycelial growth and aflatoxin production.
Collapse
Affiliation(s)
- Ying Zhou
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , Shandong , China.,b Key Laboratory of Marine Biogenetic Resources , Third Institute of Oceanography, State Oceanic Administration , Xiamen , China
| | - Jingying Wang
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , Shandong , China
| | - Xiujun Gao
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , Shandong , China
| | - Kai Wang
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , Shandong , China
| | - Wenwei Wang
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , Shandong , China
| | - Qi Wang
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , Shandong , China
| | - Peisheng Yan
- a School of Marine Science and Technology , Harbin Institute of Technology , Weihai , Shandong , China
| |
Collapse
|
13
|
Gonçalves A, Gkrillas A, Dorne JL, Dall'Asta C, Palumbo R, Lima N, Battilani P, Venâncio A, Giorni P. Pre- and Postharvest Strategies to Minimize Mycotoxin Contamination in the Rice Food Chain. Compr Rev Food Sci Food Saf 2019; 18:441-454. [PMID: 33336939 DOI: 10.1111/1541-4337.12420] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/10/2023]
Abstract
Rice is part of many people's diet around the world, being the main energy source in some regions. Although fewer reports exist on the occurrence of mycotoxins in rice compared to other cereals, fungal contamination and the associated production of toxic metabolites, even at lower occurrence levels compared to other crops, are of concern because of the high consumption of rice in many countries. Due to the diversity of fungi that may contaminate the rice food chain, the co-occurrence of mycotoxins is frequent. Specific strategies to overcome these problems may be applied at the preharvest part of the crop chain, while assuring good practices at harvest and postharvest stages, since different fungi may find suitable conditions to grow at the various stages of the production chain. Therefore, the aim of this review is to present the state-of-the-art knowledge on such strategies in an integrated way, from the field to the final products, to reduce mycotoxin contamination in rice.
Collapse
Affiliation(s)
- A Gonçalves
- CEB - Centre of Biological Engineering, Univ. of Minho, 4710-057, Braga, Portugal
| | - A Gkrillas
- Univ. degli studi di Parma, Via Università 12, 43121, Parma, Italy
| | - J L Dorne
- European Food Safety Authority (EFSA), Via Carlo Magno 1A, 43126, Parma, Italy
| | - C Dall'Asta
- Univ. degli studi di Parma, Via Università 12, 43121, Parma, Italy
| | - R Palumbo
- Faculty of Agriculture, Univ. Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29100, Piacenza, Italy
| | - N Lima
- CEB - Centre of Biological Engineering, Univ. of Minho, 4710-057, Braga, Portugal
| | - P Battilani
- Faculty of Agriculture, Univ. Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29100, Piacenza, Italy
| | - A Venâncio
- CEB - Centre of Biological Engineering, Univ. of Minho, 4710-057, Braga, Portugal
| | - P Giorni
- Faculty of Agriculture, Univ. Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29100, Piacenza, Italy
| |
Collapse
|
14
|
Mannaa M, Kim KD. Effect of Temperature and Relative Humidity on Growth of Aspergillus and Penicillium spp. and Biocontrol Activity of Pseudomonas protegens AS15 against Aflatoxigenic Aspergillus flavus in Stored Rice Grains. MYCOBIOLOGY 2018; 46:287-295. [PMID: 30294490 PMCID: PMC6171444 DOI: 10.1080/12298093.2018.1505247] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
In this study, we evaluated the effect of different temperatures (10, 20, 30, and 40 °C) and relative humidities (RHs; 12, 44, 76, and 98%) on populations of predominant grain fungi (Aspergillus candidus, Aspergillus flavus, Aspergillus fumigatus, Penicillium fellutanum, and Penicillium islandicum) and the biocontrol activity of Pseudomonas protegens AS15 against aflatoxigenic A. flavus KCCM 60330 in stored rice. Populations of all the tested fungi in inoculated rice grains were significantly enhanced by both increased temperature and RH. Multiple linear regression analysis revealed that one unit increase of temperature resulted in greater effects than that of RH on fungal populations. When rice grains were treated with P. protegens AS15 prior to inoculation with A. flavus KCCM 60330, fungal populations and aflatoxin production in the inoculated grains were significantly reduced compared with the grains untreated with strain AS15 regardless of temperature and RH (except 12% RH for fungal population). In addition, bacterial populations in grains were significantly enhanced with increasing temperature and RH, regardless of bacterial treatment. Higher bacterial populations were detected in biocontrol strain-treated grains than in untreated control grains. To our knowledge, this is the first report showing consistent biocontrol activity of P. protegens against A. flavus population and aflatoxin production in stored rice grains under various environmental conditions of temperature and RH.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Laboratory of Plant Disease and Biocontrol, Department of Biosystems and Biotechnology, Korea University, Seoul, South Korea
| | - Ki Deok Kim
- Laboratory of Plant Disease and Biocontrol, Department of Biosystems and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
15
|
Mannaa M, Kim KD. Biocontrol Activity of Volatile-Producing Bacillus megaterium and Pseudomonas protegens Against Aspergillus and Penicillium spp. Predominant in Stored Rice Grains: Study II. MYCOBIOLOGY 2018; 46:52-63. [PMID: 29998033 PMCID: PMC6037079 DOI: 10.1080/12298093.2018.1454015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 05/13/2023]
Abstract
In our previous studies, Bacillus megaterium KU143, Microbacterium testaceum KU313, and Pseudomonas protegens AS15 have been shown to be antagonistic to Aspergillus flavus in stored rice grains. In this study, the biocontrol activities of these strains were evaluated against Aspergillus candidus, Aspergillus fumigatus, Penicillium fellutanum, and Penicillium islandicum, which are predominant in stored rice grains. In vitro and in vivo antifungal activities of the bacterial strains were evaluated against the fungi on media and rice grains, respectively. The antifungal activities of the volatiles produced by the strains against fungal development and population were also tested using I-plates. In in vitro tests, the strains produced secondary metabolites capable of reducing conidial germination, germ-tube elongation, and mycelial growth of all the tested fungi. In in vivo tests, the strains significantly inhibited the fungal growth in rice grains. Additionally, in I-plate tests, strains KU143 and AS15 produced volatiles that significantly inhibited not only mycelial growth, sporulation, and conidial germination of the fungi on media but also fungal populations on rice grains. GC-MS analysis of the volatiles by strains KU143 and AS15 identified 12 and 17 compounds, respectively. Among these, the antifungal compound, 5-methyl-2-phenyl-1H-indole, was produced by strain KU143 and the antimicrobial compounds, 2-butyl 1-octanal, dimethyl disulfide, 2-isopropyl-5-methyl-1-heptanol, and 4-trifluoroacetoxyhexadecane, were produced by strain AS15. These results suggest that the tested strains producing extracellular metabolites and/or volatiles may have a broad spectrum of antifungal activities against the grain fungi. In particular, B. megaterium KU143 and P. protegens AS15 may be potential biocontrol agents against Aspergillus and Penicillium spp. during rice grain storage.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Laboratory of Plant Disease and Biocontrol, Department of Biosystems and Biotechnology, Korea University, Seoul, South Korea
| | - Ki Deok Kim
- Laboratory of Plant Disease and Biocontrol, Department of Biosystems and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
16
|
Mannaa M, Kim KD. Influence of Temperature and Water Activity on Deleterious Fungi and Mycotoxin Production during Grain Storage. MYCOBIOLOGY 2017; 45:240-254. [PMID: 29371792 PMCID: PMC5780356 DOI: 10.5941/myco.2017.45.4.240] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/11/2017] [Indexed: 05/05/2023]
Abstract
Cereal grains are the most important food source for humans. As the global population continues to grow exponentially, the need for the enhanced yield and minimal loss of agricultural crops, mainly cereal grains, is increasing. In general, harvested grains are stored for specific time periods to guarantee their continuous supply throughout the year. During storage, economic losses due to reduction in quality and quantity of grains can become very significant. Grain loss is usually the result of its deterioration due to fungal contamination that can occur from preharvest to postharvest stages. The deleterious fungi can be classified based on predominance at different stages of crop growth and harvest that are affected by environmental factors such as water activity (aw) and eco-physiological requirements. These fungi include species such as those belonging to the genera Aspergillus and Penicillium that can produce mycotoxins harmful to animals and humans. The grain type and condition, environment, and biological factors can also influence the occurrence and predominance of mycotoxigenic fungi in stored grains. The main environmental factors influencing grain fungi and mycotoxins are temperature and aw. This review discusses the effects of temperature and aw on fungal growth and mycotoxin production in stored grains. The focus is on the occurrence and optimum and minimum growth requirements for grain fungi and mycotoxin production. The environmental influence on aflatoxin production and hypothesized mechanisms of its molecular suppression in response to environmental changes are also discussed. In addition, the use of controlled or modified atmosphere as an environmentally safe alternative to harmful agricultural chemicals is discussed and recommended future research issues are highlighted.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Laboratory of Plant Disease and Biocontrol, Department of Biosystems and Biotechnology, Korea University, Seoul 02841, Korea
| | - Ki Deok Kim
- Laboratory of Plant Disease and Biocontrol, Department of Biosystems and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
17
|
Mannaa M, Oh JY, Kim KD. Biocontrol Activity of Volatile-Producing Bacillus megaterium and Pseudomonas protegens against Aspergillus flavus and Aflatoxin Production on Stored Rice Grains. MYCOBIOLOGY 2017; 45:213-219. [PMID: 29138628 PMCID: PMC5673519 DOI: 10.5941/myco.2017.45.3.213] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 05/09/2023]
Abstract
In our previous study, three bacterial strains, Bacillus megaterium KU143, Microbacterium testaceum KU313, and Pseudomonas protegens AS15, were selected as effective biocontrol agents against Aspergillus flavus on stored rice grains. In this study, we evaluated the inhibitory effects of the volatiles produced by the strains on A. flavus growth and aflatoxin production on stored rice grains. The three strains significantly reduced mycelial growth of A. flavus in dual-culture assays compared with the negative control strain, Sphingomonas aquatilis KU408, and an untreated control. Of these tested strains, volatiles produced by B. megaterium KU143 and P. protegens AS15 markedly inhibited mycelial growth, sporulation, and conidial germination of A. flavus on agar medium and suppressed the fungal populations in rice grains. Moreover, volatiles produced by these two strains significantly reduced aflatoxin production in the rice grains by A. flavus. To our knowledge, this is the first report of the suppression of A. flavus aflatoxin production in rice grains using B. megaterium and P. protegens volatiles.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Laboratory of Plant Disease and Biocontrol, Department of Biosystems and Biotechnology, Korea University, Seoul 02841, Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul 02841, Korea
| | - Ji Yeon Oh
- Laboratory of Plant Disease and Biocontrol, Department of Biosystems and Biotechnology, Korea University, Seoul 02841, Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul 02841, Korea
| | - Ki Deok Kim
- Laboratory of Plant Disease and Biocontrol, Department of Biosystems and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
18
|
Zhu Y, Hassan YI, Lepp D, Shao S, Zhou T. Strategies and Methodologies for Developing Microbial Detoxification Systems to Mitigate Mycotoxins. Toxins (Basel) 2017; 9:E130. [PMID: 28387743 PMCID: PMC5408204 DOI: 10.3390/toxins9040130] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 02/01/2023] Open
Abstract
Mycotoxins, the secondary metabolites of mycotoxigenic fungi, have been found in almost all agricultural commodities worldwide, causing enormous economic losses in livestock production and severe human health problems. Compared to traditional physical adsorption and chemical reactions, interest in biological detoxification methods that are environmentally sound, safe and highly efficient has seen a significant increase in recent years. However, researchers in this field have been facing tremendous unexpected challenges and are eager to find solutions. This review summarizes and assesses the research strategies and methodologies in each phase of the development of microbiological solutions for mycotoxin mitigation. These include screening of functional microbial consortia from natural samples, isolation and identification of single colonies with biotransformation activity, investigation of the physiological characteristics of isolated strains, identification and assessment of the toxicities of biotransformation products, purification of functional enzymes and the application of mycotoxin decontamination to feed/food production. A full understanding and appropriate application of this tool box should be helpful towards the development of novel microbiological solutions on mycotoxin detoxification.
Collapse
Affiliation(s)
- Yan Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Yousef I Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Suqin Shao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| |
Collapse
|
19
|
Nesci A, Passone MA, Barra P, Girardi N, García D, Etcheverry M. Prevention of aflatoxin contamination in stored grains using chemical strategies. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|