1
|
Ameen F, Alsarraf MJ, Stephenson SL. Bioremediation petroleum wastewater and oil-polluted soils by the non-toxigenic indigenous fungi. World J Microbiol Biotechnol 2024; 40:336. [PMID: 39358660 DOI: 10.1007/s11274-024-04146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Soil and wastewater samples contaminated by petroleum-related industries were collected from various locations in Saudi Arabia, a country known for its vast oil reserves. The samples were analyzed for their physicochemical properties, including the presence of metals, petroleum hydrocarbons, and aromatic compounds. A total of 264 fungal isolates were analyzed and categorized into eight groups of Aspergillus (194 isolates) and four groups of Penicillium (70 isolates). The potential of these fungal groups to grow in oil or its derivatives was investigated. Two isolates, Aspergillus tubingensis FA-KSU5 and A. niger FU-KSU69, were utilized in two remediation experiments-one targeting wastewater and the other focusing on polluted soil. The FA-KSU5 strain demonstrated complete removal of Fe3+, As3+, Cr6+, Zn2+, Mn2+, Cu2+ and Cd2+, with bioremediation efficiency for petroleum hydrocarbons in the wastewater from these sites ranging between 90.80 and 98.58%. Additionally, the FU-KSU69 strain achieved up to 100% reduction of Co2+, Ba2+, B3+, V+, Ni2+, Pb2+ and Hg2+, with removal efficiency ranging from 93.17 to 96.02% for aromatic hydrocarbons after 180 min of wastewater treatment. After 21 days of soil incubation with Aspergillus tubingensis FA-KSU5, there was a 93.15% to 98.48% reduction in total petroleum hydrocarbons (TPHs) and an 88.11% to 97.31% decrease in polycyclic aromatic hydrocarbons (PAHs). This strain exhibited the highest removal rates for Cd2+ and As3+ followed by Fe3+, Zn2+, Cr6+, Se4+ and Cu2+. Aspergillus niger FU-KSU69 achieved a 90.37% to 94.90% reduction in TPHs and a 95.13% to 98.15% decrease in PAHs, with significant removal of Ni2+, Pb2+ and Hg2+, followed by Co2+, V+, Ba2+ and B3+. The enzymatic activity in the treated soils increased by 1.54- to 3.57-fold compared to the polluted soil. Although the mixture of wastewater and polluted soil exhibited high cytotoxicity against normal human cell lines, following mycoremediation, all treated soils and effluents with the dead fungal biomass showed no toxicity against normal human cell lines at concentrations up to 500 µL/mL, with IC50 values ≥ 1000 µL/mL. SEM and IR analysis revealed morphological and biochemical alterations in the biomass of A. tubingensis FA-KSU5 and A. niger FA-KSU69 when exposed to petroleum effluents. This study successfully introduces non-toxigenic and environmentally friendly fungal strains play a crucial role in the bioremediation of contaminated environments. Both strains serve as low-cost and effective adsorbents for bio-remediating petroleum wastewater and oil-contaminated soil. Heavy metals and hydrocarbons, the primary pollutants, were either completely removed or reduced to permissible levels according to international guidelines using the dead biomass of FA-KSU5 and FA-KSU69 fungi. Consequently, the environments associated with this globally significant industry are rendered biologically safe, particularly for humans, as evidenced by the absence of cytotoxicity in samples treated with A. tubingensis FA-KSU5 and A. niger FA-KSU69 on various human cell types.
Collapse
Affiliation(s)
- Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad J Alsarraf
- Department of Science, College of Basic Education, The Public Authority of Applied Education and Training (PAAET), P.O. Box 23167, 13092, Safat, Kuwait
| | - Steven L Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
2
|
Parasnis M, Deng E, Yuan M, Lin H, Kordas K, Paltseva A, Frimpong Boamah E, Judelsohn A, Nalam PC. Heavy Metal Remediation by Dry Mycelium Membranes: Approaches to Sustainable Lead Remediation in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6317-6329. [PMID: 38483835 PMCID: PMC10977094 DOI: 10.1021/acs.langmuir.3c03811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/27/2024]
Abstract
Lead contamination poses significant and lasting health risks, particularly in children. This study explores the efficacy of dried mycelium membranes, distinct from live fungal biomass, for the remediation of lead (Pb(II)) in water. Dried mycelium offers unique advantages, including environmental resilience, ease of handling, biodegradability, and mechanical reliability. The study explores Pb(II) removal mechanisms through sorption and mineralization by dried mycelium hyphae in aqueous solutions. The sorption isotherm studies reveal a high Pb(II) removal efficiency, exceeding 95% for concentrations below 1000 ppm and ∼63% above 1500 ppm, primarily driven by electrostatic interactions. The measured infrared peak shifts and the pseudo-second-order kinetics for sorption suggests a correlation between sorption capacity and the density of interacting functional groups. The study also explores novel surface functionalization of the mycelium network with phosphate to enhance Pb(II) removal, which enables remediation efficiencies >95% for concentrations above 1500 ppm. Scanning electron microscopy images show a pH-dependent formation of Pb-based crystals uniformly deposited throughout the entire mycelium network. Continuous cross-flow filtration tests employing a dried mycelium membrane demonstrate its efficacy as a microporous membrane for Pb(II) removal, reaching remediation efficiency of 85-90% at the highest Pb(II) concentrations. These findings suggest that dried mycelium membranes can be a viable alternative to synthetic membranes in heavy metal remediation, with potential environmental and water treatment applications.
Collapse
Affiliation(s)
- Mruganka
Sandip Parasnis
- Department
of Materials Design and Innovation, University
at Buffalo, Buffalo, New York 14203, United States
| | - Erda Deng
- Department
of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14203, United States
| | - Mengqi Yuan
- Department
of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14203, United States
| | - Haiqing Lin
- Department
of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14203, United States
| | - Katarzyna Kordas
- Department
of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York 14214, United States
| | - Anna Paltseva
- School
of Geosciences, University of Louisiana,104 East University Avenue, Lafayette, Louisiana 70504, United States
| | - Emmanuel Frimpong Boamah
- Department
of Urban and Regional Planning, University
at Buffalo, Buffalo, New York 14214, United States
| | - Alexandra Judelsohn
- Department
of Urban and Regional Planning, University
at Buffalo, Buffalo, New York 14214, United States
| | - Prathima C. Nalam
- Department
of Materials Design and Innovation, University
at Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
3
|
Zhou YH, Huang WX, Nie ZY, Liu HC, Liu Y, Wang C, Xia JL, Shu WS. Fe/S oxidation-coupled arsenic speciation transformation mediated by AMD enrichment culture under different pH conditions. J Environ Sci (China) 2024; 137:681-700. [PMID: 37980051 DOI: 10.1016/j.jes.2023.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 11/20/2023]
Abstract
Arsenic (As) speciation transformation in acid mine drainage (AMD) is comprehensively affected by biological and abiotic factors, such as microbially mediated Fe/S redox reactions and changes in environmental conditions (pH and oxidation-reduction potential). However, their combined impacts on arsenic speciation transformation remain poorly studied. Therefore, we explored arsenic transformation and immobilization during pyrite dissolution mediated by AMD enrichment culture under different acidic pH conditions. The results for incubation and mineralogical transformation of solid residues show that in the presence of AMD enrichment culture, pH 2.0, 2.5, and 3.0 are more conducive to the formation of jarosites and ferric arsenate, which could immobilize high quantities of dissolved arsenic by adsorption and coprecipitation. The pH conditions significantly affect the initial adsorption of microbial cells to the minerals and the evolution of microbial community structure, further influencing the biodissolution of pyrite and the release and oxidation process of Fe/S. The results of Fe/S/As speciation transformation of the solid residues show that the transformation of Fe, S, and As in solution is mainly regulated by pH and potential values, which imposed significantly different effects on the formation of secondary minerals and thus arsenic oxidation and immobilization. The above results indicated that arsenic transformation is closely related to the Fe/S oxidation associated with pyrite bio-oxidation, and this correlation is critically regulated by the pH conditions of the system.
Collapse
Affiliation(s)
- Yu-Hang Zhou
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Wei-Xi Huang
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Zhen-Yuan Nie
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Hong-Chang Liu
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Yue Liu
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Can Wang
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jin-Lan Xia
- Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
4
|
El-Gendy MMAA, Abdel-Moniem SM, Ammar NS, El-Bondkly AMA. Bioremoval of heavy metals from aqueous solution using dead biomass of indigenous fungi derived from fertilizer industry effluents: isotherm models evaluation and batch optimization. Biometals 2023; 36:1307-1329. [PMID: 37428423 PMCID: PMC10684411 DOI: 10.1007/s10534-023-00520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
The present work investigated the utilization of dead biomass of the highly multi-heavy metals tolerant indigenous fungal strain NRCA8 isolated from the mycobiome of fertilizer industry effluents that containing multiple heavy metal ions at high levels to remove Pb2+, Ni2+, Zn2+, and Mn2+ as multiple solutes from multi-metals aqueous solutions for the first time. Based on morphotype, lipotype and genotype characteristics, NRCA8 was identified as Cladosporium sp. NRCA8. The optimal conditions for the bioremoval procedure in the batch system were pH 5.5 for maximum removal (91.30%, 43.25%, and 41.50%) of Pb2+, Zn2+ and Mn2+ but pH 6.0 supported the maximum bioremoval and uptake of Ni2+ (51.60% and 2.42 mg/g) by NRCA8 dead biomass from the multi-metals aqueous solution, respectively. The 30 min run time supported the highest removal efficiency and uptake capacity of all heavy metals under study. Moreover, the equilibrium between the sorbent NRCA8 fungal biomass and sorbates Ni2+, Pb2+ and Zn2+ was attained after increasing the dead biomass dose to 5.0 g/L. Dead NRCA8 biomass was described by scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform infrared spectrometer before and after biosorption of Pb2+, Ni2+, Zn2+ and Mn2+ under multiple metals system. The Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich isotherms were applied to characterize the adsorption equilibrium between Pb2+, Ni2+, Mn2+ and Zn2+ and the adsorbent NRCA8. By comparing the obtained coefficient of regression (R2) by Freundlich (0.997, 0.723, 0.999, and 0.917), Langmiur (0.974, 0.999, 0.974, and 0.911) and Dubinin-Radushkevich (0.9995, 0.756, 0.9996 and 0.900) isotherms values for Pb2+, Zn2+, Ni2+ and Mn2+ adsorption, respectively, it was found that the isotherms are proper in their own merits in characterization the possible of NRCA8 for removal of Pb2+, Zn2+, Ni2+ and Mn2+. DKR isotherm is the best for Pb2+ and Ni2+ (0.9995 and 0.9996) while Langmiur isotherm giving a good fit to the Zn2+ sorption (0.9990) as well as Freundlich isotherm giving a good fit to the Mn2+ sorption (0.9170). The efficiencies of Cladosporium sp. NRCA8 dead biomass for bioremoval of heavy metals from real wastewater under the optimized conditions were Pb2+, Ag+, Mn2+, Zn2+ and Al3+ ˃ Ni2+ ˃ Cr6+ ˃ Co2+ ˃ Fe3+ ˃ Cu2+ ˃ Cd2+. Dead NRCA8 biomass showed efficient ability to adsorb and reduce harmful components in the industrial effluents to a level acceptable for discharge into the environment.
Collapse
Affiliation(s)
| | - Shimaa M Abdel-Moniem
- Water Pollution Research Department, National Research Centre, El-Buhouth St., Dokki, 12622, Giza, Egypt
| | - Nabila S Ammar
- Water Pollution Research Department, National Research Centre, El-Buhouth St., Dokki, 12622, Giza, Egypt
| | | |
Collapse
|
5
|
El-Gendy MMAA, Abdel-Moniem SM, Ammar NS, El-Bondkly AMA. Multimetal bioremediation from aqueous solution using dead biomass of Mucor sp. NRCC6 derived from detergent manufacturing effluent. J Appl Genet 2023; 64:569-590. [PMID: 37407883 PMCID: PMC10457414 DOI: 10.1007/s13353-023-00765-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/14/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Among ten metal-tolerant fungal isolates obtained from the microbiomes of detergent industry effluent, Mucor sp. NRCC6 showed the highest tolerance and an adaptive behavior toward the heavy metals Ni2+, Pb2+, Mn2+, and Zn2+. It gave the highest growth rates 0.790 ± 0.59, 0.832 ± 0.32, 0.774 ± 0.40, and 0.741 ± 1.06 mm/h along with the lowest growth inhibition 9.19, 4.37, 11.04, and 14.83% in the presence of Pb2+, Zn2+, Ni2+, and Mn2+, respectively, at a concentration of 5.0 g/L. Then, Mucor sp. NRCC6 was selected as a biotrap for the removal of these heavy metals. The optimized operating conditions were detected to be pH 6.0 for Pb2+, Zn2+, and Mn2+ and pH 5.5 for Ni2+ at 30 °C; agitation speed 150 rpm; contact time 30 min for Mn2+ and Ni2+, 30-60 min for Pb2+, and 90-180 min for Zn2+; NRCC6 biomass dosage 5.0 g/L for Ni2+ and Pb2+ and 10.0 g/L for Mn2+ and Zn2+; and initial concentration 12 mg/L of each ion in the multimetal aqueous solutions. Under these optimized conditions, the adsorption capacity for Pb2+, Ni2+, Mn2+, and Zn2+ reached 98.75, 59.25, 58.33, and 50.83%. The Langmuir isotherm was the best for describing the adsorption of Zn2+ (0.970) and Mn2+ (0.977). The Freundlich isotherm significantly giving a good fit to the adsorption of Pb2+ (0.998) while the adsorption of Ni2+ onto NRCC6 biomass can follow DKR (0.998). Furthermore, the current study revealed that Mucor sp. NRCC6 fungus is a new efficient and eco-friendly method that revealed a maximum removal of 100% for Pb2+ and Zn2+ as well as 97.39, 88.70, 78.95, 74.0, 70.22, 68.57, and 60.0% for Ni2+, Mn2+, Cd2+, Cu2+, Fe3+, As2+, and Cr6+ from the industrial wastewater, respectively.
Collapse
Affiliation(s)
| | - Shimaa M Abdel-Moniem
- Water Pollution Research Department, National Research Centre, El-Buhouth St., Dokki, Giza, 12622, Egypt
| | - Nabila S Ammar
- Water Pollution Research Department, National Research Centre, El-Buhouth St., Dokki, Giza, 12622, Egypt
| | | |
Collapse
|
6
|
Ban Y, Tan J, Xiong Y, Mo X, Li W, Jia C, Ding Y, Xu Z. The responses and detoxification mechanisms of dark septate endophytes (DSE), Exophiala salmonis, to CuO nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13773-13787. [PMID: 36149553 DOI: 10.1007/s11356-022-23099-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
To understand the tolerance mechanisms of dark septate endophytes (DSE), Exophiala salmonis, to CuO nanoparticles (CuO-NPs) with different sizes (40 and 150 nm), we investigated the morphology, antioxidant response, Cu subcellular distribution, and the melanin gene expression in the mycelia of E. salmonis. E. salmonis was cultured in liquid and solid media under the stress of increasing CuO-NP concentrations (0, 50, 100, 150, and 250 mg/L). Results showed that (1) E. salmonis showed good CuO-NP tolerance, and the tolerance to CuO-NPs at 150 nm was stronger than that at 40 nm. A large number of agglomeration structures were observed on the mycelia surface with the exception of 50 mg/L CuO-NPs with a diameter of 150 nm. (2) CuO-NP stress significantly stimulated the production of antioxidant enzymes, particularly the CuO-NPs with small particle size (40 nm). (3) Cu uptaken by E. salmonis increased proportionally with the increase of CuO-NP concentration in the medium. More than 80% Cu was absorbed in cell wall of mycelia treated with a small particle size (40 nm). (4) FTIR analysis revealed that hydroxyl, amine, carboxyl, and phosphate groups were associated with CuO-NP binding regardless of particle size. (5) Fungal melanin content increased with the addition of CuO-NPs; the increase of melanin induced by CuO-NPs with small particle size (40 nm) was more significant. (6) The expression of 1,3,6,8-tetrahydroxynaphthalene reductase (Arp2) in the melanin synthesis pathway increased under the stress of CuO-NPs, and CuO-NPs with a small particle size (40 nm) caused a significant change in the expression level of Arp2 gene than those with a large particle size (150 nm). In conclusion, E. salmonis had a strong tolerance to CuO-NPs and mitigated the toxic effects of CuO-NPs through the antioxidant system, the expression of genes related to melanin synthesis, and the synthesis of melanin.
Collapse
Affiliation(s)
- Yihui Ban
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Jiayuan Tan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yang Xiong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Xiantong Mo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Wenxuan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Chenyue Jia
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Yiwen Ding
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, Hubei, China
| | - Zhouying Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, Hubei, China.
| |
Collapse
|
7
|
El-Bondkly AMA, El-Gendy MMAA. Bioremoval of some heavy metals from aqueous solutions by two different indigenous fungi Aspergillus sp. AHM69 and Penicillium sp. AHM96 isolated from petroleum refining wastewater. Heliyon 2022; 8:e09854. [PMID: 35815132 PMCID: PMC9260626 DOI: 10.1016/j.heliyon.2022.e09854] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/19/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022] Open
Abstract
Myco-remediation of heavy metals using indigenous fungi of different petroleum refining areas in Egypt was applied. Among the physicochemical parameters determined in these refineries effluents, the highest levels of heavy metals were recorded for the most toxic heavy metals Fe3+ and Co2+. The fungal isolates under the isolation codes AHM69 and AHM96 isolated from the mycobiome of Mostorod and Tanta refineries, respectively showed the best bioremoval efficiency toward heavy metals from the real wastewater mixture and polycyclic aromatic hydrocarbons from aqueous solutions. Based on phenotypic and genotypic analysis they were identified as Aspergillus sp. AHM69 and Penicillium sp. AHM96. The optimum conditions for the best bioremoval of Fe3+ and Co2+ from aqueous solutions by Aspergillus sp. AHM69 were live biomass, temperature 45–55 °C, pH 4.5–5.0, contact time 180 min, metal concentration equal to 1000 and 400 mg/L of Fe3+ and Co2+ with live fungal biomass dose of 0.5% and 0.4% with Fe3+ and Co2+, respectively. Concerning to the biomass of Penicillium sp. AHM96, the optimum operation conditions for the best removal of Fe3+ and Co2+ were 45 °C, pH 5.0 and 400 mg/L of Fe3+ with 1.0% biosorbent dosage or 1000 mg/L of Co2+ with 0.5% biosorbent dosage for 180 min as process time. Furthermore, FTIR analysis showed masking, shifting, creating and absenting of different functional groups in the fungal biomass surface of AHM96 and AHM69 strains in the presence of Fe3+ and Co2+ compared to unloaded biomasses. Microscopy with Energy Dispersive X-ray analysis (SEM-EDX) indicated that the removal of Fe3+ and Co2+ by fungi AHM69 and AHM96 was via biosorption and bioaccumulation on the biomass surface. Our results suggested that in the near future, fungal treatment is likely to outperform and replace other chemical and biological treatments in industrial wastewater treatment for oil refining.
Collapse
|
8
|
Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M. Lead (Pb) removal from contaminated water using constructed wetland planted with Scirpus grossus: Optimization using response surface methodology (RSM) and assessment of rhizobacterial addition. CHEMOSPHERE 2022; 291:132952. [PMID: 34798103 DOI: 10.1016/j.chemosphere.2021.132952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Lead (Pb) is one of the toxic heavy metals that pollute the environment as a result of industrial activities. This study aims to optimize Pb removal from water by using horizontal free surface flow constructed wetland (HFSFCW) planted with Scirpus grossus. Optimization was conducted using response surface methodology (RSM) under Box-Behnken design with the operational parameters of initial Pb concentration, retention time, and aeration. Optimization results showed that 37 mg/L of initial Pb concentration, 32 days of retention time, and no aeration were the optimum conditions for Pb removal by using the systems. Validation test was run under two different conditions, namely, non-bioaugmented and bioaugmented with rhizobacteria (Bacillus cereus, B. pumilus, B. subtilis, Brevibacillus choshinensis, and Rhodococcus rhodochrous). Results of the validation test showed that Pb removal in water achieved 99.99% efficiency with 0.2% error from the RSM prediction, while the adsorption of Pb by plants reached 5160.18 mg/kg with 10.6% error from the RSM prediction. The bioaugmentation of the five rhizobacterial species showed a slight improvement in Pb removal from water and Pb adsorption by plants. However, no significant improvement was achieved (p < 0.05). Overall results suggested that operating the HFSFCW under optimum conditions with no bioaugmentation might be a feasible choice for the treatment of Pb-contaminated water.
Collapse
Affiliation(s)
- Bieby Voijant Tangahu
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo, Surabaya, 60111, Indonesia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia.
| | - Hassan Basri
- Department of Civil and Structural Engineering, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Malaysia
| | - Mushrifah Idris
- Tasik Chini Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Malaysia
| | - Nurina Anuar
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Muhammad Mukhlisin
- Department of Civil Engineering, Politeknik Negeri Semarang, 50275, Semarang, Indonesia
| |
Collapse
|
9
|
Muñoz AJ, Espínola F, Ruiz E, Barbosa-Dekker AM, Dekker RFH, Castro E. Biosorption mechanisms of Ag(I) and the synthesis of nanoparticles by the biomass from Botryosphaeria rhodina MAMB-05. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126598. [PMID: 34274805 DOI: 10.1016/j.jhazmat.2021.126598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Two biomass types of Botryosphaeria rhodina MAMB-05 (VMSM and M3) were evaluated to determine their effectiveness in removing Ag(I) ions from synthetic solutions. Both biomass types obtained good results in the biosorption process with maximum biosorption capacities (qm) for the Langmuir model of 34.67 and 39.23 mg Ag(I)/g dry biomass for M3 and VMSM, respectively. The biomass was characterized by X-ray microfluorescence and Fourier-transform-infrared spectroscopy (FT-IR). After the biosorption process, the mechanisms involved in biosorption were studied by FT-IR, X-ray diffraction (XRD), Field Emission Scanning Microscopy/Energy Dispersive X-ray Analysis (FESEM/EDX) and Ultraviolet-Visible Spectrophotometry. The results demonstrated the participation of various mechanisms in the retention of silver on biomass (bioadsorption, complexation, ion exchange, covalent bonding) that resulted in the formation of silver chloride nanoparticles (AgCl-NPs) and silver nanoparticles (AgNPs). The sizes of AgCl-NPs (chlorargyrite) according to the Debye-Scherrer equation were 19.29 nm (VMSM biomass) and 24.9 nm for the M3 type. For AgNPs the crystal size was between 1.5 and 0.8 nm for VMSM and M3 respectively. Furthermore, it was found that an undetermined fraction of the silver nanoparticles after biosorption remained in solution, which could be advantageous for their recovery.
Collapse
Affiliation(s)
- Antonio J Muñoz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| | - Francisco Espínola
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Encarnación Ruiz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Aneli M Barbosa-Dekker
- Beta-Glucan Produtos Farmoquímicos - EIRELI, Lote 24A, Bloco Zircônia, Universidade Tecnológica Federal do Paraná, Avenida João Miguel Caram 731, CEP: 86036-700 Londrina, Paraná, Brazil
| | - Robert F H Dekker
- Beta-Glucan Produtos Farmoquímicos - EIRELI, Lote 24A, Bloco Zircônia, Universidade Tecnológica Federal do Paraná, Avenida João Miguel Caram 731, CEP: 86036-700 Londrina, Paraná, Brazil
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
10
|
El-Bondkly EAM, El-Bondkly AAM, El-Bondkly AAM. Marine endophytic fungal metabolites: A whole new world of pharmaceutical therapy exploration. Heliyon 2021; 7:e06362. [PMID: 33869822 PMCID: PMC8035529 DOI: 10.1016/j.heliyon.2021.e06362] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/16/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
The growing threat arises due to diseases such as cancer and the infections around the world leading to a critical requirement for novel and constructive compounds with unique ways of action capable of combating these deadly diseases. At present, it is evident that endophytic fungi constitute an enormous as well as comparatively untapped source of great biodiversity that can be considered as a wellspring of effective novel natural products for medical, agricultural and industrial use. Marine endophytic fungi have been found in every marine plants (algae, seagrass, driftwood, mangrove plants), marine vertebrates (mainly, fish) or marine invertebrates (mainly, sponge and coral) inter- and intra-cellular without causing any palpable symptoms of illness. Since evolution of microbes and eukaryotes to a higher level, coevolution has resulted in specific interaction mechanisms. Endophytic fungi are known to influence the life cycle and are necessary for the homeostasis of their eukaryotic hosts and the chemical signals of their host have been shown to activate gene expression in endophytes to induce expression of endophytic secondary metabolites. Marine endophytic fungi are receiving increasing attention by chemists because of their varied and structurally unmatched compounds that have strong biological roles in life as lead pharmaceutical compounds, including anticancer, antiviral, insulin mimetic, antineurodegenerative, antimicrobial, antioxidant and immuno-suppressant compounds. Moreover, fungal endophytes proved to have different biological activities for exploitation in the environmental and agricultural sustainability.
Collapse
|
11
|
Comparative Utilization of Dead and Live Fungal Biomass for the Removal of Heavy Metal: A Concise Review. ScientificWorldJournal 2021; 2021:5588111. [PMID: 33927581 PMCID: PMC8049820 DOI: 10.1155/2021/5588111] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 11/18/2022] Open
Abstract
Human and industrial activities produce and discharge wastes containing heavy metals into the water resources making them polluted, threatening human health and the ecosystem. Biosorption, the process of passive cation binding by dead or living biomass, represents a potentially cost-effective way of eliminating toxic heavy metals from industrial wastewater. The abilities of microorganisms to remove metal ions in solution have been extensively studied; in particular, live and dead fungi have been recognized as a promising class of low-cost adsorbents for the removal of heavy metal ions. The biosorption behavior of fungal biomass is getting attention due to its several advantages; hence, it needs to be explored further to take its maximum advantage on wastewater treatment. This review discusses the live and dead fungi characteristics of sorption, factors influencing heavy metal removal, and the biosorption capacities for heavy metal ions removal and also discusses the biosorption mechanisms.
Collapse
|
12
|
Isolation and Characterization of Serratiopeptidase Producing Bacteria from Mulberry Phyllosphere. Curr Microbiol 2020; 78:351-357. [PMID: 33179157 DOI: 10.1007/s00284-020-02280-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Serratiopeptidase (EC 3.4.24.40), a proteolytic enzyme, is one of the most promising enzymes being used in biopharmaceutical industry. Mulberry phyllosphere, being an unexplored niche for exploration of protease production, was chosen for the present study. Protease producing bacteria were isolated from the tissues of mulberry plant as well as its rhizospheric soil. Two protease producing bacteria belonging to Serratia genus were found to be potential serratiopeptidase producers. Among them, the endophyte, i.e., Serratia marcescens MES-4 presented 95 Units/mL activity, while the soil isolate i.e., Serratia marcescens MRS-11 presented 156 Units/mL activity.
Collapse
|
13
|
El Sayed MT, El-Sayed ASA. Bioremediation and tolerance of zinc ions using Fusarium solani. Heliyon 2020; 6:e05048. [PMID: 33024860 PMCID: PMC7527588 DOI: 10.1016/j.heliyon.2020.e05048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/28/2020] [Accepted: 09/21/2020] [Indexed: 11/26/2022] Open
Abstract
Evaluating the mechanism of tolerance and biotransformation Zn(II) ions by Fusarium solani based on the different physiological was the objective of this work. The physical properties of synthesized ZnONPs was determined by UV-spectroscopy, transmission electron microscope, and X-ray powder diffraction. The structural and anatomical changes of F. solani in response to Zn(II) was examined by TEM and SEM. From the HPLC profile, oxalic acid by F. solani was strongly increased by about 10.5 folds in response to 200 mg/l Zn(II) comparing to control cultures. The highest biosorption potential were reported at pH 4.0 (alkali-treated biomass) and 5.0 (native biomass), at 600 mg/l Zn(II) concentration, incubation temperature 30 °C, and contact time 40 min (alkali-treated biomass) and 6 h (native biomass). From the FT-IR spectroscopy, the main functional groups implemented on this remediation were C-S stretching, C=O C=N, C-H bending, C-N stretching and N-H bending. From the EDX spectra, fungal cellular sulfur and phosphorus compounds were the mainly compartments involved on ZN(II) binding.
Collapse
Affiliation(s)
- Manal T El Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt
| | - Ashraf S A El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt
| |
Collapse
|
14
|
El Sayed MT, El-Sayed ASA. Tolerance and mycoremediation of silver ions by Fusarium solani. Heliyon 2020; 6:e03866. [PMID: 32426534 PMCID: PMC7225397 DOI: 10.1016/j.heliyon.2020.e03866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/13/2020] [Accepted: 04/23/2020] [Indexed: 01/18/2023] Open
Abstract
Silver ions discharged from various industries, are potentially toxic to living organisms at low concentrations, thus, there is an increasing need for development of an eco-friendly and cost-effective approach for its bioremediation. Filamentous fungi especially, Fusarium solani displayed a strong resistance to copper and cadmium ions as revealed from our previous study (El-Sayed 2014), however, the mechanisms of silver resistance by this fungus has not been resolved yet. Thus, this study was an extension to our previous work, to elucidate the mechanism of silver ions resistance and biotransformation by F. solani. The growth, bioaccumulation, thiol, total antioxidant, malondialdehyde (MDA), hydrogen peroxide (H2O2) contents and polyphenol oxidase (PPO) and catalase (CAT) activities of F. solani in response to silver ions were determined. Production and bioaccumulation of silver nanoparticles was characterized by UV-visible spectroscopy, TEM, and X-ray powder diffraction (XRD). The ultrastructural changes of F. solani induced by Ag(I) was examined by TEM and SEM. Production of oxalic acid by F. solani was increased by about 343.8% in response to 400 mg/l Ag(I), compared to control cultures (without silver ions) as revealed from HPLC analysis. The maximum biosorption levels by the native and alkali-treated biomass were carried out at pH 5.0, initial metal concentration 200 mg/l, biomass 0.5 g/l, temperature 35 °C, and contact time 1 h (native biomass) and 3 h (alkali-treated biomass). Fourier transform infrared spectroscopy (FTIR) results revealed that the main functional groups involved on this mycoremediation were C–S stretching, C=O C=N, C – H bending, C–N stretching and N–H bending. EDX spectra indicated the involvement of fungal cellular sulfur and phosphorus compounds in Ag(I) binding.
Collapse
Affiliation(s)
- Manal T El Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Ashraf S A El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
15
|
d'Errico G, Aloj V, Flematti GR, Sivasithamparam K, Worth CM, Lombardi N, Ritieni A, Marra R, Lorito M, Vinale F. Metabolites of a Drechslera sp. endophyte with potential as biocontrol and bioremediation agent. Nat Prod Res 2020; 35:4508-4516. [PMID: 32159387 DOI: 10.1080/14786419.2020.1737058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Endophytic fungi have several well-established beneficial effects on plant health and growth, and are a huge source of bioactive compounds. The endophyte Drechslera sp. strain 678, isolated from the roots of an Australian native grass Neurachne alopecuroidea, demonstrated efficacy against four plant pathogens (Pythium ultimum, Rhizoctonia solani, Botrytis cinerea, Alternaria alternata). In addition, strain 678 was capable of degrading a common additive used in gasoline, known as methyl tertiary-butyl ether (MtBE). Thus, the organic extracts obtained from the culture filtrate of strain 678 were studied. Metabolomic analysis revealed the presence of two major bioactive metabolites, monocerin and an alkynyl substituted epoxycyclohexenone derivative, which showed good antifungal activity. The Drechslera sp. strain 678 and its compounds show promise for applications in biocontrol and bioremediation activities in agriculture or as a remediation option for MtBE contamination in soil.
Collapse
Affiliation(s)
- Giada d'Errico
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Veronica Aloj
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Gavin R Flematti
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | | | - Carol M Worth
- School of Agriculture and Environment, University of Western Australia, Perth, Australia
| | - Nadia Lombardi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Roberta Marra
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.,CNR Institute for Sustainable Plant Protection, Portici, Italy
| | - Francesco Vinale
- CNR Institute for Sustainable Plant Protection, Portici, Italy.,Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
Chen Y, Zhu Q, Dong X, Huang W, Du C, Lu D. How Serratia marcescens HB-4 absorbs cadmium and its implication on phytoremediation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109723. [PMID: 31586845 DOI: 10.1016/j.ecoenv.2019.109723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 05/28/2023]
Abstract
A novel strain Serratia marcescens HB-4 with high Cadmium adsorption capacity was isolated from heavy metal contaminated soil in Hunan province, China. S. marcescens HB-4 reduced the concentration of Cd present in wastewater to less than 0.1 mg/L when the inlet stream contained no higher than 5.0 mg/L Cd. After treatment, wastewater meets Integrated Wastewater Discharge Standard of China (GB8978-1996). The naturally dead S. marcescens HB-4 still maintained over 80% of its Cd adsorption capacity. Scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS) results suggested that the mechanism of Cd adsorption can be explained as the synergy of extracellular adsorption, periplasm accumulation and intracellular absorption. The size of the accumulated Cd particular is at the nanometer scale, which can be washed out by EDTA without damaging cell integrity. SDS-polyacrylamide gel electrophoresis experiment showed that the heavy metal binding protein (especially Fe binding protein), transporter, amino acid and histidine periplasmic binding proteins and oxidoreductases were responsible for Cd removal. The pot experiment of S. marcescens HB-4 combined with Houttuynia cordata to detoxify Cd contaminated soil showed that the cadmium content in the aboveground and underground parts of Houttuynia cordata increased by 34.48% and 59.13% (w/w), respectively. The cadmium accumulation in Houttuynia cordata increased by 44.27% compared with the blank group which was not combined with S. marcescens HB-4. This work demonstrates that microbial synergistic phytoremediation has a significant potential to treat heavy metal contaminated soil.
Collapse
Affiliation(s)
- Yakui Chen
- Key Lab of Industrial Biocatalysis, Ministry of Education, China; Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Qifa Zhu
- Anhui Southern Tobacco Co., Ltd., Xuancheng, Anhui Province, 242000, China
| | - Xiangzhou Dong
- Anhui Southern Tobacco Co., Ltd., Xuancheng, Anhui Province, 242000, China
| | - Weiwei Huang
- Anhui Southern Tobacco Co., Ltd., Xuancheng, Anhui Province, 242000, China
| | - Chenyu Du
- School of Applied Science, The University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Diannan Lu
- Key Lab of Industrial Biocatalysis, Ministry of Education, China; Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
17
|
Purwanti IF, Kurniawan SB, Ismail N'I, Imron MF, Abdullah SRS. Aluminium removal and recovery from wastewater and soil using isolated indigenous bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109412. [PMID: 31445374 DOI: 10.1016/j.jenvman.2019.109412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
This paper elucidates the capability of isolated indigenous bacteria to remove aluminium from wastewater and soil. Two indigenous species of Brochothrix thermosphacta and Vibrio alginolyticus were isolated from an aluminium-contaminated site. These two species were used to treat aluminium-containing wastewater and contaminated soil using the bioaugmentation method. B. thermosphacta showed the highest aluminium removal of 57.87 ± 0.45% while V. alginolyticus can remove aluminium up to 59.72 ± 0.33% from wastewater. For aluminium-contaminated soil, B. thermosphacta and V. alginolyticus, showed a highest removal of only 4.58 ± 0.44% and 5.48 ± 0.58%, respectively. The bioaugmentation method is more suitable to be used to treat aluminium in wastewater compared to contaminated soil. The produced biomass separation after wastewater treatment was so much easier and applicable, compared to the produced biomass handling from contaminated soil treatment. A 48.55 ± 2.45% and 40.12 ± 4.55% of aluminium can be recovered from B. thermosphacta and V. alginolyticus biomass, respectively, with 100 mg/L initial aluminium concentration in wastewater.
Collapse
Affiliation(s)
- Ipung Fitri Purwanti
- Department of Environmental Engineering, Faculty of Civil, Environmental and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia.
| | - Setyo Budi Kurniawan
- Study Program of Waste Treatment Engineering, Department of Marine Engineering, Politeknik Perkapalan Negeri Surabaya, Jalan Teknik Kimia, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia.
| | - Nur 'Izzati Ismail
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Muhammad Fauzul Imron
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan, Mulyorejo, Surabaya, 60115, Indonesia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
18
|
Shaikh SA, Bagla HK. Comparative study of 110mAg(I) removal from aqueous media by humic substances. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06691-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Prabhu SG, Srinikethan G, Hegde S. Spontaneous Cr(VI) and Cd(II) biosorption potential of native pinnae tissue of Pteris vittata L., a tropical invasive pteridophyte. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:380-390. [PMID: 30740992 DOI: 10.1080/15226514.2018.1524845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Heavy metal pollution is a prevalent and critical environmental concern. Its rampancy is attributed to indiscriminate anthropogenic activities. Several technologies including biosorption have been continuously researched upon to overcome the limitations of the conventional method of treatments in removal of heavy metals. Biosorption technology involves the application of a biomass in its nonliving form. Pteris vittata L., a pteridophyte, considered as an invasive weed was investigated in the present study as a potential decontaminant of toxic metals, Cr(VI) and Cd(II). The adsorption capacity of the biosorbent for Cr(VI) and Cd(II) under equilibrium conditions was investigated. The morphology, elemental composition, functional groups, and thermal stability of the biosorbent before and after metal loading were evaluated. At 303 K and an equilibrium time of 120 min, the maximum loading of Cr(VI) on the biosorbent was estimated to be 166.7 mg/g at pH 2 and Cd(II) to be 31.3 mg/g at pH 6. Isotherm models, kinetic studies, and thermodynamic studies indicated the mechanisms, chemisorption, ion exchange and intraparticle diffusion, controlling the Cr(VI) and Cd(II) uptake, respectively. The interactive effect of multi-metal ions in binary component systems was synergistic for Cd(II) uptake. The results validate the toxic metal removal potency of the biosorbent.
Collapse
Affiliation(s)
- Smruthi G Prabhu
- a Department of Chemical Engineering , National Institute of Technology Karnataka , Mangaluru , Karnataka , India
| | - G Srinikethan
- a Department of Chemical Engineering , National Institute of Technology Karnataka , Mangaluru , Karnataka , India
| | - Smitha Hegde
- b Paneer Campus , Nitte University Center for Science Education and Research (NUCSER) , Mangaluru , Karnataka , India
| |
Collapse
|
20
|
Siless GE, Gallardo GL, Rodriguez MA, Rincón YA, Godeas AM, Cabrera GM. Metabolites from the Dark Septate Endophyte Drechslera sp. Evaluation by LC/MS and Principal Component Analysis of Culture Extracts with Histone Deacetylase Inhibitors. Chem Biodivers 2018; 15:e1800133. [PMID: 29851264 DOI: 10.1002/cbdv.201800133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022]
Abstract
Secondary metabolites from the cultures of the dark septate fungal endophyte (DSE) Drechslera sp., isolated from the roots of rye grass (Lollium sp.) and cultured under different experimental conditions, are described here for the first time. The use of suberoylanilidehydroxamic acid (SAHA) and other histone deacetylase inhibitors as epigenetic modifiers in the culture medium was evaluated by LC/MS and LC/MS/MS. Several differences in the metabolite production were detected by means of supervised principal component analysis (PCA) of LC/MS data. The presence of the compounds in the culture medium or in the mycelium was compared. In order to confirm their structure, many of these natural products were isolated from a larger scale culture. These metabolites were characterized as prenylhydroxybenzoic acids and chromans, two compounds, one of each class were previously undescribed, prenylquinoids, diketopiperazines and macrosphelides. Some of the compounds, which were released to the medium, showed good antifungal activity, suggesting that these compounds could protect Lollium from fungal phytopatogens. The use of SAHA as an additive of the cultures also induced the release of hexosylphytosphyngosine to the culture medium. The biotransformation of the inhibitors was observed in addition to the production of antifungal metabolites, showing the ability of this endophytic strain to control xenobiotics.
Collapse
Affiliation(s)
- Gastón E Siless
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos aplicados a la Química Orgánica (UMYMFOR), Buenos Aires, Argentina
| | - Gabriela L Gallardo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina
| | - María Alejandra Rodriguez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Buenos Aires, Argentina
| | - Yuliet A Rincón
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos aplicados a la Química Orgánica (UMYMFOR), Buenos Aires, Argentina
| | - Alicia M Godeas
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Buenos Aires, Argentina
| | - Gabriela M Cabrera
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina
| |
Collapse
|