1
|
Wu Y, Tang Z, Zhang J, Wang Y, Liu S. Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Front Cell Neurosci 2022; 16:1077441. [PMID: 36523818 PMCID: PMC9744968 DOI: 10.3389/fncel.2022.1077441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 09/26/2023] Open
Abstract
Spinal cord injury (SCI) disrupts neurological pathways and impacts sensory, motor, and autonomic nerve function. There is no effective treatment for SCI currently. Numerous endogenous cells, including astrocytes, macrophages/microglia, and oligodendrocyte, are involved in the histological healing process following SCI. By interfering with cells during the SCI repair process, some advancements in the therapy of SCI have been realized. Nevertheless, the endogenous cell types engaged in SCI repair and the current difficulties these cells confront in the therapy of SCI are poorly defined, and the mechanisms underlying them are little understood. In order to better understand SCI and create new therapeutic strategies and enhance the clinical translation of SCI repair, we have comprehensively listed the endogenous cells involved in SCI repair and summarized the six most common mechanisms involved in SCI repair, including limiting the inflammatory response, protecting the spared spinal cord, enhancing myelination, facilitating neovascularization, producing neurotrophic factors, and differentiating into neural/colloidal cell lines.
Collapse
Affiliation(s)
| | | | | | | | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
He X, Song J, Gao H, Li Z, Wang X, Zeng Q, Xiao Y, Feng J, Zhou D, Wang G. Serum brain-derived neurotrophic factor and glial cell-derived neurotrophic factor in patients with first-episode depression at different ages. Int J Psychiatry Clin Pract 2022:1-9. [PMID: 35980319 DOI: 10.1080/13651501.2022.2107938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
OBJECTIVES We investigated the differences in serum brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) levels and clinical symptoms with first-episode depression at different ages. METHODS Ninety patients (15-60 years old) diagnosed with first-episode depression were enrolled as the study group, and they were divided into early-onset, adult and late-onset groups. The age-matched control groups were healthy volunteers. Serum BDNF and GDNF concentrations were determined by enzyme-linked immunosorbent assay (ELISA). GraphPad Prism 9 was used for t tests, one-way ANOVAs, chi-square tests, and correlation analyses. p < 0.05 indicated significant differences. RESULTS Serum BDNF and GDNF levels were lower in the whole study group and the three subgroups than in the healthy groups. Illness severity, anxiety and education were higher in the early-onset than late-onset patients. Serum BDNF levels were lower in the adult than late-onset patients. Serum BDNF levels were negatively correlated with patient CGI-SI scores. After the LSD test for multiple comparisons, the results were also significant. CONCLUSIONS Low serum BDNF and GDNF levels may be involved in the pathophysiology of first-episode depression, and there were differences in serum BDNF levels at different ages, verifying that serum BDNF and GDNF could serve as potential biomarkers of depression. KEY POINTSDepression is often conceptualised as a systemic illness with different biological mechanisms, but satisfactory explanations have not been provided thus far.The aim of our study was to investigate differences in serum BDNF and GDNF levels and their relationships with clinical symptoms in patients with first-episode depression at different ages.The potential of the neurotrophic factor hypothesis to advance the diagnosis and treatment of depression will be a very exciting new strategy for future research.
Collapse
Affiliation(s)
- Xianping He
- Growth, Development, and Mental Health of Children and Adolescence Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Health and Nutrition, Chongqing, China
| | - Jingyao Song
- Chongqing Changshou District Third People's Hospital, Chongqing, China
| | - He Gao
- Chongqing Changshou District Third People's Hospital, Chongqing, China
| | - Zhenyang Li
- Chongqing Changshou District Third People's Hospital, Chongqing, China
| | - Xiaochun Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Qiaoling Zeng
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yucen Xiao
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaxin Feng
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Dongdong Zhou
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Gaomao Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Zhang SY, Zhao J, Ni JJ, Li H, Quan ZZ, Qing H. Application and prospects of high-throughput screening for in vitro neurogenesis. World J Stem Cells 2022; 14:393-419. [PMID: 35949394 PMCID: PMC9244953 DOI: 10.4252/wjsc.v14.i6.393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/07/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, high-throughput screening (HTS) has made great contributions to new drug discovery. HTS technology is equipped with higher throughput, minimized platforms, more automated and computerized operating systems, more efficient and sensitive detection devices, and rapid data processing systems. At the same time, in vitro neurogenesis is gradually becoming important in establishing models to investigate the mechanisms of neural disease or developmental processes. However, challenges remain in generating more mature and functional neurons with specific subtypes and in establishing robust and standardized three-dimensional (3D) in vitro models with neural cells cultured in 3D matrices or organoids representing specific brain regions. Here, we review the applications of HTS technologies on in vitro neurogenesis, especially aiming at identifying the essential genes, chemical small molecules and adaptive microenvironments that hold great prospects for generating functional neurons or more reproductive and homogeneous 3D organoids. We also discuss the developmental tendency of HTS technology, e.g., so-called next-generation screening, which utilizes 3D organoid-based screening combined with microfluidic devices to narrow the gap between in vitro models and in vivo situations both physiologically and pathologically.
Collapse
Affiliation(s)
- Shu-Yuan Zhang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Zhao
- Aerospace Medical Center, Aerospace Center Hospital, Beijing 100049, China
| | - Jun-Jun Ni
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhen-Zhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Feng Y, Li Y, Shen PP, Wang B. Gene-Modified Stem Cells for Spinal Cord Injury: a Promising Better Alternative Therapy. Stem Cell Rev Rep 2022; 18:2662-2682. [PMID: 35587330 DOI: 10.1007/s12015-022-10387-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2022] [Indexed: 12/18/2022]
Abstract
Stem cell therapy holds great promise for the treatment of spinal cord injury (SCI), which can reverse neurodegeneration and promote tissue regeneration via its pluripotency and ability to secrete neurotrophic factors. Although various stem cell-based approaches have shown certain therapeutic effects when applied to the treatment of SCI, their clinical efficacies have been disappointing. Thus, it is an urgent need to further enhance the neurological benefits of stem cells through bioengineering strategies including genetic engineering. In this review, we summarize the progress of stem cell therapy for SCI and the prospect of genetically modified stem cells, focusing on the genome editing tools and functional molecules involved in SCI repair, trying to provide a deeper understanding of genetically modified stem cell therapy and more applicable clinical strategies for SCI repair.
Collapse
Affiliation(s)
- Yirui Feng
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yu Li
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ping-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and the Comprehensive Cancer Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Bin Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.
| |
Collapse
|
5
|
Pereira MCL, Boese AC, Murad R, Yin J, Hamblin MH, Lee JP. Reduced dopaminergic neuron degeneration and global transcriptional changes in Parkinson's disease mouse brains engrafted with human neural stems during the early disease stage. Exp Neurol 2022; 352:114042. [PMID: 35271839 DOI: 10.1016/j.expneurol.2022.114042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Current stem cell therapies for Parkinson's disease (PD) focus on a neurorestorative approach that aims to repair the CNS during the symptomatic phase. However, the pleiotropic and supportive effects of human neural stem cells (hNSCs) may make them effective for PD treatment during the disease's earlier stages. In the current study, we investigated the therapeutic effects of transplanting hNSCs during the early stages of PD development when most dopaminergic neurons are still present and before symptoms appear. Previous studies on hNSCs in Parkinson's disease focus on the substantia nigra and its immediate surroundings, but other brain structures are affected in PD as well. Here, we investigated the therapeutic effects of hNSCs on the entire PD-afflicted brain transcriptome using RNA sequencing (RNA-seq). METHODS PD was induced with a single intranasal infusion of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and hNSCs were transplanted unilaterally into the striatum one week later. The timepoint for hNSC transplantation coincided with upregulation of endogenous proinflammatory cytokines in the CNS, which play a role in stem cell migration. At 3 weeks post-transplantation (4 weeks post-MPTP), we assessed motor symptoms through behavioral tests, quantified dopaminergic neurons in the substantia nigra, and performed global transcriptional profiling to understand the mechanism underlying the effect of hNSCs on dopaminergic neuron degeneration. RESULTS We found that early hNSC engraftment mitigated motor symptoms induced by MPTP, and also reduced MPTP-induced loss of dopaminergic neurons. In this study, we uniquely presented the first comprehensive analysis of the effect of hNSC transplantation on the transcriptional profiling of PD mouse brains showing decreased expression of 249 and increased expression of 200 genes. These include genes implicated in mitochondrial bioenergetics, proteostasis, and other signaling pathways associated with improved PD outcome following hNSC transplantation. CONCLUSION These findings indicate that NSC transplantation during the asymptomatic phase of PD may limit or halt the progression of this neurodegenerative disorder. Transcriptional profiling of hNSC-engrafted PD mouse brains provides mechanistic insight that could lead to novel approaches to ameliorating degeneration of dopaminergic neurons and improving behavioral dysfunction in PD.
Collapse
Affiliation(s)
- Marcia C L Pereira
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Austin C Boese
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rabi Murad
- Bioinformatics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jun Yin
- Bioinformatics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Milton H Hamblin
- Tulane University Health Sciences Center, Tulane University, New Orleans, LA 70112, USA
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
6
|
A combined cell and gene therapy approach for homotopic reconstruction of midbrain dopamine pathways using human pluripotent stem cells. Cell Stem Cell 2022; 29:434-448.e5. [PMID: 35180398 DOI: 10.1016/j.stem.2022.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/24/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022]
Abstract
Midbrain dopamine (mDA) neurons can be replaced in patients with Parkinson's disease (PD) in order to provide long-term improvement in motor functions. The limited capacity for long-distance axonal growth in the adult brain means that cells are transplanted ectopically, into the striatal target. As a consequence, several mDA pathways are not re-instated, which may underlie the incomplete restoration of motor function in patients. Here, we show that viral delivery of GDNF to the striatum, in conjunction with homotopic transplantation of human pluripotent stem-cell-derived mDA neurons, recapitulates brain-wide mDA target innervation. The grafts provided re-instatement of striatal dopamine levels and correction of motor function and also connectivity with additional mDA target nuclei not well innervated by ectopic grafts. These results demonstrate the remarkable capacity for achieving functional and anatomically precise reconstruction of long-distance circuitry in the adult brain by matching appropriate growth-factor signaling to grafting of specific cell types.
Collapse
|
7
|
Ursavas S, Darici H, Karaoz E. Olfactory ensheathing cells: Unique glial cells promising for treatments of spinal cord injury. J Neurosci Res 2021; 99:1579-1597. [PMID: 33605466 DOI: 10.1002/jnr.24817] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/08/2021] [Indexed: 12/26/2022]
Abstract
Spinal cord injury (SCI) is generally the consequence of physical damage, which may result in devastating consequences such as paraplegia or paralysis. Some certain candidates for SCI repair are olfactory ensheathing cells (OECs), which are unique glial cells located in the transition region of the peripheral nervous system and central nervous system and perform neuron regeneration in the olfactory system throughout life. Culture studies have clarified many properties of OECs, but their mechanisms of actions are not fully understood. Successful results achieved in animal models showcased that SCI treatment with OEC transplants is suitable for clinical trials. However, clinical trials are limited by difficulties like cell acquisition for autograft transplantation. Despite the improvements in both animal and clinical studies so far, there is still insufficient information about the mechanism of actions, adverse effects, proper application methods, effective subtypes, and sources of cells. This review summarizes pre-clinical and clinical literature focused on the cellular characterization of both OECs in vitro and post-transplantation. We highlight the roles and effects of OECs on (a) the injury-induced glial milieu, (b) neuronal growth/regeneration, and (c) functional recovery after injury. Due to the shown benefits of OECs with in vitro and animal studies and a limited number of clinical trials, where safety and effectivity were shown, it is necessary to conduct more studies on OECs to obtain effective and feasible treatment methods.
Collapse
Affiliation(s)
- Selin Ursavas
- Department of Histology and Embryology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Hakan Darici
- Department of Histology and Embryology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Erdal Karaoz
- Department of Histology and Embryology, Faculty of Medicine, Istinye University, Istanbul, Turkey.,Center for Stem Cell and Tissue Engineering Research & Practice, Istinye University, Istanbul, Turkey.,Center for Regenerative Medicine and Stem Cell Research and Manufacturing, Liv Hospital, Istanbul, Turkey
| |
Collapse
|
8
|
In Vivo Assessment of Cell Death and Nigrostriatal Pathway Integrity Following Continuous Expression of C3 Transferase. Neuroscience 2020; 442:183-192. [PMID: 32652176 DOI: 10.1016/j.neuroscience.2020.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 11/23/2022]
Abstract
The bacterial exoenzyme C3 transferase (C3) irreversibly inhibits RhoA GTPase leading to stimulation of axonal outgrowth in injured neurons. C3 has been used successfully in models of neurotrauma and shows promise as an option to support cell survival and axonal growth of dopaminergic (DA) neurons in Parkinson's disease (PD) cell therapy. Whether the continuous expression of C3 in DA neurons is well-tolerated is unknown. To assess the potential neurotoxicity of sustained expression of C3 in DA neurons, we generated Cre recombinase-dependent adeno-associated viral vectors (AAV) for targeted C3 delivery to DA neurons of the mouse substantia nigra pars compacta (SNc). The effect of continuous expression of C3 on DA neurons was assessed by immunohistochemistry and compared to that of Enhanced Yellow Fluorescent Protein (EYFP) as negative controls. We did not find significant reduction of tyrosine hydroxylase (TH) expression levels nor the presence of cleaved activated caspase 3. Astrocytic activation as determined by GFAP expression was comparable to EYFP controls. To evaluate the impact of C3 expression on striatal terminals of the nigrostriatal pathway, we compared the rotational behavior of wildtype mice injected unilaterally with either C3 or 6-hydroxydopamine (6-OHDA). Mice injected with C3 exhibited similar ipsiversive rotations to the site of injection in comparison to control mice injected with EYFP and significantly fewer ipsiversive rotations compared to 6-OHDA lesioned mice. Non-significant difference between C3 and EYFP controls in behavioral and histological analyses demonstrate that transduced DA neurons express C3 continuously without apparent adverse effects, supporting the use of C3 in efficacy studies targeting DA neurons.
Collapse
|
9
|
Viral Delivery of GDNF Promotes Functional Integration of Human Stem Cell Grafts in Parkinson's Disease. Cell Stem Cell 2020; 26:511-526.e5. [PMID: 32059808 DOI: 10.1016/j.stem.2020.01.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/31/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Dopaminergic neurons (DAns), generated from human pluripotent stem cells (hPSCs), are capable of functionally integrating following transplantation and have recently advanced to clinical trials for Parkinson's disease (PD). However, pre-clinical studies have highlighted the low proportion of DAns within hPSC-derived grafts and their inferior plasticity compared to fetal tissue. Here, we examined whether delivery of a developmentally critical protein, glial cell line-derived neurotrophic factor (GDNF), could improve graft outcomes. We tracked the response of DAns implanted into either a GDNF-rich environment or after a delay in exposure. Early GDNF promoted survival and plasticity of non-DAns, leading to enhanced motor recovery in PD rats. Delayed exposure to GDNF promoted functional recovery through increases in DAn specification, DAn plasticity, and DA metabolism. Transcriptional profiling revealed a role for mitogen-activated protein kinase (MAPK)-signaling downstream of GDNF. Collectively, these results demonstrate the potential of neurotrophic gene therapy strategies to improve hPSC graft outcomes.
Collapse
|
10
|
Harris JP, Burrell JC, Struzyna LA, Chen HI, Serruya MD, Wolf JA, Duda JE, Cullen DK. Emerging regenerative medicine and tissue engineering strategies for Parkinson's disease. NPJ Parkinsons Dis 2020; 6:4. [PMID: 31934611 PMCID: PMC6949278 DOI: 10.1038/s41531-019-0105-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disease, affecting 1-2% of people over 65. The classic motor symptoms of PD result from selective degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), resulting in a loss of their long axonal projections to the striatum. Current treatment strategies such as dopamine replacement and deep brain stimulation (DBS) can only minimize the symptoms of nigrostriatal degeneration, not directly replace the lost pathway. Regenerative medicine-based solutions are being aggressively pursued with the goal of restoring dopamine levels in the striatum, with several emerging techniques attempting to reconstruct the entire nigrostriatal pathway-a key goal to recreate feedback pathways to ensure proper dopamine regulation. Although many pharmacological, genetic, and optogenetic treatments are being developed, this article focuses on the evolution of transplant therapies for the treatment of PD, including fetal grafts, cell-based implants, and more recent tissue-engineered constructs. Attention is given to cell/tissue sources, efficacy to date, and future challenges that must be overcome to enable robust translation into clinical use. Emerging regenerative medicine therapies are being developed using neurons derived from autologous stem cells, enabling the construction of patient-specific constructs tailored to their particular extent of degeneration. In the upcoming era of restorative neurosurgery, such constructs may directly replace SNpc neurons, restore axon-based dopaminergic inputs to the striatum, and ameliorate motor deficits. These solutions may provide a transformative and scalable solution to permanently replace lost neuroanatomy and improve the lives of millions of people afflicted by PD.
Collapse
Affiliation(s)
- James P. Harris
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Justin C. Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| | - Laura A. Struzyna
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| | - H. Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Mijail D. Serruya
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA USA
| | - John A. Wolf
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - John E. Duda
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Parkinson’s Disease Research, Education, and Clinical Center (PADRECC), Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
11
|
The Effect of Sertoli Cells on Xenotransplantation and Allotransplantation of Ventral Mesencephalic Tissue in a Rat Model of Parkinson's Disease. Cells 2019; 8:cells8111420. [PMID: 31718058 PMCID: PMC6912403 DOI: 10.3390/cells8111420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Intra-striatal transplantation of fetal ventral mesencephalic (VM) tissue has a therapeutic effect on patients with Parkinson’s disease (PD). Sertoli cells (SCs) possess immune-modulatory properties that benefit transplantation. We hypothesized that co-graft of SCs with VM tissue can attenuate rejection. Hemi-parkinsonian rats were generated by injecting 6-hydroxydopamine into the right medial forebrain bundle of Sprague Dawley (SD) rats. The rats were then intrastriatally transplanted with VM tissue from rats or pigs (rVM or pVM), with/without a co-graft of SCs (rVM+SCs or pVM+SCs). Recovery of dopaminergic function and survival of the grafts were evaluated using the apomorphine-induced rotation test and small animal-positron emission tomography (PET) coupled with [18F] DOPA or [18F] FE-PE2I, respectively. Immunohistochemistry (IHC) examination was used to determine the survival of the grafted dopaminergic neurons in the striatum and to investigate immune-modulatory effects of SCs. The results showed that the rVM+SCs and pVM+SCs groups had significantly improved drug-induced rotational behavior compared with the VM alone groups. PET revealed a significant increase in specific uptake ratios (SURs) of [18F] DOPA and [18F] FE-PE2I in the grafted striatum of the rVM+SCs and pVM+SCs groups as compared to that of the rVM and pVM groups. SC and VM tissue co-graft led to better dopaminergic (DA) cell survival. The co-grafted groups exhibited lower populations of T-cells and activated microglia compared to the groups without SCs. Our results suggest that co-graft of SCs benefit both xeno- and allo-transplantation of VM tissue in a PD rat model. Use of SCs enhanced the survival of the grafted dopaminergic neurons and improved functional recovery. The enhancement may in part be attributable to the immune-modulatory properties of SCs. In addition, [18F]DOPA and [18F]FE-PE2I coupled with PET may provide a feasible method for in vivo evaluation of the functional integrity of the grafted DA cell in parkinsonian rats.
Collapse
|
12
|
Tactile Stimulation on Adulthood Modifies the HPA Axis, Neurotrophic Factors, and GFAP Signaling Reverting Depression-Like Behavior in Female Rats. Mol Neurobiol 2019; 56:6239-6250. [PMID: 30741369 DOI: 10.1007/s12035-019-1522-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/30/2019] [Indexed: 12/31/2022]
Abstract
Depression is a common psychiatric disease which pharmacological treatment relieves symptoms, but still far from ideal. Tactile stimulation (TS) has shown beneficial influences in neuropsychiatric disorders, but the mechanism of action is not clear. Here, we evaluated the TS influence when applied on adult female rats previously exposed to a reserpine-induced depression-like animal model. Immediately after reserpine model (1 mg/kg/mL, 1×/day, for 3 days), female Wistar rats were submitted to TS (15 min, 3×/day, for 8 days) or not (unhandled). Imipramine (10 mg/kg/mL) was used as positive control. After behavioral assessments, animals were euthanized to collect plasma and prefrontal cortex (PFC). Behavioral observations in the forced swimming test, splash test, and sucrose preference confirmed the reserpine-induced depression-like behavior, which was reversed by TS. Our findings showed that reserpine increased plasma levels of adrenocorticotropic hormone and corticosterone, decreased brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B, and increased proBDNF immunoreactivity in the PFC, which were also reversed by TS. Moreover, TS reestablished glial fibrillary acidic protein and glucocorticoid receptor levels, decreased by reserpine in PFC, while glial cell line-derived neurotrophic factor was increased by TS per se. Our outcomes are showing that TS applied in adulthood exerts a beneficial influence in depression-like behaviors, modulating the HPA axis and regulating neurotrophic factors more effectively than imipramine. Based on this, our proposal is that TS, in the long term, could be considered a new therapeutic strategy for neuropsychiatric disorders improvement in adult life, which may represent an interesting contribution to conventional pharmacological treatment.
Collapse
|
13
|
Crane AT, Voth JP, Shen FX, Low WC. Concise Review: Human-Animal Neurological Chimeras: Humanized Animals or Human Cells in an Animal? Stem Cells 2019; 37:444-452. [PMID: 30629789 DOI: 10.1002/stem.2971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/16/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
Blastocyst complementation is an emerging methodology in which human stem cells are transferred into genetically engineered preimplantation animal embryos eventually giving rise to fully developed human tissues and organs within the animal host for use in regenerative medicine. The ethical issues surrounding this method have caused the National Institutes of Health to issue a moratorium on funding for blastocyst complementation citing the potential for human cells to substantially contribute to the brain of the chimeric animal. To address this concern, we performed an in-depth review of the neural transplantation literature to determine how the integration of human cells into the nonhuman neural circuitry has altered the behavior of the host. Despite reports of widespread integration of human cell transplants, our review of 150 transplantation studies found no evidence suggestive of humanization of the animal host, and we thus conclude that, at present, concerns over humanization should not prevent research on blastocyst complementation to continue. We suggest proceeding in a controlled and transparent manner, however, and include recommendations for future research with careful consideration for how human cells may contribute to the animal host nervous system. Stem Cells 2019;37:444-452.
Collapse
Affiliation(s)
- Andrew T Crane
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Minnesota Craniofacial Research Training Program, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joseph P Voth
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Francis X Shen
- University of Minnesota Law School, Minneapolis, Minnesota, USA.,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Walter C Low
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA.,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
14
|
Teng YD, Wang L, Zeng X, Wu L, Toktas Z, Kabatas S, Zafonte RD. Updates on Human Neural Stem Cells: From Generation, Maintenance, and Differentiation to Applications in Spinal Cord Injury Research. Results Probl Cell Differ 2018; 66:233-248. [PMID: 30209662 DOI: 10.1007/978-3-319-93485-3_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human neural stem cells (hNSCs) and human induced pluripotent stem cells (hiPSCs) have been the primary focuses in basic science and translational research as well as in investigative clinical applications. Therefore, the capability to perform reliable derivation, effective expansion, and long-term maintenance of uncommitted hNSCs and hiPSCs and their targeted phenotypic differentiations through applying chemically and biologically defined medium in vitro is essential for expanding and enriching the fundamental and technological capacities of stem cell biology and regenerative medicine. In this chapter, we systematically summarized a set of protocols and unique procedures that have been developed in the laboratories of Prof. Teng and his collaborators. These regimens have been, over the years, reproducibly and productively used to derive, propagate, maintain, and differentiate hNSCs, including those derived from hiPSCs. We emphasize the multimodal methodologies that were pioneered and established in our laboratories for characterizing functional multipotency of stem cells and its value in basic science as well as translational biomedical studies.
Collapse
Affiliation(s)
- Yang D Teng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA, USA.
- Department of Neurosurgery, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA.
- Division of SCI Research, VA Boston Healthcare System, Boston, MA, USA.
| | - Lei Wang
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Neurosurgery, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Xiang Zeng
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Neurosurgery, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Liquan Wu
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Neurosurgery, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Zafer Toktas
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Neurosurgery, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Serdar Kabatas
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Neurosurgery, Harvard Medical School and Brigham & Women's Hospital, Boston, MA, USA
| | - Ross D Zafonte
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Boston, MA, USA
| |
Collapse
|
15
|
Wianny F, Vezoli J. Transplantation in the nonhuman primate MPTP model of Parkinson's disease: update and perspectives. Primate Biol 2017; 4:185-213. [PMID: 32110706 PMCID: PMC7041537 DOI: 10.5194/pb-4-185-2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/31/2017] [Indexed: 12/22/2022] Open
Abstract
In order to calibrate stem cell exploitation for cellular therapy in neurodegenerative diseases, fundamental and preclinical research in NHP (nonhuman primate) models is crucial. Indeed, it is consensually recognized that it is not possible to directly extrapolate results obtained in rodent models to human patients. A large diversity of neurological pathologies should benefit from cellular therapy based on neural differentiation of stem cells. In the context of this special issue of Primate Biology on NHP stem cells, we describe past and recent advances on cell replacement in the NHP model of Parkinson's disease (PD). From the different grafting procedures to the various cell types transplanted, we review here diverse approaches for cell-replacement therapy and their related therapeutic potential on behavior and function in the NHP model of PD.
Collapse
Affiliation(s)
- Florence Wianny
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Julien Vezoli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| |
Collapse
|
16
|
Skibinska M, Kapelski P, Pawlak J, Rajewska-Rager A, Dmitrzak-Weglarz M, Szczepankiewicz A, Czerski P, Twarowska-Hauser J. Glial Cell Line-Derived Neurotrophic Factor (GDNF) serum level in women with schizophrenia and depression, correlation with clinical and metabolic parameters. Psychiatry Res 2017; 256:396-402. [PMID: 28689143 DOI: 10.1016/j.psychres.2017.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/14/2017] [Accepted: 07/04/2017] [Indexed: 12/15/2022]
Abstract
AIM Neurotrophic factors have been implicated in neuropsychiatric disorders, including schizophrenia and depression. Glial Cell Line-Derived Neurotrophic Factor (GDNF) promotes development, differentiation, and protection of dopaminergic, serotonergic, GABAergic and noradrenergic neurons as well as glial cells in different brain regions. This study examined serum levels of GDNF in schizophrenia and depression and its correlation with metabolic parameters during 8 weeks of treatment. METHODS Serum GDNF level, fasting serum glucose and lipid profile were measured at baseline and week 8 in 133 women: 55 with schizophrenia, 30 with a first episode depression and 48 healthy controls. The severity of the symptoms was evaluated using Positive and Negative Syndrome Scale (PANSS), 17-item Hamilton Depression Rating Scale (HDRS) and Beck Depression Inventory (BDI). RESULTS There was statistically significant higher GDNF level in schizophrenia at baseline when compared with week 8. Correlations of GDNF with PANSS in schizophrenia and cholesterol level in depression have also been detected. CONCLUSIONS To our knowledge, this is the first study which correlates GDNF levels with metabolic parameters. Our results show no differences in GDNF serum level between schizophrenia, a first depressive episode, and healthy controls. GDNF serum level did not correlate with metabolic parameters except for total cholesterol in depression.
Collapse
Affiliation(s)
- Maria Skibinska
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland.
| | - Pawel Kapelski
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland
| | - Joanna Pawlak
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland
| | - Aleksandra Rajewska-Rager
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland; Department of Adult Psychiatry, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | - Monika Dmitrzak-Weglarz
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland
| | - Aleksandra Szczepankiewicz
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland; Laboratory of Molecular and Cell Biology, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland
| | - Piotr Czerski
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland
| | - Joanna Twarowska-Hauser
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland
| |
Collapse
|
17
|
Hurtado F, Cardenas MAN, Cardenas F, León LA. La Enfermedad de Parkinson: Etiología, Tratamientos y Factores Preventivos. UNIVERSITAS PSYCHOLOGICA 2017. [DOI: 10.11144/javeriana.upsy15-5.epet] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
La enfermedad de Parkinson (EP) es la patología neurodegenerativa motora con mayor incidencia a nivel mundial. Esta afecta a aproximadamente 2-3% de la población mayor a 60 años de edad y sus causas aún no han sido bien determinadas. Actualmente no existe cura para esta patología; sin embargo, es posible contar con diferentes tratamientos que permiten aliviar algunos de sus síntomas y enlentecer su curso. Estos tratamientos tienen como premisa contrarrestar los efectos ocasionados por la pérdida de la función dopaminérgica de la sustancia nigra (SN) sobre estructuras como el núcleo subtálamico (NST) o globo pálido interno (GPi) ya sea por medio de tratamientos farmacológicos, estimulación cerebral profunda (ECP) o con el implante celular. Existen también investigaciones que están dirigiendo su interés al desarrollo de fármacos con potencial terapéutico, que presenten alta especificidad a receptores colinérgicos de nicotina (nAChRs) y antagonistas de receptores de adenosina, específicamente del subtipo A2A. Estos últimos, juegan un papel importante en el control de liberación dopaminérgica y en los procesos de neuroprotección. En esta revisión se pretende ofrecer una panorámica actual sobre algunos de los factores de riesgo asociados a EP, algunos de los tratamientos actuales más utilizados y acerca del rol de sustancias potencialmente útiles en la prevención de esta enfermedad.
Collapse
|
18
|
Li Z, Li X, Chan MTV, Wu WKK, Tan D, Shen J. Melatonin antagonizes interleukin-18-mediated inhibition on neural stem cell proliferation and differentiation. J Cell Mol Med 2017; 21:2163-2171. [PMID: 28429571 PMCID: PMC5571550 DOI: 10.1111/jcmm.13140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022] Open
Abstract
Neural stem cells (NSCs) are self‐renewing, pluripotent and undifferentiated cells which have the potential to differentiate into neurons, oligodendrocytes and astrocytes. NSC therapy for tissue regeneration, thus, gains popularity. However, the low survivals rate of the transplanted cell impedes its utilities. In this study, we tested whether melatonin, a potent antioxidant, could promote the NSC proliferation and neuronal differentiation, especially, in the presence of the pro‐inflammatory cytokine interleukin‐18 (IL‐18). Our results showed that melatonin per se indeed exhibited beneficial effects on NSCs and IL‐18 inhibited NSC proliferation, neurosphere formation and their differentiation into neurons. All inhibitory effects of IL‐18 on NSCs were significantly reduced by melatonin treatment. Moreover, melatonin application increased the production of both brain‐derived and glial cell‐derived neurotrophic factors (BDNF, GDNF) in IL‐18‐stimulated NSCs. It was observed that inhibition of BDNF or GDNF hindered the protective effects of melatonin on NSCs. A potentially protective mechanism of melatonin on the inhibition of NSC's differentiation caused IL‐18 may attribute to the up‐regulation of these two major neurotrophic factors, BNDF and GNDF. The findings indicate that melatonin may play an important role promoting the survival of NSCs in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingye Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - DunXian Tan
- Department of Cellular and Structural Biology, Health Science Center, University of Texas, San Antonio, TX, USA
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Vermilyea SC, Emborg ME. The role of nonhuman primate models in the development of cell-based therapies for Parkinson's disease. J Neural Transm (Vienna) 2017; 125:365-384. [PMID: 28326445 PMCID: PMC5847191 DOI: 10.1007/s00702-017-1708-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/12/2017] [Indexed: 12/23/2022]
Abstract
Through the course of over three decades, nonhuman primate (NHP) studies on cell-based therapies (CBTs) for Parkinson’s disease (PD) have provided insight into the feasibility, safety and efficacy of the approach, methods of cell collection and preparation, cell viability, as well as potential brain targets. Today, NHP research continues to be a vital source of information for improving cell grafts and analyzing how the host affects graft survival, integration and function. Overall, this article aims to discuss the role that NHP models of PD have played in CBT development and highlights specific issues that need to be considered to maximize the value of NHP studies for the successful clinical translation of CBTs.
Collapse
Affiliation(s)
- Scott C Vermilyea
- Neuroscience Training Program, University of Wisconsin, Madison, 1220 Capitol Court, Madison, WI, 53715, USA.,Wisconsin National Primate Research Center, University of Wisconsin, Madison, USA
| | - Marina E Emborg
- Neuroscience Training Program, University of Wisconsin, Madison, 1220 Capitol Court, Madison, WI, 53715, USA. .,Wisconsin National Primate Research Center, University of Wisconsin, Madison, USA. .,Department of Medical Physics, University of Wisconsin, Madison, USA.
| |
Collapse
|
20
|
Gonzalez R, Garitaonandia I, Poustovoitov M, Abramihina T, McEntire C, Culp B, Attwood J, Noskov A, Christiansen-Weber T, Khater M, Mora-Castilla S, To C, Crain A, Sherman G, Semechkin A, Laurent LC, Elsworth JD, Sladek J, Snyder EY, Redmond DE, Kern RA. Neural Stem Cells Derived from Human Parthenogenetic Stem Cells Engraft and Promote Recovery in a Nonhuman Primate Model of Parkinson's Disease. Cell Transplant 2016; 25:1945-1966. [DOI: 10.3727/096368916x691682] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cell therapy has attracted considerable interest as a promising therapeutic alternative for patients with Parkinson's disease (PD). Clinical studies have shown that grafted fetal neural tissue can achieve considerable biochemical and clinical improvements in PD. However, the source of fetal tissue grafts is limited and ethically controversial. Human parthenogenetic stem cells offer a good alternative because they are derived from unfertilized oocytes without destroying potentially viable human embryos and can be used to generate an unlimited supply of neural cells for transplantation. We have previously reported that human parthenogenetic stem cell-derived neural stem cells (hpNSCs) successfully engraft, survive long term, and increase brain dopamine (DA) levels in rodent and nonhuman primate models of PD. Here we report the results of a 12-month transplantation study of hpNSCs in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned African green monkeys with moderate to severe clinical parkinsonian symptoms. The hpNSCs manufactured under current good manufacturing practice (cGMP) conditions were injected bilaterally into the striatum and substantia nigra of immunosuppressed monkeys. Transplantation of hpNSCs was safe and well tolerated by the animals with no dyskinesia, tumors, ectopic tissue formation, or other test article-related serious adverse events. We observed that hpNSCs promoted behavioral recovery; increased striatal DA concentration, fiber innervation, and number of dopaminergic neurons; and induced the expression of genes and pathways downregulated in PD compared to vehicle control animals. These results provide further evidence for the clinical translation of hpNSCs and support the approval of the world's first pluripotent stem cell-based phase I/IIa study for the treatment of PD (Clinical Trial Identifier NCT02452723).
Collapse
Affiliation(s)
| | | | | | | | | | - Ben Culp
- Axion Research Foundation, Hamden, CT, USA
| | | | | | | | - Marwa Khater
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sergio Mora-Castilla
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cuong To
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew Crain
- Stem Cell Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Glenn Sherman
- International Stem Cell Corporation, Carlsbad, CA, USA
| | | | - Louise C. Laurent
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA, USA
| | - John D. Elsworth
- Department of Psychiatry and Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - John Sladek
- Department of Neurology, Pediatrics and Neuroscience, University of Colorado School of Medicine, Aurora, CO, USA
| | - Evan Y. Snyder
- Stem Cell Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - D. Eugene Redmond
- Axion Research Foundation, Hamden, CT, USA
- Department of Psychiatry and Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
21
|
López-Serrano C, Torres-Espín A, Hernández J, Alvarez-Palomo AB, Requena J, Gasull X, Edel MJ, Navarro X. Effects of the Post-Spinal Cord Injury Microenvironment on the Differentiation Capacity of Human Neural Stem Cells Derived from Induced Pluripotent Stem Cells. Cell Transplant 2016; 25:1833-1852. [DOI: 10.3727/096368916x691312] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) causes loss of neural functions below the level of the lesion due to interruption of spinal pathways and secondary neurodegenerative processes. The transplant of neural stem cells (NSCs) is a promising approach for the repair of SCI. Reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) is expected to provide an autologous source of iPSC-derived NSCs, avoiding the immune response as well as ethical issues. However, there is still limited information on the behavior and differentiation pattern of transplanted iPSC-derived NSCs within the damaged spinal cord. We transplanted iPSC-derived NSCs, obtained from adult human somatic cells, into rats at 0 or 7 days after SCI, and evaluated motor-evoked potentials and locomotion of the animals. We histologically analyzed engraftment, proliferation, and differentiation of the iPSC-derived NSCs and the spared tissue in the spinal cords at 7, 21, and 63 days posttransplant. Both transplanted groups showed a late decline in functional recovery compared to vehicle-injected groups. Histological analysis showed proliferation of transplanted cells within the tissue and that cells formed a mass. At the final time point, most grafted cells differentiated to neural and astroglial lineages, but not into oligodendrocytes, while some grafted cells remained undifferentiated and proliferative. The proinflammatory tissue microenviroment of the injured spinal cord induced proliferation of the grafted cells and, therefore, there are possible risks associated with iPSC-derived NSC transplantation. New approaches are needed to promote and guide cell differentiation, as well as reduce their tumorigenicity once the cells are transplanted at the lesion site.
Collapse
Affiliation(s)
- Clara López-Serrano
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Abel Torres-Espín
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Joaquim Hernández
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Ana B. Alvarez-Palomo
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Requena
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Lab, Department of Physiological Sciences I, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Michael J. Edel
- Control of Pluripotency Laboratory, Department of Physiological Sciences I, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- University of Sydney Medical School, Westmead Children's Hospital, Division of Pediatrics and Child Health, Westmead, Australia
- School of Anatomy, Physiology & Human Biology, and Centre for Cell Therapy and Regenerative Medicine (CCTRM), University of Western Australia, Nedlands, Australia
| | - Xavier Navarro
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| |
Collapse
|
22
|
The Preclinical Research Progress of Stem Cells Therapy in Parkinson's Disease. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5683097. [PMID: 27379248 PMCID: PMC4917676 DOI: 10.1155/2016/5683097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 04/21/2016] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a type of degenerative disorder of the basal ganglia, causing tremor at rest, muscle rigidity hypokinesia, and dementia. The effectiveness of drug treatments gradually diminishes because the conversion to dopamine within the brain is increasingly disrupted by the progressive degeneration of the dopaminergic terminals. After long-term treatment, most patients with PD suffer from disability that cannot be satisfactorily controlled. To solve these issues, stem cells have recently been used for cell therapy of PD. In this review, the characteristics of different stem cells and their therapeutic effects on PD treatment will be discussed.
Collapse
|
23
|
Zhu B, Caldwell M, Song B. Development of stem cell-based therapies for Parkinson's disease. Int J Neurosci 2016; 126:955-62. [DOI: 10.3109/00207454.2016.1148034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Duan D, Lu M. Olfactory mucosa: a rich source of cell therapy for central nervous system repair. Rev Neurosci 2015; 26:281-93. [PMID: 25781675 DOI: 10.1515/revneuro-2014-0065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/26/2015] [Indexed: 11/15/2022]
Abstract
Damage to the brain and spinal cord leads to permanent functional disability because of the very limited capacity of the central nervous system (CNS) for repair. Cell therapy is thought to be a promising strategy for CNS repair. The proper cell type of transplantation for CNS repair has not been identified until now, but autologous transplantation would be advantageous. The olfactory mucosa (OM), from the olfactory system, in which the neurosensory cells are replaced throughout adult life, is thought to be a rich source of cell therapy for CNS repair. The OM is a heterogeneous tissue composed of a variety of cells supporting both normal function and regenerative capacity, in which many studies focused on four major types of cells, including horizontal basal cells (HBCs), globose basal cells (GBC), mesenchymal stem cells (MSCs), and olfactory ensheathing cells (OECs). Here, we review the four major types of cells in the OM and shed light on the potential of the OM for CNS repair.
Collapse
|
25
|
Fu MH, Li CL, Lin HL, Chen PC, Calkins MJ, Chang YF, Cheng PH, Yang SH. Stem cell transplantation therapy in Parkinson's disease. SPRINGERPLUS 2015; 4:597. [PMID: 26543732 PMCID: PMC4628010 DOI: 10.1186/s40064-015-1400-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/06/2015] [Indexed: 02/06/2023]
Abstract
Ineffective therapeutic treatments and inadequate repair ability in the central nervous system are disturbing problems for several neurological diseases. Fortunately, the development of clinically applicable populations of stem cells has provided an avenue to overcome the failure of endogenous repair systems and substitute new cells into the damaged brain. However, there are still several existing obstacles to translating into clinical application. Here we review the stem-cell based therapies for Parkinson’s disease and discuss the potential advantages and drawbacks. We hope this review may provide suggestions for viable strategies to overcome the current technical and biological issues associated with the application of stem cells in Parkinson’s disease.
Collapse
Affiliation(s)
- Mu-Hui Fu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301 Taiwan
| | - Chia-Ling Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Hsiu-Lien Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Division of Breeding and Genetics, Livestock Research Institute, Council of Agriculture, Tainan, 71246 Taiwan
| | - Pei-Chun Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Marcus J Calkins
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Yu-Fan Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Pei-Hsun Cheng
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| | - Shang-Hsun Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, 70101 Taiwan
| |
Collapse
|
26
|
Xu X, Song N, Wang R, Jiang H, Xie J. Preferential Heme Oxygenase-1 Activation in Striatal Astrocytes Antagonizes Dopaminergic Neuron Degeneration in MPTP-Intoxicated Mice. Mol Neurobiol 2015; 53:5056-65. [PMID: 26385576 DOI: 10.1007/s12035-015-9437-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/10/2015] [Indexed: 01/01/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) accompanied by increased oxidative damage. Astrocytes, which are the most abundant glial cell types in the brain, possess higher antioxidant potential partially due to preferentially activated nuclear factor E2-related factor 2 genes. Heme oxygenase isoform 1 (HO-1) is crucial for the response to oxidative stress via the catabolism of heme to carbon monoxide, bilirubin, and iron. In the present study, we aimed to investigate astroglial expression of HO-1 in the SNpc, especially in the striatum of a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mouse model of PD, and to investigate the neuroprotective effects of intraventricularly administrated HO-1 activator cobalt protoporphyrin IX (CoPPIX). The results showed that HO-1 was faintly distributed in neurons but not astrocytes in the normal SNpc and striatum. MPTP triggered a robust HO-1 response in the astrocytes of the striatum after 1-day treatment, but the HO-1 levels declined dramatically at day 3 and were completely undetectable at day 5. Intraventricular administration of CoPPIX for 8 days could preferentially activate HO-1 in astrocytes in the striatum but not SNpc. The content of striatal dopamine and its derivatives was restored in the subacute MPTP models. CoPPIX also increased the number of dopaminergic neurons and the tyrosine hydroxylase levels in the SNpc. These results suggest that inadequate HO-1 in striatal astrocytes might contribute to the limited antioxidant defense and dopaminergic neuron degeneration in PD, and preferential HO-1 activation in striatal astrocytes might be neuroprotective. The study thus sheds light on the targeting of HO-1 in striatal astrocytes for PD therapeutics.
Collapse
Affiliation(s)
- Xiaofeng Xu
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao, 266071, China
| | - Ning Song
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao, 266071, China
| | - Ranran Wang
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao, 266071, China
| | - Hong Jiang
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China.,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao, 266071, China
| | - Junxia Xie
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, 266071, China. .,Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao, 266071, China.
| |
Collapse
|
27
|
Lin PY, Tseng PT. Decreased glial cell line-derived neurotrophic factor levels in patients with depression: a meta-analytic study. J Psychiatr Res 2015; 63:20-7. [PMID: 25726496 DOI: 10.1016/j.jpsychires.2015.02.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 11/24/2022]
Abstract
Glial cell-line derived neurotrophic factor (GDNF) has been shown to promote development, differentiation, and protection of CNS neurons and was thought to play an important role in various neuropsychiatric disorders. Several studies have examined the GDNF levels in patients with depression but shown inconsistent results. In this study, we compared blood GDNF levels between depressive patients and control subjects through meta-analytic method. The effect sizes (ESs) from all eligible studies were synthesized by using a random effect model. In this meta-analysis, we included 526 patients and 502 control subjects from 12 original articles. Compared to control subjects, blood GDNF levels are significantly decreased in patients with depression (ES = -0.62, p = 0.0011). However, significant heterogeneity was found among included studies. Through subgroup analysis, we found that GDNF was still decreased in studies with major depressive disorder (ES = -0.73, p = 0.0001); in studies with non-old-age depression (ES = -1.25, p = 0.0001), but not with old-age depression; and in studies using serum samples (ES = -0.86, p < 0.0001), but not in studies using plasma sample. Meta-regression did not show moderating effects of mean age of subjects, gender distribution, and age of onset of depression. Our findings support blood GDNF levels as a biomarker of depression as a whole, but the results were modulated by psychiatric diagnosis, age of included subjects, and sampling sources. With these results, future studies are required to examine whether effective antidepressant treatment is associated with an increase in serum GDNF levels.
Collapse
Affiliation(s)
- Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Ping-Tao Tseng
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home, Taiwan
| |
Collapse
|