1
|
Wu M, Liu H, Zhu Y, Wu P, Chen Y, Deng Z, Zhu X, Cai L. Bioinspired soft-hard combined system with mild photothermal therapeutic activity promotes diabetic bone defect healing via synergetic effects of immune activation and angiogenesis. Theranostics 2024; 14:4014-4057. [PMID: 38994032 PMCID: PMC11234279 DOI: 10.7150/thno.97335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Background: The comprehensive management of diabetic bone defects remains a substantial clinical challenge due to the hostile regenerative microenvironment characterized by aggravated inflammation, excessive reactive oxygen species (ROS), bacterial infection, impaired angiogenesis, and unbalanced bone homeostasis. Thus, an advanced multifunctional therapeutic platform capable of simultaneously achieving immune regulation, bacterial elimination, and tissue regeneration is urgently designed for augmented bone regeneration under diabetic pathological milieu. Methods and Results: Herein, a photoactivated soft-hard combined scaffold system (PGCZ) was engineered by introducing polydopamine-modified zeolitic imidazolate framework-8-loaded double-network hydrogel (soft matrix component) into 3D-printed poly(ε-caprolactone) (PCL) scaffold (hard matrix component). The versatile PGCZ scaffold based on double-network hydrogel and 3D-printed PCL was thus prepared and features highly extracellular matrix-mimicking microstructure, suitable biodegradability and mechanical properties, and excellent photothermal performance, allowing long-term structural stability and mechanical support for bone regeneration. Under periodic near-infrared (NIR) irradiation, the localized photothermal effect of PGCZ triggers the on-demand release of Zn2+, which, together with repeated mild hyperthermia, collectively accelerates the proliferation and osteogenic differentiation of preosteoblasts and potently inhibits bacterial growth and biofilm formation. Additionally, the photoactivated PGCZ system also presents outstanding immunomodulatory and ROS scavenging capacities, which regulate M2 polarization of macrophages and drive functional cytokine secretion, thus leading to a pro-regenerative microenvironment in situ with enhanced vascularization. In vivo experiments further demonstrated that the PGCZ platform in conjunction with mild photothermal therapeutic activity remarkably attenuated the local inflammatory cascade, initiated endogenous stem cell recruitment and neovascularization, and orchestrated the osteoblast/osteoclast balance, ultimately accelerating diabetic bone regeneration. Conclusions: This work highlights the potential application of a photoactivated soft-hard combined system that provides long-term biophysical (mild photothermal stimulation) and biochemical (on-demand ion delivery) cues for accelerated healing of diabetic bone defects.
Collapse
Affiliation(s)
- Minhao Wu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan 430071 Hubei, China
| | - Huifan Liu
- Department of Anesthesiology, Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yufan Zhu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan 430071 Hubei, China
| | - Ping Wu
- National Key laboratory of macromolecular drug development and manufacturing, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Disease, TaiKang Medical School (School of Basic Medicine Sciences), Wuhan University, Wuhan 430071, China
| | - Zhouming Deng
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan 430071 Hubei, China
| | - Xiaobin Zhu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan 430071 Hubei, China
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan 430071 Hubei, China
| |
Collapse
|
2
|
Ahmed SM, Elkhenany HA, Ahmed TA, Ghoneim NI, Elkodous MA, Mohamed RH, Magdeldin S, Osama A, Anwar AM, Gabr MM, El-Badri N. Diabetic microenvironment deteriorates the regenerative capacities of adipose mesenchymal stromal cells. Diabetol Metab Syndr 2024; 16:131. [PMID: 38880916 PMCID: PMC11181634 DOI: 10.1186/s13098-024-01365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Type 2 diabetes is an endocrine disorder characterized by compromised insulin sensitivity that eventually leads to overt disease. Adipose stem cells (ASCs) showed promising potency in improving type 2 diabetes and its complications through their immunomodulatory and differentiation capabilities. However, the hyperglycaemia of the diabetic microenvironment may exert a detrimental effect on the functionality of ASCs. Herein, we investigate ASC homeostasis and regenerative potential in the diabetic milieu. METHODS We conducted data collection and functional enrichment analysis to investigate the differential gene expression profile of MSCs in the diabetic microenvironment. Next, ASCs were cultured in a medium containing diabetic serum (DS) or normal non-diabetic serum (NS) for six days and one-month periods. Proteomic analysis was carried out, and ASCs were then evaluated for apoptosis, changes in the expression of surface markers and DNA repair genes, intracellular oxidative stress, and differentiation capacity. The crosstalk between the ASCs and the diabetic microenvironment was determined by the expression of pro and anti-inflammatory cytokines and cytokine receptors. RESULTS The enrichment of MSCs differentially expressed genes in diabetes points to an alteration in oxidative stress regulating pathways in MSCs. Next, proteomic analysis of ASCs in DS revealed differentially expressed proteins that are related to enhanced cellular apoptosis, DNA damage and oxidative stress, altered immunomodulatory and differentiation potential. Our experiments confirmed these data and showed that ASCs cultured in DS suffered apoptosis, intracellular oxidative stress, and defective DNA repair. Under diabetic conditions, ASCs also showed compromised osteogenic, adipogenic, and angiogenic differentiation capacities. Both pro- and anti-inflammatory cytokine expression were significantly altered by culture of ASCs in DS denoting defective immunomodulatory potential. Interestingly, ASCs showed induction of antioxidative stress genes and proteins such as SIRT1, TERF1, Clusterin and PKM2. CONCLUSION We propose that this deterioration in the regenerative function of ASCs is partially mediated by the induced oxidative stress and the diabetic inflammatory milieu. The induction of antioxidative stress factors in ASCs may indicate an adaptation mechanism to the increased oxidative stress in the diabetic microenvironment.
Collapse
Affiliation(s)
- Sara M Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Sheikh Zayed District, 6th of October City , 12582, Giza, Egypt
| | - Hoda A Elkhenany
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Sheikh Zayed District, 6th of October City , 12582, Giza, Egypt
- Department of surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Toka A Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Sheikh Zayed District, 6th of October City , 12582, Giza, Egypt
| | - Nehal I Ghoneim
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Sheikh Zayed District, 6th of October City , 12582, Giza, Egypt
| | - Mohamed Abd Elkodous
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Sheikh Zayed District, 6th of October City , 12582, Giza, Egypt
| | - Rania Hassan Mohamed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Sheikh Zayed District, 6th of October City , 12582, Giza, Egypt
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sameh Magdeldin
- Proteomic and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Aya Osama
- Proteomic and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo, Egypt
| | - Ali Mostafa Anwar
- Proteomic and Metabolomics Research Program, Basic Research Department, Children's Cancer Hospital, Cairo, Egypt
| | - Mahmoud M Gabr
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Sheikh Zayed District, 6th of October City , 12582, Giza, Egypt.
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Sheikh Zayed District, Giza 12588, 6th of October City, Egypt.
| |
Collapse
|
3
|
Raouf EA, Elsherbini AM, Yousef EAS, Abdulrahman M, Zaher AR. Evaluation of the Regenerative Capacity of Demineralized Bone Matrix vs Fat Graft in Alveolar Cleft Model in Albino Rats. J Contemp Dent Pract 2024; 25:554-562. [PMID: 39364822 DOI: 10.5005/jp-journals-10024-3706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
AIM This study was performed to evaluate the regenerative capacity of demineralized bone matrix vs fat graft, both guided by pericardium membrane in alveolar cleft model in albino rats. MATERIALS AND METHODS A total of 72 rats were required in this study. A surgical bone defect with a 7 mm length × 4 mm width × 3 mm depth was created as a model of an alveolar cleft, then the rats were divided randomly into four equal groups each group contained 18 rats: control group (defect only), the membrane group (the defect was covered by the pericardium membrane), the demineralized bone matrix (DBM) group (the defect was filled with DBM guided by pericardium membrane) and fat group (the defect was filled with a fat graft guided by the pericardium membrane). Around 6 rats from each group were euthanized after 2, 4, and 8 weeks. Skulls were scanned with cone beam computed tomography (CBCT) and harvested for histological evaluation with routine H&E immunohistochemical stains (Anti-osteocalcin and Anti-Wnt5a). The data was recorded and statistically analyzed by a two-way ANOVA. RESULTS The study showed a notable formation of new bone, and expression of OCN and Wnt5a were notably increased by time in the fat group. However, the density of bone grafts and OCN and Wnt5a expression decreased with time in the DBM group. Control and membrane groups showed negative OCN and Wnt5a immune-reactivity in the cleft site. CONCLUSION Fat graft results were superior to DBM results with regard to mucosal closure and accelerated bone regeneration, and may represent an effective treatment for alveolar cleft reconstruction. CLINICAL SIGNIFICANCE Finding an inexpensive, accessible, biocompatible and easily manipulated treatment for craniofacial reconstruction and fat graft fulfilled the desired aims. Further investigations with prolonged evaluation periods are needed. How to cite this article: Abdel Raouf E, Elsherbini AM, Abdel Salam Yousef Y, et al. Evaluation of the Regenerative Capacity of Demineralized Bone Matrix vs Fat Graft in Alveolar Cleft Model in Albino Rats. J Contemp Dent Pract 2024;25(6):554-562.
Collapse
Affiliation(s)
- Esraa Abdel Raouf
- Department of Oral Biology Faculty of Dentistry, Mansoura University, Mansoura, Egypt, Phone: +20 1097493193, e-mail: , Orcid: https://orcid.org/0000-0002-8678-7363
| | - Amira M Elsherbini
- Department of Oral Biology Faculty of Dentistry, Mansoura University, Mansoura, Egypt, Orcid: https://orcid.org/0000-0001-7960-3557
| | - Eman Abdel Salam Yousef
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Mansoura University, Mansoura; Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Horus University, New Damietta, Egypt
| | - Mohamed Abdulrahman
- Department of Oral Biology Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Ahmed Ragheb Zaher
- Department of Oral Biology Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Sheng N, Xing F, Wang J, Zhang QY, Nie R, Li-Ling J, Duan X, Xie HQ. Recent progress in bone-repair strategies in diabetic conditions. Mater Today Bio 2023; 23:100835. [PMID: 37928253 PMCID: PMC10623372 DOI: 10.1016/j.mtbio.2023.100835] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 10/02/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023] Open
Abstract
Bone regeneration following trauma, tumor resection, infection, or congenital disease is challenging. Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia. It can result in complications affecting multiple systems including the musculoskeletal system. The increased number of diabetes-related fractures poses a great challenge to clinical specialties, particularly orthopedics and dentistry. Various pathological factors underlying DM may directly impair the process of bone regeneration, leading to delayed or even non-union of fractures. This review summarizes the mechanisms by which DM hampers bone regeneration, including immune abnormalities, inflammation, reactive oxygen species (ROS) accumulation, vascular system damage, insulin/insulin-like growth factor (IGF) deficiency, hyperglycemia, and the production of advanced glycation end products (AGEs). Based on published data, it also summarizes bone repair strategies in diabetic conditions, which include immune regulation, inhibition of inflammation, reduction of oxidative stress, promotion of angiogenesis, restoration of stem cell mobilization, and promotion of osteogenic differentiation, in addition to the challenges and future prospects of such approaches.
Collapse
Affiliation(s)
- Ning Sheng
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Jie Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Qing-Yi Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Duan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
| |
Collapse
|
5
|
Wagner JM, Wille A, Fueth M, Weske S, Lotzien S, Reinkemeier F, Wallner C, Sogorski A, Dittfeld S, Becerikli M, Schildhauer TA, Lehnhardt M, Levkau B, Behr B. Pharmacological elevation of sphingosine-1-phosphate by S1P lyase inhibition accelerates bone regeneration after post-traumatic osteomyelitis. J Cell Mol Med 2023; 27:3786-3795. [PMID: 37710406 PMCID: PMC10718149 DOI: 10.1111/jcmm.17952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/15/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Posttraumatic osteomyelitis and the ensuing bone defects are a debilitating complication after open fractures with little therapeutic options. We have recently identified potent osteoanabolic effects of sphingosine-1-phosphate (S1P) signalling and have now tested whether it may beneficially affect bone regeneration after infection. We employed pharmacological S1P lyase inhibition by 4-deoxypyrodoxin (DOP) to raise S1P levels in vivo in an unicortical long bone defect model of posttraumatic osteomyelitis in mice. In a translational approach, human bone specimens of clinical osteomyelitis patients were treated in organ culture in vitro with DOP. Bone regeneration was assessed by μCT, histomorphometry, immunohistology and gene expression analysis. The role of S1P receptors was addressed using S1PR3 deficient mice. Here, we present data that DOP treatment markedly enhanced osteogenesis in posttraumatic osteomyelitis. This was accompanied by greatly improved osteoblastogenesis and enhanced angiogenesis in the callus accompanied by osteoclast-mediated bone remodelling. We also identified the target of increased S1P to be the S1PR3 as S1PR3-/- mice showed no improvement of bone regeneration by DOP. In the human bone explants, bone mass significantly increased along with enhanced osteoblastogenesis and angiogenesis. Our data suggest that enhancement of S1P/S1PR3 signalling may be a promising therapeutic target for bone regeneration in posttraumatic osteomyelitis.
Collapse
Affiliation(s)
- Johannes M. Wagner
- Department of Plastic SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
- Department of Trauma Surgery and General SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| | - Annalena Wille
- Institute of Molecular Medicine IIIUniversity Hospital Düsseldorf and Heinrich Heine Universität DüsseldorfDüsseldorfGermany
| | - Maria Fueth
- Department of Plastic SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| | - Sarah Weske
- Institute of Molecular Medicine IIIUniversity Hospital Düsseldorf and Heinrich Heine Universität DüsseldorfDüsseldorfGermany
| | - Sebastian Lotzien
- Department of Trauma Surgery and General SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| | - Felix Reinkemeier
- Department of Plastic SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| | - Christoph Wallner
- Department of Plastic SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| | - Alexander Sogorski
- Department of Plastic SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| | - Stephanie Dittfeld
- Department of Plastic SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| | - Mustafa Becerikli
- Department of Plastic SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| | - Thomas A. Schildhauer
- Department of Trauma Surgery and General SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| | - Marcus Lehnhardt
- Department of Plastic SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| | - Bodo Levkau
- Institute of Molecular Medicine IIIUniversity Hospital Düsseldorf and Heinrich Heine Universität DüsseldorfDüsseldorfGermany
| | - Björn Behr
- Department of Plastic SurgeryBG University Hospital Bergmannsheil BochumBochumGermany
| |
Collapse
|
6
|
Shen Y, Tang Q, Wang J, Zhou Z, Yin Y, Zhang Y, Zheng W, Wang X, Chen G, Sun J, Chen L. Targeting RORα in macrophages to boost diabetic bone regeneration. Cell Prolif 2023; 56:e13474. [PMID: 37051760 PMCID: PMC10542986 DOI: 10.1111/cpr.13474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Diabetes mellitus (DM) has become a serious threat to human health. Bone regeneration deficiency and nonunion caused by DM is perceived as a worldwide epidemic, with a very high socioeconomic impact on public health. Here, we find that targeted activation of retinoic acid-related orphan receptor α (RORα) by SR1078 in the early stage of bone defect repair can significantly promote in situ bone regeneration of DM rats. Bone regeneration relies on the activation of macrophage RORα in the early bone repair, but RORα of DM rats fails to upregulation as hyperglycemic inflammatory microenvironment induced IGF1-AMPK signalling deficiency. Mechanistic investigations suggest that RORα is vital for macrophage-induced migration and proliferation of bone mesenchymal stem cells (BMSCs) via a CCL3/IL-6 depending manner. In summary, our study identifies RORα expressed in macrophages during the early stage of bone defect repair is crucial for in situ bone regeneration, and offers a novel strategy for bone regeneration therapy and fracture repair in DM patients.
Collapse
Affiliation(s)
- Yufeng Shen
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
- Department of Stomatology, The First Affiliated Hospital, School of MedicineShihezi UniversityShihezi 832000China
| | - Qingming Tang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Jiajia Wang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Zheng Zhou
- Department of Stomatology, The First Affiliated Hospital, School of MedicineShihezi UniversityShihezi 832000China
| | - Ying Yin
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Yifan Zhang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Wenhao Zheng
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Xinyuan Wang
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Guangjin Chen
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Jiwei Sun
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| | - Lili Chen
- Department of StomatologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022China
- School of StomatologyTongji Medical College, Huazhong University of Science and TechnologyWuhan 430030China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and RegenerationWuhan 430022China
| |
Collapse
|
7
|
Zhao X, Zhang Y, Zuo X, Wang S, Dong X. Knockdown of Adra2a Increases Secretion of Growth Factors and Wound Healing Ability in Diabetic Adipose-Derived Stem Cells. Stem Cells Int 2022; 2022:5704628. [PMID: 36420091 PMCID: PMC9678456 DOI: 10.1155/2022/5704628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 08/04/2024] Open
Abstract
Studies showed that compared to normal adipose-derived stem cells (ASCs), ASCs from type 2 diabetic (T2D) mice were less effective in treating diabetic cutaneous wounds. However, the mechanisms remain unclear. Our transcriptomic profiling comparison showed that the expression of α2A-adrenergic receptor (Adra2a) was significantly increased in ASCs from T2D mice (T2D ASCs). Therefore, the purpose of this study was to investigate whether the elevated Adra2a is involved in the diminished wound-healing capabilities of T2D ASCs. RNA-seq was used to compare the transcriptomic profiles of T2D and normal ASCs. The differential genes were verified by real-time RT-qPCR. Clonidine was used to active Adra2a, and lentivirus-mediated RNAi was used to knockdown Adra2a. The secretion and expression of growth factors were detected by enzyme-linked immunosorbent assay (ELISA) and real-time RT-qPCR, respectively. The cAMP and PKA activity were also detected. Wound healing abilities of various ASCs were assessed in T2D mouse excisional wound models. The results showed Adra2a agonist clonidine decreased the expression and secretion of growth factors, cAMP content, and activity of PKA in ASCs, while Adra2a knockdown T2D ASCs showed the opposite effects. Adra2a knockdown T2D ASCs also showed increased wound-healing capabilities compared to untreated T2D ASCs. Altogether, T2D increased Adra2a expression, which may subsequently decrease the expression and secretion of growth factors and eventually diminish the wound-healing capabilities of T2D ASCs. Adra2a knockdown can restore the secretion of growth factors in T2D ASCs and then accelerate the wound healing, which may provide a new possibility in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Xiangyuan Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Yong Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xinzhen Zuo
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Shubai Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xiao Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| |
Collapse
|
8
|
Zhang M, Gao Y, Li Q, Cao H, Yang J, Cai X, Xiao J. Downregulation of DNA methyltransferase-3a ameliorates the osteogenic differentiation ability of adipose-derived stem cells in diabetic osteoporosis via Wnt/β-catenin signaling pathway. Stem Cell Res Ther 2022; 13:397. [PMID: 35927735 PMCID: PMC9351106 DOI: 10.1186/s13287-022-03088-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/23/2022] [Indexed: 02/06/2023] Open
Abstract
Background Diabetes-related osteoporosis (DOP) is a chronic disease caused by the high glucose environment that induces a metabolic disorder of osteocytes and osteoblast-associated mesenchymal stem cells. The processes of bone defect repair and regeneration become extremely difficult with DOP. Adipose-derived stem cells (ASCs), as seed cells in bone tissue engineering technology, provide a promising therapeutic approach for bone regeneration in DOP patients. The osteogenic ability of ASCs is lower in a DOP model than that of control ASCs. DNA methylation, as a mechanism of epigenetic regulation, may be involved in DNA methylation of various genes, thereby participating in biological behaviors of various cells. Emerging evidence suggests that increased DNA methylation levels are associated with activation of Wnt/β-catenin signaling pathway. The purpose of this study was to investigate the influence of the diabetic environment on the osteogenic potential of ASCs, to explore the role of DNA methylation on osteogenic differentiation of DOP-ASCs via Wnt/β-catenin signaling pathway, and to improve the osteogenic differentiation ability of ASCs with DOP. Methods DOP-ASCs and control ASCs were isolated from DOP C57BL/6 and control mice, respectively. The multipotency of DOP-ASCs was confirmed by Alizarin Red-S, Oil Red-O, and Alcian blue staining. Real-time polymerase chain reaction (RT-PCR), immunofluorescence, and western blotting were used to analyze changes in markers of osteogenic differentiation, DNA methylation, and Wnt/β-catenin signaling. Alizarin Red-S staining was also used to confirm changes in the osteogenic ability. DNMT small interfering RNA (siRNA), shRNA-Dnmt3a, and LVRNA-Dnmt3a were used to assess the role of Dnmt3a in osteogenic differentiation of control ASCs and DOP-ASCs. Micro-computed tomography, hematoxylin and eosin staining, and Masson staining were used to analyze changes in the osteogenic capability while downregulating Dnmt3a with lentivirus in DOP mice in vivo. Results The proliferative ability of DOP-ASCs was lower than that of control ASCs. DOP-ASCs showed a decrease in osteogenic differentiation capacity, lower Wnt/β-catenin signaling pathway activity, and a higher level of Dnmt3a than control ASCs. When Dnmt3a was downregulated by siRNA and shRNA, osteogenic-related factors Runt-related transcription factor 2 and osteopontin, and activity of Wnt/β-catenin signaling pathway were increased, which rescued the poor osteogenic potential of DOP-ASCs. When Dnmt3a was upregulated by LVRNA-Dnmt3a, the osteogenic ability was inhibited. The same results were obtained in vivo. Conclusions Dnmt3a silencing rescues the negative effects of DOP on ASCs and provides a possible approach for bone tissue regeneration in patients with diabetic osteoporosis.
Collapse
Affiliation(s)
- Maorui Zhang
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yujin Gao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qing Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Huayue Cao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jianghua Yang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China. .,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China. .,Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
9
|
Becerikli M, Reinkemeier F, Dadras M, Wallner C, Wagner JM, Drysch M, Sogorski A, von Glinski M, Lehnhardt M, Hahn SA, Behr B. TGF-beta pathway inhibition as the therapeutic acceleration of diabetic bone regeneration. J Orthop Res 2022; 40:1810-1826. [PMID: 34775640 DOI: 10.1002/jor.25212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/10/2021] [Accepted: 10/30/2021] [Indexed: 02/04/2023]
Abstract
Bone regeneration and fracture healing are impaired in diabetic patients due to defective functions of associated cells. Thus, the search for molecular causes and new treatment strategies are of particular clinical relevance. We investigated the gene expression profile of bones from type 2 diabetic (db- /db- ) mice and wild-type (wt) mice by comparative microarray analyses before and after placing tibial defects and examined the expression of several osteogenesis- and osteoclastogenesis-related markers by quantitative real-time polymerase chain reaction. In regenerating wt bones, pathways related to, for example, inhibition of matrix metalloproteases were activated, whereas in db- /db- bones activation of pathways related to, for example, osteoarthritis, transforming growth factor-beta (Tgfb), or hypoxia-inducible factor 1a were detected during regeneration. We defined the Tgfb pathway as a potential therapeutic target and locally applied a single dose (0.5 µg) of the Tgfb 1, 2, and 3 neutralizing antibody 1D11 on tibial defects in db- /db- mice (n = 7). Seven days postoperation, histological and immunohistochemical stainings were performed. Decreased bone regeneration, osteogenic differentiation, osteoclast invasion, and angiogenesis in db- /db- mice were significantly restored by local 1D11 application in comparison to the phosphate-buffered saline controls. Thus, local treatment of db- /db- bony defects with Tgfb neutralizing antibody 1D11 might be considered a good candidate for the successful acceleration of bone regeneration.
Collapse
Affiliation(s)
- Mustafa Becerikli
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Felix Reinkemeier
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Mehran Dadras
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Christoph Wallner
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Johannes M Wagner
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Marius Drysch
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Alexander Sogorski
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Maxi von Glinski
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Marcus Lehnhardt
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Stephan A Hahn
- Department of Molecular GI-Oncology (MGO), Clinical Research Center (ZKF), Ruhr-University Bochum, Bochum, Germany
| | - Björn Behr
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Role of Autonomous Neuropathy in Diabetic Bone Regeneration. Cells 2022; 11:cells11040612. [PMID: 35203263 PMCID: PMC8870009 DOI: 10.3390/cells11040612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 01/11/2023] Open
Abstract
Diabetes mellitus has multiple negative effects on regenerative processes, especially on wound and fracture healing. Despite the well-known negative effects of diabetes on the autonomous nervous system, only little is known about the role in bone regeneration within this context. Subsequently, we investigated diabetic bone regeneration in db−/db− mice with a special emphasis on the sympathetic nervous system of the bone in a monocortical tibia defect model. Moreover, the effect of pharmacological sympathectomy via administration of 6-OHDA was evaluated in C57Bl6 wildtype mice. Diabetic animals as well as wildtype mice received a treatment of BRL37344, a β3-adrenergic agonist. Bones of animals were examined via µCT, aniline-blue and Masson–Goldner staining for new bone formation, TRAP staining for bone turnover and immunoflourescence staining against tyrosinhydroxylase and stromal cell-derived factor 1 (SDF-1). Sympathectomized wildtype mice showed a significantly decreased bone regeneration, just comparable to db−/db− mice. New bone formation of BRL37344 treated db−/db− and sympathectomized wildtype mice was markedly improved in histology and µCT. Immunoflourescence stainings revealed significantly increased SDF-1 due to BRL37344 treatment in diabetic animals and sympathectomized wildtypes. This study depicts the important role of the sympathetic nervous system for bone regenerative processes using the clinical example of diabetes mellitus type 2. In order to improve and gain further insights into diabetic fracture healing, β3-agonist BRL37344 proved to be a potent treatment option, restoring impaired diabetic bone regeneration.
Collapse
|
11
|
Huber J, Griffin MF, Longaker MT, Quarto N. Exosomes: A Tool for Bone Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:101-113. [PMID: 33297857 PMCID: PMC8892957 DOI: 10.1089/ten.teb.2020.0246] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mesenchymal stem cells (MSCs) have been repeatedly shown to be a valuable source for cell-based therapy in regenerative medicine, including bony tissue repair. However, engraftment at the injury site is poor. Recently, it has been suggested that MSCs and other cells act through a paracrine signaling mechanism. Exosomes are nanostructures that have been implicated in this process. They carry DNA, RNA, proteins, and lipids and play an important role in cell-to-cell communication directly modulating their target cell at a transcriptional level. In a bone microenvironment, they have been shown to increase osteogenesis and osteogenic differentiation in vivo and in vitro. In the following review, we will discuss the most advanced and significant knowledge of biological functions of exosomes in bone regeneration and their clinical applications in osseous diseases. Impact statement Mesenchymal stem cells have been shown to be a promising tool in bone tissue engineering. Recently, it has been suggested that they secrete exosomes containing messenger RNA, proteins, and lipids, thus acting through paracrine signaling mechanisms. Considering that exosomes are nonteratogenic and have low immunogenic potential, they could potentially replace stem-cell based therapy and thus eradicate the risk of neoplastic transformation associated with cell transplantations in bone regeneration.
Collapse
Affiliation(s)
- Julika Huber
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, California, USA.,Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany.,Address correspondence to: Julika Huber, MD, Dr. med, Hagey Laboratory for Pediatric Regenerative Medicine, School of Medicine, Stanford University, 257 Campus Drive, Stanford, CA 94305-5148, USA
| | - Michelle F. Griffin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, California, USA
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, California, USA.,Stanford Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Natalina Quarto
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Stanford University, Stanford, California, USA.,Dipartimento di Scienze Biomediche Avanzate, Universita’ degli Studi di Napoli Federico II, Napoli, Italy.,Address correspondence to: Natalina Quarto, PhD, Hagey Laboratory for Pediatric Regenerative Medicine, School of Medicine, Stanford University, 257 Campus Drive, Stanford, CA 94305-5148, USA
| |
Collapse
|
12
|
Figeac F, Tencerova M, Ali D, Andersen TL, Appadoo DRC, Kerckhofs G, Ditzel N, Kowal JM, Rauch A, Kassem M. Impaired bone fracture healing in type 2 diabetes is caused by defective functions of skeletal progenitor cells. Stem Cells 2022; 40:149-164. [DOI: 10.1093/stmcls/sxab011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/17/2021] [Indexed: 11/12/2022]
Abstract
Abstract
The mechanisms of obesity and type 2 diabetes (T2D)-associated impaired fracture healing are poorly studied. In a murine model of T2D reflecting both hyperinsulinemia induced by high fat diet (HFD) and insulinopenia induced by treatment with streptozotocin (STZ), we examined bone healing in a tibia cortical bone defect. A delayed bone healing was observed during hyperinsulinemia as newly formed bone was reduced by – 28.4±7.7% and was associated with accumulation of marrow adipocytes at the defect site +124.06±38.71%, and increased density of SCA1+ (+74.99± 29.19%) but not Runx2 +osteoprogenitor cells. We also observed increased in reactive oxygen species production (+101.82± 33.05%), senescence gene signature (≈106.66± 34.03%) and LAMIN B1 - senescent cell density (+225.18± 43.15%), suggesting accelerated senescence phenotype. During insulinopenia, a more pronounced delayed bone healing was observed with decreased newly formed bone to -34.9± 6.2% which was inversely correlated with glucose levels (R 2=0.48, p<0.004) and callus adipose tissue area (R 2=0.3711, p<0.01). Finally, to investigate the relevance to human physiology, we observed that sera from obese and T2D subjects had disease state-specific inhibitory effects on osteoblast related gene signatures in human bone marrow stromal cells which resulted in inhibition of osteoblast and enhanced adipocyte differentiation. Our data demonstrate that T2D exerts negative effects on bone healing through inhibition of osteoblast differentiation of skeletal stem cells and induction of accelerated bone senescence and that the hyperglycaemia per se and not just insulin levels is detrimental for bone healing.
Collapse
Affiliation(s)
- Florence Figeac
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
| | - Michaela Tencerova
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
- Current Molecular Physiology of Bone, Institute of Physiology, the Czech Academy of Sciences, Prague, Czech Republic
| | - Dalia Ali
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
| | - Thomas L Andersen
- Department of Pathology, Odense University Hospital, Odense
- Clinical Cell Biology, Research Unit of Pathology, Department of Clinical Research, University of Southern Denmark, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Denmark
| | | | - Greet Kerckhofs
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Institute for Experimental and Clinical Research, UCLouvain, Woluwe, Belgium
- Department of Material Science and Engineering, KU Leuven, Leuven, Belgium
| | - Nicholas Ditzel
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
| | - Justyna M Kowal
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
| | - Alexander Rauch
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Moustapha Kassem
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
- Department of Cellular and Molecular Medicine, Danish Stem Cell Center (DanStem), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Inhibition of Pathological Increased Matrix Metalloproteinase (MMP) Activity for Improvement of Bone Regeneration in Diabetes. Life (Basel) 2022; 12:life12020134. [PMID: 35207422 PMCID: PMC8879894 DOI: 10.3390/life12020134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/07/2023] Open
Abstract
Patients with diabetes suffer from poor fracture healing. Molecular reasons are not fully understood and our previous gene expression microarray analyses of regenerating bones from mice with type 2 diabetes (db−/db−) revealed accelerated activation of pathways concerning matrix metalloproteases (MMPs). Thus, we picked out the pathological MMP acceleration as a target for profound gene expression analyses and additional therapeutic intervention in the present study. In the first part, gene expression of ECM degrading proteinases and inhibitors was investigated three and seven days postoperatively. Mmp3, Mmp9, Mmp13 and gene expression of MMP inhibitor Timp2 was significantly higher in regenerating bone fractures of db−/db− compared to wild type animals. Timp1 and metalloproteinase AdamTS4 showed no differences. In the second part, we locally applied a single dose (1 µL of 5 µM solution) of the broad-spectrum molecular MMP inhibitor Marimastat on tibial defects in db−/db−. We performed immunohistochemical and histological stainings seven days post operation. Impaired bone healing, collagen content, angiogenesis, and osteoclast invasion in db−/db− were restored significantly by application of Marimastat compared to PBS controls (n = 7/group). Hence, local intervention of bone defects by the molecular MMP inhibitor Marimastat might be an alternative therapeutic intervention for bone healing in diabetes.
Collapse
|
14
|
Wagner JM, Steubing Y, Dadras M, Wallner C, Lotzien S, Huber J, Sogorski A, Sacher M, Reinkemeier F, Dittfeld S, Becerikli M, Lehnhardt M, Behr B. Wnt3a and ASCs are capable of restoring mineralization in staph aureus-infected primary murine osteoblasts. J Bone Miner Metab 2022; 40:20-28. [PMID: 34562154 DOI: 10.1007/s00774-021-01269-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Bone infections are one of the main reasons for impaired bone regeneration and non-union formation. In previous experimental animal studies we could already demonstrate that bone defects due to prior infections showed a markedly reduced healing capacity, which could effectively be enhanced via application of Wnt3a and Adipose-derived stromal cells (ASCs). For a more in-depth analysis, we investigated proliferation and mineralization of cultured osteoblasts infected with staph aureus and sought to investigate effects of Wnt3a and ASCs on infected osteoblasts. MATERIALS AND METHODS Primary murine osteoblasts were isolated from calvariae and infected with staph aureus. Infected osteoblasts received treatment via application of recombinant Wnt3a, ASC conditioned medium and were furthermore cocultured with ASCs. Osteoblasts were evaluated by Alamar blue assay for metabolic activity, TUNEL-assay for apoptosis, ALP and Alizarin Red staining for mineralization. In addition, immunoflourescent staining (IF) and qRT-PCR analyses were performed. RESULTS Infected osteoblasts showed a markedly reduced ability for mineralization and increased apoptosis, which could be restored to physiological levels by Wnt3a and ASC treatment. Interestingly, metabolic activity of osteoblasts seemed to be unaffected by staph aureus infection. Additional analyses of Wnt-pathway activity revealed effective enhancement of canonical Wnt-pathway activity in Wnt3a-treated osteoblasts. CONCLUSIONS In summary, we gained further osteoblast-related insights into pathomechanisms of reduced bone healing capacity upon infections.
Collapse
Affiliation(s)
| | - Yonca Steubing
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Mehran Dadras
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Christoph Wallner
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Sebastian Lotzien
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Julika Huber
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Alexander Sogorski
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Maxi Sacher
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Felix Reinkemeier
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Stephanie Dittfeld
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Mustafa Becerikli
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Marcus Lehnhardt
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| | - Björn Behr
- University Hospital BG Bergmannsheil Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany
| |
Collapse
|
15
|
Zhang M, Yang B, Peng S, Xiao J. Metformin Rescues the Impaired Osteogenesis Differentiation Ability of Rat Adipose-Derived Stem Cells in High Glucose by Activating Autophagy. Stem Cells Dev 2021; 30:1017-1027. [PMID: 34486387 DOI: 10.1089/scd.2021.0181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The incidence and morbidity of diabetes osteoporosis (DOP) are increasing with each passing year. Patients with DOP have a higher risk of bone fracture and poor healing of bone defects, which make a poor quality of their life. Bone tissue engineering based on autologous adipose-derived stem cells (ASCs) transplantation develops as an effective technique to achieve tissue regeneration for patients with bone defects. With the purpose of promoting auto-ASCs transplantation, this research project explored the effect of metformin on the osteogenic differentiation of ASCs under a high-glucose culture environment. In this study, we found that 40 mM high glucose inhibited the physiological function of ASCs, including cell proliferation, migration, and osteogenic differentiation. Indicators of osteogenic differentiation were all downregulated by 40 mM high glucose, including alkaline phosphatase activity, runt-related transcription factor 2, and osteopontin gene expression, and Wnt signaling pathway. At the same time, the cell autophagy makers BECLIN1 and microtubule-associated protein 1 light chain 3 (LC3 I/II) were decreased. While 0.1 mM metformin upregulated the expression of BECLIN1 and LC3 I/II gene and inhibited the expression of mammalian target of rapamycin (mTOR) and GSK3β, it contributed to reverse the osteogenesis inhibition of ASCs caused by high glucose. When 3-methyladenine was used to block the activity of metformin, metformin could not exert its protective effect on ASCs. All the findings elaborated the regulatory mechanism of metformin in the high-glucose microenvironment to protect the osteogenic differentiation ability of ASCs. Metformin plays an active role in promoting the osteogenic differentiation of ASCs with DOP, and it may contribute to the application of ASCs transplantation for bone regeneration in DOP.
Collapse
Affiliation(s)
- Maorui Zhang
- Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, People's Republic of China.,Oral & Maxillofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, People's Republic of China.,Division of Oral Health Sciences, Department of Fixed Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Bo Yang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Shuanglin Peng
- Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, People's Republic of China.,Oral & Maxillofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, People's Republic of China.,Oral & Maxillofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, People's Republic of China
| |
Collapse
|
16
|
Ryan G, Magony R, Gortler H, Godbout C, Schemitsch EH, Nauth A. Systemically impaired fracture healing in small animal research: A review of fracture repair models. J Orthop Res 2021; 39:1359-1367. [PMID: 33580554 DOI: 10.1002/jor.25003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 02/10/2021] [Indexed: 02/04/2023]
Abstract
Fracture healing is a complex process requiring mechanical stability, an osteoconductive matrix, and osteoinductive and osteogenic biology. This intricate process is easily disrupted by various patient factors such as chronic disease and lifestyle. As the medical complexity and age of patients with fractures continue to increase, the importance of developing relevant experimental models is becoming paramount in preclinical research. The objective of this review is to describe the most common small animal models of systemically impaired fracture healing used in the orthopedic literature including osteoporosis, diabetes mellitus, smoking, alcohol use, obesity, and ageing. This review will provide orthopedic researchers with a summary of current models of systemically impaired fracture healing used in small animals and present an overview of the methods of induction for each condition.
Collapse
Affiliation(s)
- Gareth Ryan
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Richard Magony
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Hilary Gortler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Charles Godbout
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Emil H Schemitsch
- Department of Surgery, Division of Orthopaedic Surgery, University of Western Ontario, London, Ontario, Canada
| | - Aaron Nauth
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Division of Orthopaedic Surgery, St. Michael's Hospital - Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Chen J, Li M, Liu AQ, Zheng CX, Bao LH, Chen K, Xu XL, Guan JT, Bai M, Zhou T, Sui BD, Li DH, Jin Y, Hu CH. Gli1 + Cells Couple with Type H Vessels and Are Required for Type H Vessel Formation. Stem Cell Reports 2021; 15:110-124. [PMID: 32668219 PMCID: PMC7363988 DOI: 10.1016/j.stemcr.2020.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) reside in the perivascular niche and modulate tissue/organ homeostasis; however, little is known about whether and how their localization and function are linked. Particularly, whether specific MSC subsets couple with and regulate specialized vessel subtypes is unclear. Here, we show that Gli1+ cells, which are a subpopulation of MSCs couple with and regulate a specialized form of vasculature. The specific capillaries, i.e., CD31hiEMCNhi type H vessels, are the preferable vascular subtype which Gli1+ cells are adjacent to in bone. Gli1+ cells are further identified to be phenotypically coupled with type H endothelium during bone growth and defect healing. Importantly, Gli1+ cell ablation inhibits type H vessel formation associated with suppressed bone generation and regeneration. Mechanistically, Gli1+ cells initiate angiogenesis through Gli and HIF-1α signaling. These findings suggest a morphological and functional framework of Gli1+ cells modulating coupled type H vasculature for tissue homeostasis and regenerative repair.
Collapse
Affiliation(s)
- Ji Chen
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China; Department of Oral Implantology, School of Stomatology, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| | - Meng Li
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China
| | - An-Qi Liu
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China
| | - Li-Hui Bao
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China; Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - Kai Chen
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China; Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - Xiao-Lin Xu
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China; Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - Jiang-Tao Guan
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China; Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - Meng Bai
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China; Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - Tao Zhou
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China; Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China
| | - De-Hua Li
- Department of Oral Implantology, School of Stomatology, Fourth Military Medical University, Xi'an, Shannxi 710032, China.
| | - Yan Jin
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China.
| | - Cheng-Hu Hu
- State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, China; Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
18
|
Dong X, Shen LH, Yi Z, He LH, Yi Z. Exosomes from Adipose-Derived Stem Cells Can Prevent Medication-Related Osteonecrosis of the Jaw. Med Sci Monit 2021; 27:e929684. [PMID: 33690263 PMCID: PMC7958499 DOI: 10.12659/msm.929684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The treatment measures of medication-related osteonecrosis of the jaw (MRONJ) is a worldwide challenge in oral and maxillofacial surgery because of its unclear pathogenesis. Previous studies suggested that mesenchymal stem cells played important roles in promoting MRONJ lesion healing, but the detailed mechanisms were unknown. Increasing numbers of studies have demonstrated that exosomes derived from mesenchymal stem cells, especially adipose-derived stem cells, have key roles in stem cell-based therapies by accelerating bone remodeling, facilitating angiogenesis, and promoting wound healing. We hypothesized that exosomes derived from adipose-derived stem cells can prevent MRONJ by accelerating gingival healing and enhancing bone remodeling processes. Our results may provide a promising therapeutic option for MRONJ clinical therapy.
Collapse
Affiliation(s)
- Xian Dong
- Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China (mainland)
| | - Li-Hang Shen
- Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China (mainland)
| | - Zheng Yi
- Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China (mainland)
| | - Lin-Hai He
- First Clinical Division, Peking University School Hospital of Stomatology, Beijing, China (mainland)
| | - Zhang Yi
- Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China (mainland)
| |
Collapse
|
19
|
Kang M, Thalji G, Huang CC, Shirazi S, Lu Y, Ravindran S, Cooper LF. Macrophage Control of Incipient Bone Formation in Diabetic Mice. Front Cell Dev Biol 2021; 8:596622. [PMID: 33569378 PMCID: PMC7868429 DOI: 10.3389/fcell.2020.596622] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Both soft and hard tissue wound healing are impaired in diabetes. Diabetes negatively impacts fracture healing, bone regeneration and osseointegration of endosseous implants. The complex physiological changes associated with diabetes often manifest in immunological responses to wounding and repair where macrophages play a prominent role in determining outcomes. We hypothesized that macrophages in diabetes contribute toward impaired osseous wound healing. To test this hypothesis, we compared osseous wound healing in the mouse calvaria defect model using macrophages from C57BL/6J and db/db mice to direct osseous repair in both mouse strains. Initial analyses revealed that db/db mice macrophages showed an inflamed phenotype in its resting state. Incipient bone regeneration evaluated by μCT indicated that bone regeneration was relatively impaired in the db/db mouse calvaria and in the calvaria of C57BL/6J mice supplemented with db/db macrophages. Furthermore, osteogenic differentiation of mouse mesenchymal stem cells was negatively impacted by conditioned medium from db/db mice compared to C57BL/6J mice. Moreover, miR-Seq analysis revealed an altered miRNA composition in db/db macrophages with up regulated pro-inflammatory miRNAs and down regulated anti-inflammatory miRNAs. Overall, this study represents a direct step toward understanding macrophage-mediated regulation of osseous bone regeneration and its impairment in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Miya Kang
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Ghadeer Thalji
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Chun-Chieh Huang
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Yu Lu
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Lyndon F Cooper
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
20
|
Dai X, Heng BC, Bai Y, You F, Sun X, Li Y, Tang Z, Xu M, Zhang X, Deng X. Restoration of electrical microenvironment enhances bone regeneration under diabetic conditions by modulating macrophage polarization. Bioact Mater 2020; 6:2029-2038. [PMID: 33474514 PMCID: PMC7787955 DOI: 10.1016/j.bioactmat.2020.12.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Macrophage-mediated inflammation compromises bone repair in diabetic patients. Electrical signaling cues are known to regulate macrophage functions. However, the biological effects of electrical microenvironment from charged biomaterials on the immune response for regulating osteogenesis under diabetic conditions remain to be elucidated. Herein the endogeneous electrical microenvironment of native bone tissue was recapitulated by fabricating a ferroelectric BaTiO3/poly (vinylidene fluoridetrifluoroethylene) (BTO/P(VDF-TrFE)) nanocomposite membrane. In vitro, the polarized BaTiO3/poly (vinylidene fluoridetrifluoroethylene) (BTO/P(VDF-TrFE)) nanocomposite membranes inhibited high glucose-induced M1-type inflammation, by effecting changes in cell morphology, M1 marker expression and pro-inflammatory cytokine secretion in macrophages. This led to enhanced osteogenic differentiation of human bone marrow mesenchymal stem cells (BM-MSCs). In vivo, the biomimetic electrical microenvironment recapitulated by the polarized nanocomposite membranes switched macrophage phenotype from the pro-inflammatory (M1) into the pro-healing (M2) phenotype, which in turn enhanced bone regeneration in rats with type 2 diabetes mellitus. Mechanistic studies revealed that the biomimetic electrical microenvironment attenuated pro-inflammatory M1 macrophage polarization under hyperglycemic conditions by suppressing expression of AKT2 and IRF5 within the PI3K-AKT signaling pathway, thereby inducing favorable osteo-immunomodulatory effects. Our study thus provides fundamental insights into the biological effects of restoring the electrical microenvironment conducive for osteogenesis under DM conditions, and offers an effective strategy to design functionalized biomaterials for bone regeneration therapy in diabetic patients. Electrical microenvironment recapitulated by BTO membranes switched pro-inflammatory M1 into pro-healing M2 phenotype. The macrophage phenotype transformation from M1 to M2 promotes bone regeneration in rats with type 2 diabetes mellitus. Restored electrical microenvironment attenuated M1 macrophage polarization via downregulation of AKT2-IRF5.
Collapse
Affiliation(s)
- Xiaohan Dai
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, PR China.,Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China.,Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, 100191, PR China
| | - Xiaowen Sun
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Yiping Li
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, PR China
| | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, PR China
| | - Mingming Xu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| |
Collapse
|
21
|
Fujiwara O, Prasai A, Perez-Bello D, El Ayadi A, Petrov IY, Esenaliev RO, Petrov Y, Herndon DN, Finnerty CC, Prough DS, Enkhbaatar P. Adipose-derived stem cells improve grafted burn wound healing by promoting wound bed blood flow. BURNS & TRAUMA 2020; 8:tkaa009. [PMID: 32346539 PMCID: PMC7175768 DOI: 10.1093/burnst/tkaa009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/22/2020] [Accepted: 01/30/2000] [Indexed: 01/08/2023]
Abstract
BACKGROUND Researchers have explored the use of adipose-derived stem cells (ASCs) as a cell-based therapy to cover wounds in burn patients; however, underlying mechanistic aspects are not completely understood. We hypothesized that ASCs would improve post-burn wound healing after eschar excision and grafting by increasing wound blood flow via induction of angiogenesis-related pathways. METHODS To test the hypothesis, we used an ovine burn model. A 5 cm2 full thickness burn wound was induced on each side of the dorsum. After 24 hours, the burned skin was excised and a 2 cm2 patch of autologous donor skin was grafted. The wound sites were randomly allocated to either topical application of 7 million allogeneic ASCs or placebo treatment (phosphate-buffered saline [PBS]). Effects of ASCs culture media was also compared to those of PBS. Wound healing was assessed at one and two weeks following the application of ASCs. Allogeneic ASCs were isolated, cultured and characterized from non-injured healthy sheep. The identity of the ASCs was confirmed by flow cytometry analysis, differentiation into multiple lineages and gene expression via real-time polymerase chain reaction. Wound blood flow, epithelialization, graft size and take and the expression of vascular endothelial growth factor (VEGF) were determined via enzyme-linked immunosorbent assay and Western blot. RESULTS Treatment with ASCs accelerated the patch graft growth compared to the control (p < 0.05). Topical application of ASCs significantly increased wound blood flow (p < 0.05). Expression of VEGF was significantly higher in the wounds treated with ASCs compared to control (p < 0.05). CONCLUSIONS ASCs accelerated grafted skin growth possibly by increasing the blood flow via angiogenesis induced by a VEGF-dependent pathway.
Collapse
Affiliation(s)
- Osamu Fujiwara
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Anesh Prasai
- Department of Surgery, University of Texas Medical Branch, Galveston, 301 University BLVD TX 77555, USA
- Shriners Hospitals for Children – Galveston, 815 Market Street Galveston, TX 77555, USA
| | - Dannelys Perez-Bello
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Amina El Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, 301 University BLVD TX 77555, USA
- Shriners Hospitals for Children – Galveston, 815 Market Street Galveston, TX 77555, USA
- Sealy Center for Molecular Medicine, and the Institute for Translational Sciences, University of Texas Medical Branch, 301 University BLVD Galveston, TX 77555, USA
| | - Irene Y Petrov
- Center for Biomedical Engineering, University of Texas Medical Branch, 601 Harbor Side Dr. Galveston, TX 77555, USA
| | - Rinat O Esenaliev
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
- Center for Biomedical Engineering, University of Texas Medical Branch, 601 Harbor Side Dr. Galveston, TX 77555, USA
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, 301 University BLVD Galveston, TX 77555, USA
| | - Yuriy Petrov
- Center for Biomedical Engineering, University of Texas Medical Branch, 601 Harbor Side Dr. Galveston, TX 77555, USA
| | - David N Herndon
- Department of Surgery, University of Texas Medical Branch, Galveston, 301 University BLVD TX 77555, USA
- Shriners Hospitals for Children – Galveston, 815 Market Street Galveston, TX 77555, USA
| | - Celeste C Finnerty
- Department of Surgery, University of Texas Medical Branch, Galveston, 301 University BLVD TX 77555, USA
- Shriners Hospitals for Children – Galveston, 815 Market Street Galveston, TX 77555, USA
- Sealy Center for Molecular Medicine, and the Institute for Translational Sciences, University of Texas Medical Branch, 301 University BLVD Galveston, TX 77555, USA
| | - Donald S Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
- Shriners Hospitals for Children – Galveston, 815 Market Street Galveston, TX 77555, USA
| |
Collapse
|
22
|
Gao X, Qin W, Chen L, Fan W, Ma T, Schneider A, Yang M, Obianom ON, Chen J, Weir MD, Shu Y, Zhao L, Lin Z, Xu HHK. Effects of Targeted Delivery of Metformin and Dental Pulp Stem Cells on Osteogenesis via Demineralized Dentin Matrix under High Glucose Conditions. ACS Biomater Sci Eng 2020; 6:2346-2356. [PMID: 33455311 DOI: 10.1021/acsbiomaterials.0c00124] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
High glucose condition inhibited osteoblast differentiation could be a main mechanism contributing to the decreased bone repair associated with diabetes. Metformin, a widely prescribed antidiabetic drug, was shown to have osteogenic properties in our previous study. Transplanted mesenchymal stromal cells (MSCs) may differentiate into osteoblasts and promote bone regeneration. Our study aimed to combine the benefits of metformin and MSCs transplantation on osteogenesis in high glucose conditions. We developed demineralized dentin matrix (DDM) as a carrier to target deliver metformin and dental pulp-derived MSCs (DPSCs). We collected clinically discarded teeth, isolated DPSCs from the dental pulp, and prepared the DDM from the dentin. The DDM was observed by scanning electron microscopy and was found to have well-distributed tubes. Then, metformin was loaded into the DDM to form the DDM-Met complex (DDM-Met); DDM-Met released metformin at a favorable concentration. The DPSCs seeded with the DDM-Met in a high glucose medium showed satisfactory attachment and viability together with increased mineralization and upregulated osteogenesis-related genes, including alkaline phosphatase (ALP), osteocalcin (OCN), runt-related transcription factor 2 (Runx2), and osteopontin (OPN). A possible mechanism of the enhanced osteogenic differentiation of DPSCs was explored, and the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway was found to play a role in the enhancement of osteogenesis. DDM-Met appeared to be a successful metformin and DPSC carrier that allowed for the local delivery of metformin and DPSCs in high glucose conditions. DDM-Met-DPSC construct has promising prospects to promote osteogenesis and enhance the much-needed diabetic bone regeneration.
Collapse
Affiliation(s)
- Xianling Gao
- Guanghua School of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Wei Qin
- Guanghua School of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Lingling Chen
- Guanghua School of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Wenguo Fan
- Guanghua School of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Mengyao Yang
- Guanghua School of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Obinna N Obianom
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Jiayao Chen
- Guanghua School of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Liang Zhao
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States.,Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhengmei Lin
- Guanghua School of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States.,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
23
|
He Y, Zou L. Notch-1 inhibition reduces proliferation and promotes osteogenic differentiation of bone marrow mesenchymal stem cells. Exp Ther Med 2019; 18:1884-1890. [PMID: 31410150 PMCID: PMC6676088 DOI: 10.3892/etm.2019.7765] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 06/05/2019] [Indexed: 01/26/2023] Open
Abstract
Low differentiation and high proliferation rates are critical factors affecting bone marrow mesenchymal stem cell (BMSC) tumorigenesis. The present study aimed to investigate the role of the Notch signaling pathway in BMSC proliferation and osteogenic differentiation. Mouse BMSCs were divided into control, vector, Notch1-small interfering (si)RNA, γ-secretase inhibitor, and Notch1-siRNA + γ-secretase inhibitor groups. The siRNA-Notch1, γ-secretase inhibitor, and Notch1-siRNA + γ-secretase inhibitor groups were treated with Notch1 siRNA and/or γ-secretase inhibitor. Following treatment, cell proliferation was evaluated using a Cell Counting Kit-8. Tumor-related factors, including transforming growth factor (TGF)-β1, c-Myc and p53, were detected by reverse transcription-quantitative polymerase chain reaction and western blot analyses. BMSC osteogenic differentiation was induced and the cells were stained with alizarin red at 14 and 21 days. Alkaline phosphatase (AKP) activity was also evaluated. The siRNA-Notch1 and γ-secretase inhibitor both reduced BMSC proliferation and the expression of TGF-β1 and c-Myc and increased the expression of p53. Following the induction of osteogenesis and staining with alizarin red, the level of AKP was significantly higher in cells in the siRNA-Notch1 and γ-secretase inhibitor groups compared with that in the control group. It was found that Notch1 inhibition reduced proliferation and promoted the osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Ying He
- Department of Infectious Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lijin Zou
- Burn Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Correspondence to: Dr Lijin Zou, Burn Center, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zheng Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| |
Collapse
|
24
|
Local Application of Semaphorin 3A Combined with Adipose-Derived Stem Cell Sheet and Anorganic Bovine Bone Granules Enhances Bone Regeneration in Type 2 Diabetes Mellitus Rats. Stem Cells Int 2019; 2019:2506463. [PMID: 31467560 PMCID: PMC6701320 DOI: 10.1155/2019/2506463] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/08/2019] [Indexed: 01/06/2023] Open
Abstract
Bone tissue regeneration is considered to be the optimal solution for bone loss. However, diabetic patients have a greater risk of poor bone healing or bone grafting failure than nondiabetics. The purpose of this study was to investigate the influence of the complexes of an adipose-derived stem cell sheet (ASC sheet) and Bio-Oss® bone granules on bone healing in type 2 diabetes mellitus (T2DM) rats with the addition of semaphorin 3A (Sema3A). The rat ASC sheets showed stronger osteogenic ability than ASCs in vitro, as indicated by the extracellular matrix mineralization and the expression of osteogenesis-related genes at mRNA level. An ASC sheet combined with Bio-Oss® bone granules promoted bone formation in T2DM rats as indicated by microcomputed tomography (micro-CT) and histological analysis. In addition, Sema3A promoted the osteogenic differentiation of ASC sheets in vitro and local injection of Sema3A promoted T2DM rats' calvarial bone regeneration based on ASC sheet and Bio-Oss® bone granule complex treatment. In conclusion, the local injection of Sema3A and the complexes of ASC sheet and Bio-Oss® bone granules could promote osseous healing and are potentially useful to improve bone healing for T2DM patients.
Collapse
|
25
|
Li Y, Kong N, Li Z, Tian R, Liu X, Liu G, Wang K, Yang P. Bone marrow macrophage M2 polarization and adipose-derived stem cells osteogenic differentiation synergistically promote rehabilitation of bone damage. J Cell Biochem 2019; 120:19891-19901. [PMID: 31338874 DOI: 10.1002/jcb.29297] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/27/2019] [Indexed: 12/11/2022]
Abstract
By differentiating into and the balance being regulated between M1 (pro-inflammatory) and M2 (anti-inflammatory) heterogeneous populations, macrophages play critical roles during the host immune response in various physiological contexts in both health and diseases. Besides regulating innate and adaptive immune capacity, macrophages are also decisively involved in tissue homeostasis. However, how resident macrophages are regulated after tissue damages is still far from elucidation. In the present study, we found that adipose-derived stem cells (ADSCs) apparently promote bone defect rehabilitation in vivo via skewing differentiation of bone marrow-derived macrophage (BMDMs) towards anti-inflammatory M2 macrophages. In vitro data demonstrated that although ADSCs have the potential to differentiate to osteoblasts and adipose cells by using standard tissue culture-differentiating conditions, these mesenchymal progenitors are mainly regulated to differentiate into osteoblasts with overexpressed runt-related transcription factor 2, osteoprotegerin, osterix, and downregulated receptor activator of nuclear factor κB ligand in the presence of BMDMs-conditioned medium. Whereas BMDMs are polarized toward M2 macrophages with higher levels of arginase 1 and mannose receptor, but lower levels of inducible nitric oxide synthase and tumor necrosis factor-α when cocultured with ADSCs. In short, all these findings collectively demonstrated that ADSCs and resident host cells can synergistically contribute to the bony repair through mutual regulation of their differentiation and cytokine secretion.
Collapse
Affiliation(s)
- Yiyang Li
- Department of Bone and Joint Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shannxi Province, 710004, China
| | - Ning Kong
- Department of Bone and Joint Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shannxi Province, 710004, China
| | - Zhe Li
- Department of Bone and Joint Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shannxi Province, 710004, China
| | - Run Tian
- Department of Bone and Joint Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shannxi Province, 710004, China
| | - Xiaohui Liu
- Department of Bone and Joint Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shannxi Province, 710004, China
| | - Guanzhi Liu
- Department of Bone and Joint Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shannxi Province, 710004, China
| | - Kunzheng Wang
- Department of Bone and Joint Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shannxi Province, 710004, China
| | - Pei Yang
- Department of Bone and Joint Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shannxi Province, 710004, China
| |
Collapse
|
26
|
Wallner C, Huber J, Drysch M, Schmidt SV, Wagner JM, Dadras M, Dittfeld S, Becerikli M, Jaurich H, Lehnhardt M, Behr B. Activin Receptor 2 Antagonization Impairs Adipogenic and Enhances Osteogenic Differentiation in Mouse Adipose-Derived Stem Cells and Mouse Bone Marrow-Derived Stem Cells In Vitro and In Vivo. Stem Cells Dev 2019; 28:384-397. [PMID: 30654712 DOI: 10.1089/scd.2018.0155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tumors, traumata, burn injuries or surgeries can lead to critical-sized bony defects which need to be reconstructed. Mesenchymal stem cells (MSCs) have the ability to differentiate into multiple cell lineages and thus present a promising alternative for use in tissue engineering and reconstruction. However, there is an ongoing debate whether all MSCs are equivalent in their differentiation and proliferation ability. The goal of this study was to assess osteogenic and adipogenic characteristic changes of adipose-derived stem cells (ASCs) and bone marrow-derived stem cells (BMSCs) upon Myostatin inhibition with Follistatin in vitro and in vivo. We harvested ASCs from mice inguinal fat pads and BMSCs from tibiae of mice. By means of histology, real-time cell analysis, immunohistochemistry, and PCR osteogenic and adipogenic proliferation and differentiation in the presence or absence of Follistatin were analyzed. In vivo, osteogenic capacity was investigated in a tibial defect model of wild-type (WT) mice treated with mASCs and mBMSCs of Myo-/- and WT origin. In vitro, we were able to show that inhibition of Myostatin leads to markedly reduced proliferative capacity in mBMSCs and mASCs in adipogenic differentiation and reduced proliferation in osteogenic differentiation in mASCs, whereas proliferation in mBMSCs in osteogenic differentiation was increased. Adipogenic differentiation was inhibited in mASCs and mBMSCs upon Follistatin treatment, whereas osteogenic differentiation was increased in both cell lineages. In vivo, we could demonstrate increased osteoid formation in WT mice treated with mASCs and mBMSCs of Myo-/- origin and enhanced osteogenic differentiation and proliferation of mASCs of Myo-/- origin. We could demonstrate that the osteogenic potential of mASCs could be raised to a level comparable to mBMSCs upon inhibition of Myostatin. Moreover, Follistatin treatment led to inhibition of adipogenesis in both lineages.
Collapse
Affiliation(s)
- Christoph Wallner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Julika Huber
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Marius Drysch
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Sonja Verena Schmidt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Johannes Maximilian Wagner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Mehran Dadras
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Stephanie Dittfeld
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Mustafa Becerikli
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Henriette Jaurich
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
27
|
Liang T, Zhu L, Gao W, Gong M, Ren J, Yao H, Wang K, Shi D. Coculture of endothelial progenitor cells and mesenchymal stem cells enhanced their proliferation and angiogenesis through PDGF and Notch signaling. FEBS Open Bio 2017; 7:1722-1736. [PMID: 29123981 PMCID: PMC5666384 DOI: 10.1002/2211-5463.12317] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 01/06/2023] Open
Abstract
The beneficial effects of combined use of mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) on tissue repair and regeneration after injury have been demonstrated, but the underlying mechanism remains incompletely understood. This study aimed to investigate the effects of direct contact coculture of human bone marrow‐derived EPCs (hEPCs)/human bone marrow‐derived MSCs (hMSCs) on their proliferation and angiogenic capacities and the underlying mechanism. hEPCs and hMSCs were cocultured in a 2D mixed monolayer or a 3D transwell membrane cell‐to‐cell coculture system. Cell proliferation was determined by Cell Counting Kit‐8. Angiogenic capacity was evaluated by in vitro angiogenesis assay. Platelet‐derived growth factor‐BB (PDGF‐BB), PDGF receptor neutralizing antibody (AB‐PDGFR), and DAPT (a γ‐secretase inhibitor) were used to investigate PDGF and Notch signaling. Cell proliferation was significantly enhanced by hEPCs/hMSCs 3D‐coculture and PDGF‐BB treatment, but inhibited by AB‐PDGFR. Expression of cyclin D1, PDGFR, Notch1, and Hes1 was markedly enhanced by PDGF‐BB but inhibited by DAPT. In vitro angiogenesis assay showed that hEPCs/hMSCs coculture and PDGF‐BB significantly enhanced angiogenic capacity, whereas AB‐PDGFR significantly reduced the angiogenic capacity. PDGF‐BB increased the expression of kinase insert domain receptor (KDR, an endothelial marker) and activated Notch1 signaling in cocultured cells, while DAPT attenuated the promoting effect of PDGF‐BB on KDR expression of hEPCs/hMSCs coculture. hEPCs/hMSCs coculture enhanced their proliferation and angiogenic capacities. PDGF and Notch signaling pathways participated in the promoting effects of hEPCs/hMSCs coculture, and there was crosstalk between these two signaling pathways. Our findings should aid understanding of the mechanism of beneficial effects of hEPCs/hMSCs coculture.
Collapse
Affiliation(s)
- Tangzhao Liang
- Department of Orthopaedic Surgery the Third Affiliated Hospital of Sun Yat-sen University Guangzhou China
| | - Lei Zhu
- Department of Plastic and Reconstructive Surgery the Third Affiliated Hospital of Sun Yat-sen University Guangzhou China
| | - Wenling Gao
- Department of Periodontology Faculty of Dentistry Prince Philip Dental Hospital The University of Hong Kong China
| | - Ming Gong
- Department of Orthopedic Surgery Shenzhen Hospital of Southern Medical University China
| | - Jianhua Ren
- Department of Orthopaedic Surgery the Third Affiliated Hospital of Sun Yat-sen University Guangzhou China
| | - Hui Yao
- Department of Orthopaedic Surgery the Third Affiliated Hospital of Sun Yat-sen University Guangzhou China
| | - Kun Wang
- Department of Orthopaedic Surgery the Third Affiliated Hospital of Sun Yat-sen University Guangzhou China
| | - Dehai Shi
- Department of Orthopaedic Surgery the Third Affiliated Hospital of Sun Yat-sen University Guangzhou China
| |
Collapse
|
28
|
Inhibition of GDF8 (Myostatin) accelerates bone regeneration in diabetes mellitus type 2. Sci Rep 2017; 7:9878. [PMID: 28852138 PMCID: PMC5575348 DOI: 10.1038/s41598-017-10404-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
Metabolic diseases like diabetes mellitus cause bone healing deficiencies. We found significant impairment of bone regeneration, osteogenic differentiation and proliferation in diabetic bone. Moreover recent studies suggest a highly underestimated importance of GDF8 (Myostatin) in bone metabolism. Our goal was to analyze the role of GDF8 as a regulator of osteogenic differentiation, proliferation and bone regeneration. We used a murine tibial defect model in diabetic (Leprdb-/-) mice. Myostatin-Inhibitor Follistatin was administered in tibial bony defects of diabetic mice. By means of histology, immunohistochemistry and QRT-PC osteogenesis, differentiation and proliferation were analyzed. Application of Myostatin-inhibitor showed a significant improvement in diabetic bone regeneration compared to the control group (6.5 fold, p < 0.001). Immunohistochemistry revealed a significantly higher proliferation (7.7 fold, p = 0.009), osteogenic differentiation (Runx-2: 3.7 fold, p = 0.011, ALP: 9.3 fold, p < 0.001) and calcification (4.9 fold, p = 0.024) in Follistatin treated diabetic animals. Therapeutical application of Follistatin, known for the importance in muscle diseases, plays an important role in bone metabolism. Diabetic bone revealed an overexpression of the catabolic protein Myostatin. Antagonization of Myostatin in diabetic animals leads to a restoration of the impaired bone regeneration and represents a promising therapeutic option.
Collapse
|
29
|
Barba M, Di Taranto G, Lattanzi W. Adipose-derived stem cell therapies for bone regeneration. Expert Opin Biol Ther 2017; 17:677-689. [PMID: 28374644 DOI: 10.1080/14712598.2017.1315403] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Cell-based therapies exploit the heterogeneous and self-sufficient biological environment of stem cells to restore, maintain and improve tissue functions. Adipose-derived stem cells (ASCs) are, to this aim, promising cell types thanks to advantageous isolation procedures, growth kinetics, plasticity and trophic properties. Specifically, bone regeneration represents a suitable, though often challenging, target setting to test and apply ASC-based therapeutic strategies. Areas covered: ASCs are extremely plastic and secrete bioactive peptides that mediate paracrine functions, mediating their trophic actions in vivo. Numerous preclinical studies demonstrated that ASCs improve bone healing. Clinical trials are ongoing to validate the clinical feasibility of these approaches. This review is intended to define the state-of-the-art on ASCs, encompassing the biological features that make them suitable for bone regenerative strategies, and to provide an update on existing preclinical and clinical applications. Expert opinion: ASCs offer numerous advantages over other stem cells in terms of feasibility of clinical translation. Data obtained from in vivo experimentation are encouraging, and clinical trials are ongoing. More robust validations are thus expected to be achieved during the next few years, and will likely pave the way to optimized patient-tailored treatments for bone regeneration.
Collapse
Affiliation(s)
- Marta Barba
- a Institute of Anatomy and Cell Biology , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Giuseppe Di Taranto
- b Department of Plastic, Reconstructive and Aesthetic Surgery , University of Rome "Sapienza" , Policlinico Umberto I, Rome , Italy
| | - Wanda Lattanzi
- a Institute of Anatomy and Cell Biology , Università Cattolica del Sacro Cuore , Rome , Italy
| |
Collapse
|
30
|
Shao XR, Lin SY, Peng Q, Shi SR, Li XL, Zhang T, Lin YF. Effect of tetrahedral DNA nanostructures on osteogenic differentiation of mesenchymal stem cells via activation of the Wnt/β-catenin signaling pathway. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1809-1819. [PMID: 28259801 DOI: 10.1016/j.nano.2017.02.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 02/05/2023]
Abstract
Adipose-derived stem cells (ADSCs) are considered to be ideal stem cell sources for bone regeneration owing to their ability to differentiate into osteo-like cells. Therefore, they have attracted increasing attention in recent years. Tetrahedral DNA nanostructures (TDNs), a new type of DNA-based biomaterials, have shown great potential for biomedical applications. In the present work, we aimed to investigate the role played by TDNs in osteogenic differentiation and proliferation of ADSCs and tried to explore if the canonical Wnt signal pathway could be the vital biological mechanism driving these cellular responses. Upon exposure to TDNs, ADSCs proliferation and osteogenic differentiation were significantly enhanced, accompanied by the up-regulation of genes correlated with the Wnt/β-catenin pathway. In conclusion, our results indicate that TDNs are crucial regulators of the increase in osteogenic potential and ADSCs proliferation, and this noteworthy discovery could provide a promising novel approach toward ADSCs-based bone defect regeneration.
Collapse
Affiliation(s)
- Xiao-Ru Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shi-Yu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Si-Rong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao-Long Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun-Feng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|