1
|
Massimino LC, da Conceição Amaro Martins V, Vulcani VAS, de Oliveira ÉL, Andreeta MB, Bonagamba TJ, Klingbeil MFG, Mathor MB, de Guzzi Plepis AM. Use of collagen and auricular cartilage in bioengineering: scaffolds for tissue regeneration. Cell Tissue Bank 2024; 25:111-122. [PMID: 32880089 DOI: 10.1007/s10561-020-09861-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
The aim of this study was the development of collagen and collagen/auricular cartilage scaffolds for application in dermal regeneration. Collagen was obtained from bovine tendon by a 72 h-long treatment, while bovine auricular cartilage was treated for 24 h and divided into two parts, external (perichondrium, E) and internal (elastic cartilage, I). The scaffolds were prepared by mixing collagen (C) with the internal part (CI) or the external part (CE) in a 3:1 ratio. Differential scanning calorimetry, scanning electron microscopy (SEM) analysis, microcomputed tomography imaging (micro-CT) and swelling degree were used to characterize the scaffolds. Cytotoxicity, cell adhesion, and cell proliferation assays were performed using the cell line NIH/3T3. All samples presented a similar denaturation temperature (Td) around 48 °C, while CE presented a second Td at 51.2 °C. SEM micrographs showed superficial pores in all scaffolds and micro-CT exhibited interconnected pore spaces with porosity above 60% (sizes between 47 and 149 µm). The order of swelling was CE < CI < C and the scaffolds did not present cytotoxicity, showing attachment rates above 75%-all samples showed a similar pattern of proliferation until 168 h, whereas CI tended to decrease after this time. The scaffolds were easily obtained, biocompatible and had adequate morphology for cell growth. All samples showed high adhesion, whereas collagen-only and collagen/external part scaffolds presented a better cell proliferation rate and would be indicated for possible use in dermal regeneration.
Collapse
Affiliation(s)
- Lívia Contini Massimino
- Interunit Graduate Program in Bioengineering, University of São Paulo, São Carlos, SP, Brazil.
| | | | | | | | | | - Tito José Bonagamba
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | | | | | - Ana Maria de Guzzi Plepis
- Interunit Graduate Program in Bioengineering, University of São Paulo, São Carlos, SP, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
2
|
Wu J, Cheng X, Wu J, Chen J, Pei X. The development of magnesium-based biomaterials in bone tissue engineering: A review. J Biomed Mater Res B Appl Biomater 2024; 112:e35326. [PMID: 37861271 DOI: 10.1002/jbm.b.35326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/15/2023] [Accepted: 08/23/2023] [Indexed: 10/21/2023]
Abstract
Bone regeneration is a vital clinical challenge in massive or complicated bone defects. Recently, bone tissue engineering has come to the fore to meet the demand for bone repair with various innovative materials. However, the reported materials usually cannot satisfy the requirements, such as ideal mechanical and osteogenic properties, as well as biocompatibility at the same time. Mg-based biomaterials have considerable potential in bone tissue engineering owing to their excellent mechanical strength and biosafety. Moreover, the biocompatibility and osteogenic activity of Mg-based biomaterials have been the research focuses in recent years. The main limitation faced in the applications of Mg-based biomaterials is rapid degradation, which can produce excessive Mg2+ and hydrogen, affecting the healing of the bone defect. In order to overcome the limitations, researchers have explored several ways to improve the properties of Mg-based biomaterials, including alloying, surface modification with coatings, and synthesizing other composite materials to control the degradation rate upon implantation. This article reviewed the osteogenic mechanism and requirement for appropriate degradation rate and focused on current progress in the biomedical use of Mg-based biomaterials to inspire more clinical applications of Mg in bone regeneration in the future.
Collapse
Affiliation(s)
- Jiaxin Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinting Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jicenyuan Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
In vivo efficacy of low-level laser therapy on bone regeneration. Lasers Med Sci 2022; 37:2209-2216. [PMID: 35022870 DOI: 10.1007/s10103-021-03487-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE In clinical use of low-level laser therapy for bone regeneration (LLLT), application protocol (dose, duration, and repetitions) has not been established. This study aimed to depict a reliable dosage of LLLT by evaluating the efficacy of different dosing of LLLT (diode) on the healing of rabbit cranial defects. METHODS Critical size defects were prepared in calvarias of 26 New Zealand White Rabbits in such each animal containing both test and control groups. Test groups were irradiated with 4 Joule/cm2 (j/cm2), 6 j/cm2, and 8 j/cm2. The rabbits were subjected to six times of laser treatments in 10 days. At the end of the second week, 5 rabbits were sacrificed for histopathological and immunohistochemical analyses. At the 4th and 8th weeks, 20 rabbits (10 each) were sacrificed for micro-CT and histopathological analyses. RESULTS Micro-CT evaluation revealed improved new bone formation in all test groups compared to the control group. 6 j/cm2 group demonstrated the highest bone formation. The highest bone morphogenic protein -2 levels were found in the 4 j/cm2 group. Osteocalcin expression was significantly higher in 4 j/cm2 group. CONCLUSIONS Our findings indicate that LLLT have a positive effect on new bone formation. The high efficacy of doses of 4 j/cm2 and 6 j/cm2 is promising to promote early bone healing.
Collapse
|
4
|
Magri AMP, Parisi JR, de Andrade ALM, Rennó ACM. Bone substitutes and photobiomodulation in bone regeneration: A systematic review in animal experimental studies. J Biomed Mater Res A 2021; 109:1765-1775. [PMID: 33733598 DOI: 10.1002/jbm.a.37170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 11/08/2022]
Abstract
In general, bone fractures are able of healing by itself. However, in critical situations such as large bone defects, poor blood supply or even infections, the biological capacity of repair can be impaired, resulting in a delay of the consolidation process or even in non-union fractures. Thus, technologies able of improving the process of bone regeneration are of high demand. In this context, ceramic biomaterials-based bone substitutes and photobiomodulation (PBM) have been emerging as promising alternatives. Thus, the present study performed a systematic review targeting to analyze studies in the literature which investigated the effects of the association of ceramic based bone substitutes and PBM in the process of bone healing using animal models of bone defects. The search was conducted from March and April of 2019 in PubMed, Web of Science and Scopus databases. After the eligibility analyses, 16 studies were included in this review. The results showed that the most common material used was hydroxyapatite (HA) followed by Biosilicate associated with infrared PBM. Furthermore, 75% of the studies demonstrated positive effects to stimulate bone regeneration from association of ceramic biomaterials and PBM. All studies used low-level laser therapy (LLLT) device and the most studies used LLLT infrared. The evidence synthesis was moderate for all experimental studies for the variable histological analysis demonstrating the efficacy of techniques on the process of bone repair stimulation. In conclusion, this review demonstrates that the association of ceramic biomaterials and PBM presented positive effects for bone repair in experimental models of bone defects.
Collapse
Affiliation(s)
- Angela Maria Paiva Magri
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil.,University Center of the Guaxupé Education Foundation (UNIFEG), Guaxupé, Minas Gerais, Brazil
| | - Júlia Risso Parisi
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil.,Department of Physical Therapy, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | | | - Ana Claudia Muniz Rennó
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil.,Department of Physical Therapy, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| |
Collapse
|
5
|
Hanna R, Dalvi S, Amaroli A, De Angelis N, Benedicenti S. Effects of photobiomodulation on bone defects grafted with bone substitutes: A systematic review of in vivo animal studies. JOURNAL OF BIOPHOTONICS 2021; 14:e202000267. [PMID: 32857463 DOI: 10.1002/jbio.202000267] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
A present, photobiomodulation therapy (PBMT) effectiveness in enhancing bone regeneration in bone defects grafted with or without biomaterials is unclear. This systematic review (PROSPERO, ref. CRD 42019148959) aimed to critically appraise animal in vivo published data and present the efficacy of PBMT and its potential synergistic effects on grafted bone defects. MEDLINE, CCCT, Scopus, Science Direct, Google Scholar, EMBASE, EBSCO were searched, utilizing the following keywords: bone repair; low-level laser therapy; LLLT; light emitting diode; LEDs; photobiomodulation therapy; in vivo animal studies, bone substitutes, to identify studies between 1994 and 2019. After applying the eligibility criteria, 38 papers included where the results reported according to "PRISMA." The results revealed insufficient and incomplete PBM parameters, however, the outcomes with or without biomaterials have positive effects on bone healing. In conclusion, in vivo animal studies with a standardized protocol to elucidate the effects of PBMT on biomaterials are required initially prior to clinical studies.
Collapse
Affiliation(s)
- Reem Hanna
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Genoa, Italy
- Department of Oral Surgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Snehal Dalvi
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Genoa, Italy
- Department of Periodontology, Swargiya Dadasaheb Kalmegh Smruti Dental College and Hospital, Nagpur, India
| | - Andrea Amaroli
- Department of Orthopaedic Dentistry, First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Nicola De Angelis
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Genoa, Italy
- Faculty of Dentistry, University of Technology MARA Sungai Buloh, Shah Alam, Malaysia
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Genoa, Italy
| |
Collapse
|
6
|
Gabbai-Armelin PR, Wilian Kido H, Fernandes KR, Fortulan CA, Muniz Renno AC. Effects of bio-inspired bioglass/collagen/magnesium composites on bone repair. J Biomater Appl 2019; 34:261-272. [PMID: 31027447 DOI: 10.1177/0885328219845594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Paulo Roberto Gabbai-Armelin
- 1 Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim, Santos, Brazil
| | - Hueliton Wilian Kido
- 1 Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim, Santos, Brazil
| | - Kelly Rossetti Fernandes
- 1 Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim, Santos, Brazil
| | - Carlos Alberto Fortulan
- 2 Department of Mechanical Engineering, University of São Paulo (USP), Trabalhador São Carlense, São Carlos, Brazil
| | - Ana Claudia Muniz Renno
- 1 Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo (UNIFESP), Silva Jardim, Santos, Brazil
| |
Collapse
|