1
|
Tian S, Zhou X, Zhang M, Cui L, Li B, Liu Y, Su R, Sun K, Hu Y, Yang F, Xuan G, Ma S, Zheng X, Zhou X, Guo C, Shang Y, Wang J, Han Y. Mesenchymal stem cell-derived exosomes protect against liver fibrosis via delivering miR-148a to target KLF6/STAT3 pathway in macrophages. Stem Cell Res Ther 2022; 13:330. [PMID: 35858897 PMCID: PMC9297598 DOI: 10.1186/s13287-022-03010-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite emerging evidence on the therapeutic potential of mesenchymal stem cells (MSCs) for liver fibrosis, the underlying mechanisms remain unclear. At present, MSC-derived exosomes (MSC-EXOs) are widely accepted as crucial messengers for intercellular communication. This study aimed to explore the therapeutic effects of MSC-EXOs on liver fibrosis and identify the mechanisms underlying the action of MSC-EXOs. METHODS Carbon tetrachloride was used to induce a liver fibrosis model, which was intravenously administered with MSCs or MSC-EXOs to assess treatment efficacy. The resulting histopathology, fibrosis degree, inflammation and macrophage polarization were analyzed. RAW264.7 and BMDM cells were used to explore the regulatory effects of MSC-EXOs on macrophage polarization. Then, the critical miRNA mediating the therapeutic effects of MSC-EXOs was screened via RNA sequencing and validated experimentally. Furthermore, the target mRNA and downstream signaling pathways were elucidated by luciferase reporter assay, bioinformatics analysis and western blot. RESULTS MSCs alleviated liver fibrosis largely depended on their secreted exosomes, which were visualized to circulate into liver after transplantation. In addition, MSC-EXOs were found to modulate macrophage phenotype to regulate inflammatory microenvironment in liver and repair the injury. Mechanically, RNA-sequencing illustrates that miR-148a, enriched in the MSC-EXOs, targets Kruppel-like factor 6 (KLF6) to suppress pro-inflammatory macrophages and promote anti-inflammatory macrophages by inhibiting the STAT3 pathway. Administration of miR-148a-enriched MSC-EXOs or miR-148a agomir shows potent ameliorative effects on liver fibrosis. CONCLUSIONS These findings suggest that MSC-EXOs protect against liver fibrosis via delivering miR-148a that regulates intrahepatic macrophage functions through KLF6/STAT3 signaling and provide a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Siyuan Tian
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xia Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Miao Zhang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Lina Cui
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Bo Li
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yansheng Liu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Rui Su
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Keshuai Sun
- Department of Gastroenterology, The Air Force Hospital From Eastern Theater of PLA, Nanjing, 210002, Jiangsu, China
| | - Yinan Hu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Fangfang Yang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Guoyun Xuan
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Shuoyi Ma
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xiaohong Zheng
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xinmin Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Changcun Guo
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yulong Shang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Jingbo Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Ying Han
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
2
|
Liu Z, Zhou S, Zhang Y, Zhao M. Rat bone marrow mesenchymal stem cells (BMSCs) inhibit liver fibrosis by activating GSK3β and inhibiting the Wnt3a/β-catenin pathway. Infect Agent Cancer 2022; 17:17. [PMID: 35440002 PMCID: PMC9017036 DOI: 10.1186/s13027-022-00432-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Background Bone marrow mesenchymal stem cells (BMSCs) can effectively alleviate liver fibrosis, which is a pathological injury caused by various chronic liver diseases. This study aimed to investigate the antifibrotic effects of BMSCs and elucidate the underlying mechanism by which BMSCs affect liver fibrosis in vitro and in vivo. Methods After the rat liver fibrosis model was induced by continuous injection of carbon tetrachloride (CCl4), BMSCs were administered for 4 weeks, and histopathological analysis and liver function tests were performed. T6 hepatic stellate cells (HSC-T6 cells) were stimulated by TGF-β1, and the activation and proliferation of cells were analyzed by CCK-8 assays, flow cytometry, real-time PCR, western blotting and enzyme-linked immunosorbent assay (ELISA). Results Our data demonstrated that BMSCs effectively reduced the accumulation of collagen, enhanced liver functionality and ameliorated liver fibrosis in vivo. BMSCs increased the sub-G1 population in HSC-T6 cells. In addition, coculture with BMSCs reduced the expression of α-SMA, collagen I, cyclin-D1, and c-Myc in HSC-T6 cells and activated the phosphorylation of GSK3β. The GSK3β inhibitor SB216763 reversed the effect of BMSCs. The Wnt/β-catenin signalling pathway was involved in BMSC-mediated inhibition of HSC-T6 cell activation. Conclusions Our data suggested that BMSCs exerted antifibrotic effects by activating the expression of GSK3β and inhibiting the Wnt3a/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Zhaoguo Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.,Liuzhou Worker's Hospital, Liuzhou, Guangxi Province, China
| | - Song Zhou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ya Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ming Zhao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China. .,Department of Organ Transplantation, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510280, Guangdong Province, China.
| |
Collapse
|
3
|
Mansour W, Kamel M, Elzayat E, Atta S, Mahmood D, Abd El Fattah El Sayed H, Hussein T, Saber S. Therapeutic Role of Bone Marrow-Derived Mesenchymal Stem Cells in Controlling Prognosis of Hepatocellular Carcinoma in a Murine Model. EXP CLIN TRANSPLANT 2021; 20:62-68. [PMID: 33928878 DOI: 10.6002/ect.2020.0495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Hepatocellular carcinoma is the fourth leading cause of cancer deaths in the world. Conventional methods of cancer therapy are either invasive or have undesirable side effects. Therefore, exploring new therapeutic strategies to control the progression of hepatocellular carcinoma, such as cell-based therapies, is a key issue for prolonging patient survival. In this study, we aimed to evaluate tumor suppressive effects of mesenchymal stem cells on the in vivo progression of hepatocellular carcinoma in murine model. MATERIALS AND METHODS Hepatocellular carcinoma was induced in 40 rats with diethylnitrosamine. Rats were divided into 4 groups: 1 group injected with diethylnitrosamine only, 1 group injected with diethylnitrosamine and 1 dose of rat bone marrowderived mesenchymal stem cells, 1 group injected with diethylnitrosamine and 2 doses of rat bone marrowderived mesenchymal stem cells, and 1 group was injected with diethylnitrosamine and 3 doses of rat bone marrow-derived mesenchymal stem cells. Rats were killed after 1 month of dose 3. Liver specimens were histopathologically examined, and serum samples were examined for liver function and cytokines. RESULTS Histopathological examination revealed that mesenchymal stem cell transplant induced liver regeneration. It also improved liver function as revealed by decreased levels of alanine and aspartate aminotransferase. Mesenchymal stem cells also repaired the immunopathology of the liver environment, as it decreased levels of interleukin 2 and 10, tumor necrosis factor α, and interferon γ. CONCLUSIONS Mesenchymal stem cell infusion significantly enhanced hepatic structure and function of livers in a rat hepatocellular carcinoma model.
Collapse
Affiliation(s)
- Wafaa Mansour
- From the Theodor Bilharz Research Institute, Giza, Egypt
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Sun T, Li H, Bai Y, Bai M, Gao F, Yu J, Wu R, Du L, Li F. Ultrasound-targeted microbubble destruction optimized HGF-overexpressing bone marrow stem cells to repair fibrotic liver in rats. Stem Cell Res Ther 2020; 11:145. [PMID: 32245503 PMCID: PMC7119295 DOI: 10.1186/s13287-020-01655-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIMS Bone marrow mesenchymal stem cells (BMSCs) have shown their therapeutic potential in cytotherapy for liver fibrosis. However, the insufficient homing of BMSCs and undefined proliferation of BMSCs represent a significant challenge and largely limit the effective implementation. The aims of the present study were to determine whether stable expression of hepatic growth factor (HGF) in BMSCs coupled with ultrasound-targeted microbubble destruction (UTMD) technique could effectively and definitely alleviating carbon tetrachloride (CCl4)-induced liver fibrosis in rats. MATERIALS AND METHODS A rat model of liver fibrosis was acquired by injection of carbon tetrachloride (CCl4). The experimental rats were randomly assigned to the four groups: normal, CCl4, BMSCs-HGF/US, and BMSCs-HGF/UTMD groups. The BMSCs, transfected by recombinant adeno-associated virus vector encoding human genome sequence of HGF (BMSCs-HGF), were transplanted in rat via the tail vein. The homing efficiency of BMSCs was observed by immunofluorescence staining. The liver function and its morphological changes were analyzed by biochemical tests and liver histology. The expression of liver fibrosis markers including α-smooth muscle actin (α-SMA), collagen I, and vimentin were examined by immunohistochemistry and quantitative real-time polymerase chain reaction. RESULTS The homing efficiency of BMSCs in the fibrotic liver was significantly greater with the application of UTMD. The biochemical markers of liver function and histopathological results showed significantly better improvement in BMSCs-HGF/UTMD group than the other groups, and the serum levels of biochemical markers returned to normal ranges in 12 weeks in this group. Furthermore, the expression levels of liver fibrosis markers (α-SMA, collagen I, and Vimentin) were all significantly lower in BMSCs-HGF/UTMD group in comparison with other groups. CONCLUSIONS Our findings have demonstrated that stable expression of HGF in BMSCs and application of the UTMD technique facilitate the homing of BMSCs, and more importantly, which could further improve their alleviation of liver fibrosis. Therefore, these findings have an important clinical implication that AAV-BMSCs-HGF and UTMD hold promise as a novel therapeutic approach for liver fibrosis.
Collapse
Affiliation(s)
- Ting Sun
- Department of Medical Ultrasound, Qingdao Municipal Hospital (Group), Qingdao, 266000, Shandong, China.,Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Rd., Shanghai, 200080, China
| | - Hualin Li
- Department of Medical Ultrasound, Zibo Maternal and Child Health Hospital, Zibo, 255029, Shandong, China
| | - Yun Bai
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Rd., Shanghai, 200080, China
| | - Min Bai
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Rd., Shanghai, 200080, China
| | - Feng Gao
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Rd., Shanghai, 200080, China
| | - Jie Yu
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Rd., Shanghai, 200080, China
| | - Rong Wu
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Rd., Shanghai, 200080, China
| | - Lianfang Du
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Rd., Shanghai, 200080, China.
| | - Fan Li
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Rd., Shanghai, 200080, China.
| |
Collapse
|
5
|
Furuta T, Furuya K, Zheng YW, Oda T. Novel alternative transplantation therapy for orthotopic liver transplantation in liver failure: A systematic review. World J Transplant 2020; 10:64-78. [PMID: 32257850 PMCID: PMC7109592 DOI: 10.5500/wjt.v10.i3.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/10/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the only treatment for end-stage liver failure; however, graft shortage impedes its applicability. Therefore, studies investigating alternative therapies are plenty. Nevertheless, no study has comprehensively analyzed these therapies from different perspectives. AIM To summarize the current status of alternative transplantation therapies for OLT and to support future research. METHODS A systematic literature search was performed using PubMed, Cochrane Library and EMBASE for articles published between January 2010 and 2018, using the following MeSH terms: [(liver transplantation) AND cell] OR [(liver transplantation) AND differentiation] OR [(liver transplantation) AND organoid] OR [(liver transplantation) AND xenotransplantation]. Various types of studies describing therapies to replace OLT were retrieved for full-text evaluation. Among them, we selected articles including in vivo transplantation. RESULTS A total of 89 studies were selected. There are three principle forms of treatment for liver failure: Xeno-organ transplantation, scaffold-based transplantation, and cell transplantation. Xeno-organ transplantation was covered in 14 articles, scaffold-based transplantation was discussed in 22 articles, and cell transplantation was discussed in 53 articles. Various types of alternative therapies were discussed: Organ liver, 25 articles; adult hepatocytes, 31 articles; fetal hepatocytes, three articles; mesenchymal stem cells (MSCs), 25 articles; embryonic stem cells, one article; and induced pluripotent stem cells, three articles and other sources. Clinical applications were discussed in 12 studies: Cell transplantation using hepatocytes in four studies, five studies using umbilical cord-derived MSCs, three studies using bone marrow-derived MSCs, and two studies using hematopoietic stem cells. CONCLUSION The clinical applications are present only for cell transplantation. Scaffold-based transplantation is a comprehensive treatment combining organ and cell transplantations, which warrants future research to find relevant clinical applications.
Collapse
Affiliation(s)
- Tomoaki Furuta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Kinji Furuya
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
- Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
- Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| |
Collapse
|
6
|
van der Helm D, Barnhoorn MC, de Jonge-Muller ESM, Molendijk I, Hawinkels LJAC, Coenraad MJ, van Hoek B, Verspaget HW. Local but not systemic administration of mesenchymal stromal cells ameliorates fibrogenesis in regenerating livers. J Cell Mol Med 2019; 23:6238-6250. [PMID: 31245923 PMCID: PMC6714167 DOI: 10.1111/jcmm.14508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic liver injury leads to the accumulation of myofibroblasts resulting in increased collagen deposition and hepatic fibrogenesis. Treatments specifically targeting fibrogenesis are not yet available. Mesenchymal stromal cells (MSCs) are fibroblast-like stromal (stem) cells, which stimulate tissue regeneration and modulate immune responses. In the present study we assessed whether liver fibrosis and cirrhosis can be reversed by treatment with MSCs or fibroblasts concomitant to partial hepatectomy (pHx)-induced liver regeneration. After carbon tetrachloride-induced fibrosis and cirrhosis, mice underwent a pHx and received either systemically or locally MSCs in one of the two remaining fibrotic/cirrhotic liver lobes. Eight days after treatment, liver fibrogenesis was evaluated by Sirius-red staining for collagen deposition. A significant reduction of collagen content in the locally treated lobes of the regenerated fibrotic and cirrhotic livers was observed in mice that received high dose MSCs. In the non-MSC-treated counterpart liver lobes no changes in collagen deposition were observed. Local fibroblast administration or intravenous administration of MSCs did not ameliorate fibrosis. To conclude, local administration of MSCs after pHx, in contrast to fibroblasts, results in a dose-dependent on-site reduction of collagen deposition in mouse models for liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Danny van der Helm
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke C Barnhoorn
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ilse Molendijk
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Luuk J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Minneke J Coenraad
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart van Hoek
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hein W Verspaget
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Romano B, Lleo A, Sala E, D’Amico G, Marino DI, Ciccocioppo R, Vetrano S. Mesenchymal Stem Cells to Treat Digestive System Disorders: Progress Made and Future Directions. CURRENT TRANSPLANTATION REPORTS 2019; 6:134-145. [DOI: 10.1007/s40472-019-00238-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|