1
|
Groheux D, Vaz SC, de Geus-Oei LF, Dibble EH, Ulaner GA, Cook GJR, Hindié E, Poortmans P, Mann RM, Jacene H, Pilkington Woll JP, Rubio IT, Vrancken Peeters MJ, Graff SL, Cardoso F. 18F-Labeled Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography in Staging and Restaging Patients With Breast Cancer. J Clin Oncol 2025:JCO2401945. [PMID: 40132148 DOI: 10.1200/jco-24-01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/17/2024] [Accepted: 02/06/2025] [Indexed: 03/27/2025] Open
Affiliation(s)
- David Groheux
- Department of Nuclear Medicine, Saint-Louis Hospital, Paris, France
- University Paris-Diderot, INSERM U976, Paris, France
- Centre d'Imagerie Radio-Isotopique (CIRI), La Rochelle, France
| | - Sofia C Vaz
- Department of Nuclear Medicine and Radiopharmacology, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Biomedical Photonic Imaging Group, University of Twente, Enschede, the Netherlands
- Department of Radiation Science & Technology, Delft University of Technology, the Netherlands
| | - Elizabeth H Dibble
- Department of Diagnostic Imaging, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Gary A Ulaner
- Department of Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA
- Departments of Radiology and Translational Genomics, University of Southern Caliifornia, Los Angeles, CA
| | - Gary J R Cook
- Department of Cancer Imaging, King's College London, London, United Kingdom
- King's College London and Guy's & St Thomas' PET Centre, London, United Kingdom
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Elif Hindié
- Department of Nuclear Medicine, Bordeaux University Hospital, University of Bordeaux, Bordeaux, France
- Institut Universitaire de France (IUF), Paris, France
| | - Philip Poortmans
- Department of Radiation Oncology, Iridium Netwerk, Antwerp, Belgium
- Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk-Antwerp, Belgium
| | - Ritse M Mann
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Radiology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Heather Jacene
- Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | | | - Isabel T Rubio
- Department of Breast Surgical Oncology, Clinica Universidad de Navarra, Madrid, Spain
- Cancer Center Clinica Universidad de Navarra, Spain
| | - Marie-Jeanne Vrancken Peeters
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Stephanie L Graff
- Brown University Health Cancer Institute, Providence, RI
- Legorreta Cancer Center at Brown University, Providence, RI
| | - Fatima Cardoso
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
- Advanced Breast Cancer Global Alliance, Lisbon, Portugal
| |
Collapse
|
2
|
Gerke O, Naghavi-Behzad M, Nygaard ST, Sigaroudi VR, Vogsen M, Vach W, Hildebrandt MG. Diagnosing Bone Metastases in Breast Cancer: A Systematic Review and Network Meta-Analysis on Diagnostic Test Accuracy Studies of 2-[ 18F]FDG-PET/CT, 18F-NaF-PET/CT, MRI, Contrast-Enhanced CT, and Bone Scintigraphy. Semin Nucl Med 2025; 55:137-151. [PMID: 39547916 DOI: 10.1053/j.semnuclmed.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
This systematic review and network meta-analysis aimed to compare the diagnostic accuracy of 2-[18F]FDG-PET/CT, 18F-NaF-PET/CT, MRI, contrast-enhanced CT, and bone scintigraphy for diagnosing bone metastases in patients with breast cancer. Following PRISMA-DTA guidelines, we reviewed studies assessing 2-[18F]FDG-PET/CT, 18F-NaF-PET/CT, MRI, contrast-enhanced CT, and bone scintigraphy for diagnosing bone metastases in high-stage primary breast cancer (stage III or IV) or known primary breast cancer with suspicion of recurrence (staging or re-staging). A comprehensive search of MEDLINE/PubMed, Scopus, and Embase was conducted until February 2024. Inclusion criteria were original studies using these imaging methods, excluding those focused on AI/machine learning, primary breast cancer without metastases, mixed cancer types, preclinical studies, and lesion-based accuracy. Preference was given to studies using biopsy or follow-up as the reference standard. Risk of bias was assessed using QUADAS-2. Screening, bias assessment, and data extraction were independently performed by two researchers, with discrepancies resolved by a third. We applied bivariate random-effects models in meta-analysis and network meta-analyzed differences in sensitivity and specificity between the modalities. Forty studies were included, with 29 contributing to the meta-analyses. Of these, 13 studies investigated one single modality only. Both 2-[18F]FDG-PET/CT (sensitivity: 0.94, 95% CI: 0.89-0.97; specificity: 0.98, 95% CI: 0.96-0.99), MRI (0.94, 0.82-0.98; 0.93, 0.87-0.96), and 18F-NaF-PET/CT (0.95, 0.85-0.98; 1, 0.93-1) outperformed the less sensitive modalities CE-CT (0.70, 0.62-0.77; 0.98, 0.97-0.99) and bone scintigraphy (0.83, 0.75-0.88; 0.96, 0.87-0.99). The network meta-analysis of multi-modality studies supports the comparable performance of 2-[18F]FDG-PET/CT and MRI in diagnosing bone metastases (estimated differences in sensitivity and specificity, respectively: 0.01, -0.16 - 0.18; -0.02, -0.15 - 0.12). The results from bivariate random effects modelling and network meta-analysis were consistent for all modalities apart from 18F-NaF-PET/CT. We concluded that 2-[18F]FDG-PET/CT and MRI have high and comparable accuracy for diagnosing bone metastases in breast cancer patients. Both outperformed CE-CT and bone scintigraphy regarding sensitivity. Future multimodality studies based on consented thresholds are warranted for further exploration, especially in terms of the potential role of 18F-NaF-PET/CT in bone metastasis diagnosis in breast cancer.
Collapse
Affiliation(s)
- Oke Gerke
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.
| | - Mohammad Naghavi-Behzad
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Centre for Personalized Response Monitoring in Oncology, Odense University Hospital, Odense, Denmark
| | - Sofie Tind Nygaard
- Department of Nuclear Medicine, Aalborg University Hospital, Aalborg, Denmark
| | | | - Marianne Vogsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Personalized Response Monitoring in Oncology, Odense University Hospital, Odense, Denmark; Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Werner Vach
- Basel Academy for Quality and Research in Medicine, Basel, Switzerland
| | - Malene Grubbe Hildebrandt
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Centre for Personalized Response Monitoring in Oncology, Odense University Hospital, Odense, Denmark; Centre for Innovative Medical Technology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
3
|
Cao JQ, Surgeoner B, Manna M, Boileau JF, Gelmon KA, Brackstone M, Brezden-Masley C, Jerzak KJ, Prakash I, Sehdev S, Wong SM, Bouganim N, Cescon DW, Chia S, Dayes IS, Joy AA, Henning JW. Guidance for Canadian Breast Cancer Practice: National Consensus Recommendations for Clinical Staging of Patients Newly Diagnosed with Breast Cancer. Curr Oncol 2024; 31:7226-7243. [PMID: 39590163 PMCID: PMC11592626 DOI: 10.3390/curroncol31110533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The accurate staging of breast cancer is fundamental for guiding treatment decisions and predicting patient outcomes. However, there can be considerable variation in routine clinical practice based on individual interpretation of guidelines and depending on the healthcare provider initially involved in working up patients newly diagnosed with breast cancer, ranging from primary care providers, triage nurses, surgeons, and/or oncologists. The optimal approach for clinical staging, particularly in asymptomatic patients presenting with intermediate-risk disease, remains a topic of dialogue among clinicians. Given this area of uncertainty, the Research Excellence, Active Leadership (REAL) Canadian Breast Cancer Alliance conducted a modified Delphi process to assess the level of agreement among Canadian expert clinicians on various staging recommendations. In total, 20 items were drafted covering staging based on biological status, the utilization of localization clips, both for the axilla during diagnosis and primary surgical site for margins and radiation therapy planning, and the use of advanced imaging for the investigation of distant metastases. Overall, the consensus threshold among all participants (i.e., ≥75% agreement) was reached in 20/20 items. Differences in clinical practice and recent findings from the literature are provided in the discussion. These consensus recommendations are meant to help standardize breast cancer staging practices in Canada, ensuring accurate diagnosis and optimal treatment planning.
Collapse
Affiliation(s)
- Jeffrey Q. Cao
- Arthur Child Comprehensive Cancer Centre, Calgary, AB T2N 5G2, Canada
| | | | - Mita Manna
- Saskatoon Cancer Centre, Saskatoon, SK S7N 4H4, Canada
| | | | - Karen A. Gelmon
- Department of Medical Oncology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | | | | | | | | | - Sandeep Sehdev
- The Ottawa Hospital Cancer Centre, Ottawa, ON K1H 8L6, Canada
| | | | | | - David W. Cescon
- Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Stephen Chia
- BC Cancer—Vancouver, Vancouver, BC V5Z 4E6, Canada
| | - Ian S. Dayes
- Juravinski Cancer Center, McMaster University, Hamilton, ON L8V 5C2, Canada
| | | | | |
Collapse
|
4
|
Groheux D, Vaz SC, Poortmans P, Mann RM, Ulaner GA, Cook GJR, Hindié E, Pilkington Woll JP, Jacene H, Rubio IT, Vrancken Peeters MJ, Dibble EH, de Geus-Oei LF, Graff SL, Cardoso F. Role of [ 18F]FDG PET/CT in patients with invasive breast carcinoma of no special type: Literature review and comparison between guidelines. Breast 2024; 78:103806. [PMID: 39303572 PMCID: PMC11440802 DOI: 10.1016/j.breast.2024.103806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024] Open
Abstract
PURPOSE The recently released EANM/SNMMI guideline, endorsed by several important clinical and imaging societies in the field of breast cancer (BC) care (ACR, ESSO, ESTRO, EUSOBI/ESR, EUSOMA), emphasized the role of [18F]FDG PET/CT in management of patients with no special type (NST) BC. This review identifies and summarizes similarities, discrepancies and novelties of the EANM/SNMMI guideline compared to NCCN, ESMO and ABC recommendations. METHODS The EANM/SNMMI guideline was based on a systematic literature search and the AGREE tool. The level of evidence was determined according to NICE criteria, and 85 % agreement or higher was reached regarding each statement. Comparisons with NCCN, ESMO and ABC guidelines were examined for specific clinical scenarios in patients with early stage through advanced and metastatic BC. RESULTS Regarding initial staging of patients with NST BC, [18F]FDG PET/CT is the preferred modality in the EANM-SNMMI guideline, showing superiority as a single modality to a combination of contrast-enhanced CT of thorax-abdomen-pelvis plus bone scan in head-to-head comparisons and a randomized study. Its use is recommended in patients with clinical stage IIB or higher and may be useful in certain stage IIA cases of NST BC. In NCCN, ESMO, and ABC guidelines, [18F]FDG PET/CT is instead recommended as complementary to conventional imaging to solve inconclusive findings, although ESMO and ABC also suggest [18F]FDG PET/CT can replace conventional imaging for staging patients with high-risk and metastatic NST BC. During follow up, NCCN and ESMO only recommend diagnostic imaging if there is suspicion of recurrence. Similarly, EANM-SNMMI states that [18F]FDG PET/CT is useful to detect the site and extent of recurrence only when there is clinical or laboratory suspicion of recurrence, or when conventional imaging methods are equivocal. The EANM-SNMMI guideline is the first to emphasize a role of [18F]FDG PET/CT for assessing early metabolic response to primary systemic therapy, particularly for HER2+ BC and TNBC. In the metastatic setting, EANM-SNMMI state that [18F]FDG PET/CT may help evaluate bone metastases and determine early response to treatment, in agreement with guidelines from ESMO. CONCLUSIONS The recently released EANM/SNMMI guideline reinforces the role of [18F]FDG PET/CT in the management of patients with NST BC supported by extensive evidence of its utility in several clinical scenarios.
Collapse
Affiliation(s)
- David Groheux
- Department of Nuclear Medicine, Saint-Louis Hospital, Paris, France; University Paris-Diderot, INSERM, U976, Paris, France; Centre d'Imagerie Radio-Isotopique (CIRI), La Rochelle, France.
| | - Sofia C Vaz
- Department of Nuclear Medicine and Radiopharmacology, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal; Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Philip Poortmans
- Department of Radiation Oncology, Iridium Netwerk, Belgium; Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk-Antwerp, Belgium
| | - Ritse M Mann
- Department of Radiology, Radboud umc, Nijmegen, the Netherlands
| | - Gary A Ulaner
- Department of Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA, United States; Departments of Radiology and Translational Genomics, University of Southern California, Los Angeles, CA, United States
| | - Gary J R Cook
- Department of Cancer Imaging, King's College London, London, UK; King's College London and Guy's & St Thomas' PET Centre, London, UK; School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Elif Hindié
- Department of Nuclear Medicine, Bordeaux University Hospital, Bordeaux, France
| | | | - Heather Jacene
- Dana-Farber Cancer Institute/Brigham and Women's Hospital, and Harvard Medical School, United States
| | - Isabel T Rubio
- Department of Breast Surgical Oncology, Clinica Universidad de Navarra, Madrid, Cancer Center Clinica Universidad de Navarra, Spain
| | - Marie-Jeanne Vrancken Peeters
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Elizabeth H Dibble
- Department of Diagnostic Imaging, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands; Biomedical Photonic Imaging Group, University of Twente, Enschede, the Netherlands; Department of Radiation Science & Technology, Delft University of Technology, Delft, the Netherlands
| | - Stephanie L Graff
- Lifespan Cancer Institute, Providence, RI, United States; Legorreta Cancer Center at Brown University, Providence, RI, United States
| | - Fatima Cardoso
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
5
|
Xiang F, Zhang Y, Tan X, Yan Y, Liu H, Ma W, Chen Y. Prospective comparison of 68Ga-DOTA-ibandronate and bone scans for detecting bone metastases in breast cancer. Front Oncol 2024; 14:1428498. [PMID: 39144828 PMCID: PMC11323743 DOI: 10.3389/fonc.2024.1428498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction 68Ga labeled DOTA-Ibandronate (68Ga-DOTA-IBA) positron emission tomography/computed tomography (PET/CT), is a novel bone-targeting imaging tracer and promising diagnostic method for bone metastases detection. Therefore, this study aimed to compare 68Ga-DOTA-IBA PET/CT to the 99mTc-MDP whole-body bone scan (WBBS) for detecting bone metastases in breast cancer (BC). Materials and methods In this prospective study, 45 women with BC underwent imaging via 68Ga-DOTA-IBA PET/CT and 99mTc-MDP WBBS. Clinical and demographic information as well as BC imaging features were recorded. The two methods were compared in terms of their detection rate for bone metastases and the number of lesions. Results The 45 women were aged 53.5 ± 11.0 years. The bone metastases detection rate with 68Ga-DOTA-IBA PET/CT was 100% (45/45) and with 99mTc-MDP WBBS was 95.6% (43/45). A total of 546 bone metastases lesions were detected. The lesion detection rate using 68Ga-DOTA-IBA PET/CT was 100% (546/546) and using 99mTc-MDP WBBS was 67.8% (370/546). More lesions were found at each site via 68Ga-DOTA-IBA than via 99mTc-MDP WBBS. Conclusions 68Ga-DOTA-IBA PET/CT is a more sensitive method than 99mTc-MDP WBBS for assessing bone metastases in BC and may therefore represent a useful imaging technique for bone metastases, while offering a visual basis for 177Lu-DOTA-IBA diagnosis and therapy response assessments for BC. Further validation using a broader study cohort is warranted to confirm these findings. Clinical trial registration https://www.chictr.org.cn/showproj.html?proj=170163, identifier ChiCTR2200064487.
Collapse
Affiliation(s)
- Feifan Xiang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
- Department of Orthopedic, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yue Zhang
- Department of Orthopedic, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xiaoqi Tan
- Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yuanzhuo Yan
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Huipan Liu
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Wenzhe Ma
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| |
Collapse
|
6
|
Vaz SC, Woll JPP, Cardoso F, Groheux D, Cook GJR, Ulaner GA, Jacene H, Rubio IT, Schoones JW, Peeters MJV, Poortmans P, Mann RM, Graff SL, Dibble EH, de Geus-Oei LF. Joint EANM-SNMMI guideline on the role of 2-[ 18F]FDG PET/CT in no special type breast cancer : (endorsed by the ACR, ESSO, ESTRO, EUSOBI/ESR, and EUSOMA). Eur J Nucl Med Mol Imaging 2024; 51:2706-2732. [PMID: 38740576 PMCID: PMC11224102 DOI: 10.1007/s00259-024-06696-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION There is much literature about the role of 2-[18F]FDG PET/CT in patients with breast cancer (BC). However, there exists no international guideline with involvement of the nuclear medicine societies about this subject. PURPOSE To provide an organized, international, state-of-the-art, and multidisciplinary guideline, led by experts of two nuclear medicine societies (EANM and SNMMI) and representation of important societies in the field of BC (ACR, ESSO, ESTRO, EUSOBI/ESR, and EUSOMA). METHODS Literature review and expert discussion were performed with the aim of collecting updated information regarding the role of 2-[18F]FDG PET/CT in patients with no special type (NST) BC and summarizing its indications according to scientific evidence. Recommendations were scored according to the National Institute for Health and Care Excellence (NICE) criteria. RESULTS Quantitative PET features (SUV, MTV, TLG) are valuable prognostic parameters. In baseline staging, 2-[18F]FDG PET/CT plays a role from stage IIB through stage IV. When assessing response to therapy, 2-[18F]FDG PET/CT should be performed on certified scanners, and reported either according to PERCIST, EORTC PET, or EANM immunotherapy response criteria, as appropriate. 2-[18F]FDG PET/CT may be useful to assess early metabolic response, particularly in non-metastatic triple-negative and HER2+ tumours. 2-[18F]FDG PET/CT is useful to detect the site and extent of recurrence when conventional imaging methods are equivocal and when there is clinical and/or laboratorial suspicion of relapse. Recent developments are promising. CONCLUSION 2-[18F]FDG PET/CT is extremely useful in BC management, as supported by extensive evidence of its utility compared to other imaging modalities in several clinical scenarios.
Collapse
Affiliation(s)
- Sofia C Vaz
- Nuclear Medicine-Radiopharmacology, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal.
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | - Fatima Cardoso
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - David Groheux
- Nuclear Medicine Department, Saint-Louis Hospital, Paris, France
- University Paris-Diderot, INSERM U976, Paris, France
- Centre d'Imagerie Radio-Isotopique (CIRI), La Rochelle, France
| | - Gary J R Cook
- Department of Cancer Imaging, King's College London, London, UK
- King's College London and Guy's & St Thomas' PET Centre, London, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | - Heather Jacene
- Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Isabel T Rubio
- Breast Surgical Oncology, Clinica Universidad de Navarra, Madrid, Cancer Center Clinica Universidad de Navarra, Navarra, Spain
| | - Jan W Schoones
- Directorate of Research Policy, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie-Jeanne Vrancken Peeters
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Philip Poortmans
- Department of Radiation Oncology, Iridium Netwerk, Antwerp, Belgium
- University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Ritse M Mann
- Radiology Department, RadboudUMC, Nijmegen, The Netherlands
| | - Stephanie L Graff
- Lifespan Cancer Institute, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Elizabeth H Dibble
- Department of Diagnostic Imaging, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
- Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands.
- Department of Radiation Science & Technology, Technical University of Delft, Delft, The Netherlands.
| |
Collapse
|
7
|
Robert S, Roman Ortiz NI, LaRocca CJ, Ostrander JH, Davydova J. Oncolytic Adenovirus for the Targeting of Paclitaxel-Resistant Breast Cancer Stem Cells. Viruses 2024; 16:567. [PMID: 38675909 PMCID: PMC11054319 DOI: 10.3390/v16040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Adjuvant systemic therapies effectively reduce the risk of breast cancer recurrence and metastasis, but therapy resistance can develop in some patients due to breast cancer stem cells (BCSCs). Oncolytic adenovirus (OAd) represents a promising therapeutic approach as it can specifically target cancer cells. However, its potential to target BCSCs remains unclear. Here, we evaluated a Cox-2 promoter-controlled, Ad5/3 fiber-modified OAd designed to encode the human sodium iodide symporter (hNIS) in breast cancer models. To confirm the potential of OAds to target BCSCs, we employed BCSC-enriched estrogen receptor-positive (ER+) paclitaxel-resistant (TaxR) cells and tumorsphere assays. OAd-hNIS demonstrated significantly enhanced binding and superior oncolysis in breast cancer cells, including ER+ cells, while exhibiting no activity in normal mammary epithelial cells. We observed improved NIS expression as the result of adenovirus death protein deletion. OAd-hNIS demonstrated efficacy in targeting TaxR BCSCs, exhibiting superior killing and hNIS expression compared to the parental cells. Our vector was capable of inhibiting tumorsphere formation upon early infection and reversing paclitaxel resistance in TaxR cells. Importantly, OAd-hNIS also destroyed already formed tumorspheres seven days after their initiation. Overall, our findings highlight the promise of OAd-hNIS as a potential tool for studying and targeting ER+ breast cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Sacha Robert
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - Christopher J. LaRocca
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Julie Hanson Ostrander
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julia Davydova
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Institute of Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Cao C, Fang Y, Yu B, Xu Y, Qiang M, Tao C, Huang S, Chen X. Use of 18F-FDG PET/MRI as an Initial Staging Procedure for Nasopharyngeal Carcinoma. J Magn Reson Imaging 2024; 59:922-928. [PMID: 37256732 DOI: 10.1002/jmri.28842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Compared with the conventional work-up (CWU) including computed tomography (CT) of the chest and abdomen, MRI of the head and neck, and skeletal scintigraphy, positron emission tomography (PET)/MRI might improve diagnostic accuracy, shorten the work-up time, and reduce false-positive (FP) findings in patients with nasopharyngeal carcinoma (NPC). However, evidence of cost-effectiveness is needed for the adoption of PET/MRI for the initial staging in NPC. PURPOSE To evaluate the cost-effectiveness and clinical value of PET/MRI as an initial staging procedure for NPC. STUDY TYPE Retrospective cohort cost effectiveness study. SUBJECTS Three hundred forty-three patients with a median age of 51 (13-81) years underwent PET/MRI before treatment (the PET/MRI group) and the remaining 677 patients with a median age of 55 (15-95) years only underwent CWU (the CWU group). There were 80 (23.3%) females and 193 (28.5%) females in the PET/MRI and CWU groups, respectively. FIELD STRENGTH/SEQUENCE 3-T integrated PET/MRI system, diffusion-weighted echo-planar imaging (b = 0 and 1000 s/mm2 ) and [18F] fluorodeoxyglucose PET. ASSESSMENT The primary end point was the FP rate. Costs were determined as issued in 2021 by the Medical Insurance Administration Bureau of Zhejiang, China. STATISTICAL TESTS Incremental cost effectiveness ratio (ICER) measured cost of using PET/MRI per percent of patients who avoided a FP. A P-value <0.05 was considered statistically significant. RESULTS For the whole group, the de novo metastatic disease rate was 5.2% (53/1020). A total of 187 patients with FP results were observed. Significantly more patients with FP results were observed in the CWU group compared to the PET/MRI group (25.6% vs. 4.1%). The ICER was $54 for each percent of patients avoiding a FP finding. DATA CONCLUSION Compared with CWU, PET/MRI may reduce the FP risk. Furthermore, PET/MRI may be cost-effective as an initial staging procedure for NPC. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 6.
Collapse
Affiliation(s)
- Caineng Cao
- Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuting Fang
- Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bocheng Yu
- School of Information Technology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuanfan Xu
- Hangzhou Universal Medical Imagine Diagnostion Center, Hangzhou, Zhejiang, China
| | - Mengyun Qiang
- Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Changjuan Tao
- Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shuang Huang
- Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaozhong Chen
- Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Robson N, Thekkinkattil DK. Current Role and Future Prospects of Positron Emission Tomography (PET)/Computed Tomography (CT) in the Management of Breast Cancer. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:321. [PMID: 38399608 PMCID: PMC10889944 DOI: 10.3390/medicina60020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Breast cancer has become the most diagnosed cancer in women globally, with 2.3 million new diagnoses each year. Accurate early staging is essential for improving survival rates with metastatic spread from loco regional to distant metastasis, decreasing mortality rates by 50%. Current guidelines do not advice the routine use of positron emission tomography (PET)-computed tomography (CT) in the staging of early breast cancer in the absence of symptoms. However, there is a growing body of evidence to suggest that the use of PET-CT in this early stage can benefit the patient by improving staging and as a result treatment and outcomes, as well as psychological burden, without increasing costs to the health service. Ongoing research in PET radiomics and artificial intelligence is showing promising future prospects in its use in diagnosis, staging, prognostication, and assessment of responses to the treatment of breast cancer. Furthermore, ongoing research to address current limitations of PET-CT by improving techniques and tracers is encouraging. In this narrative review, we aim to evaluate the current evidence of the usefulness of PET-CT in the management of breast cancer in different settings along with its future prospects, including the use of artificial intelligence (AI), radiomics, and novel tracers.
Collapse
Affiliation(s)
- Nicole Robson
- Lincoln Medical School, Ross Lucas Medical Sciences Building, University of Lincoln, Lincoln LN6 7FS, UK;
| | | |
Collapse
|
10
|
Groheux D. Breast Cancer Systemic Staging (Comparison of Computed Tomography, Bone Scan, and 18F-Fluorodeoxyglucose PET/Computed Tomography). PET Clin 2023; 18:503-515. [PMID: 37268506 DOI: 10.1016/j.cpet.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
After an overview of the principles of bone scintigraphy, contrast-enhanced computed tomography (CE-CT) and 18F-fluorodeoxyglucose (FDG)-PET/CT, the advantages and limits of these modalities in the staging of breast cancer are discussed in this paper. CT and PET/CT are not optimal for delineating primary tumor volume, and PET is less efficient than the sentinel node biopsy to depict small axillary lymph node metastases. In large breast cancer tumor, FDG PET/CT is useful to show extra-axillary lymph nodes. FDG PET/CT is superior to bone scan and CE-CT in detecting distant metastases, and it results in a change of treatment plan in nearly 15% of patients.
Collapse
Affiliation(s)
- David Groheux
- Department of Nuclear Medicine, Saint-Louis Hospital, Paris, France; University Paris-Diderot, INSERM U976, HIPI, Paris, France; Centre d'Imagerie Radio-isotopique, La Rochelle, France.
| |
Collapse
|
11
|
Najid S, Seban RD, Champion L, De Moura A, Sebbag C, Salaün H, Cabel L, Bonneau C. Clinical Utility of Pre-Therapeutic [18F]FDG PET/CT Imaging for Predicting Outcomes in Breast Cancer. J Clin Med 2023; 12:5487. [PMID: 37685551 PMCID: PMC10488013 DOI: 10.3390/jcm12175487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND [18F]FDG PET/CT is used for staging and could also provide information associated with clinical outcomes. The objective of this study was to determine the clinical utility of biomarkers measured using [18F]FDG PET/CT to predict the absence of pathological complete response (no-pCR) and recurrence. METHODS In this retrospective study, we included patients with non-special-type breast carcinoma who underwent [18F]FDG PET/CT before neoadjuvant chemotherapy between 2011 and 2019. Clinicopathological data were collected. Tumor SUVmax and total metabolic tumor volume (TMTV) were measured from PET images. The association between biomarkers and no-pCR was studied using logistic regression. The cut-off value was determined using the area under the ROC Curve. To predict 3-year recurrence-free survival (RFS), we used a multivariable Cox model, and the cut-off value was determined using time-dependent ROC and predictiveness curves. RESULTS Two hundred and eighty-six patients were included in the analysis. One hundred and twelve patients had a pCR (39.2%). The pCR rate was significantly higher in patients with a high nuclear grade (p < 0.01), HER2+ and TNBC subtypes (p < 0.01), high Ki67 (p < 0.01), and low TMTV (p < 0.01). A high TMTV value (>9.0 cm3) was significantly associated with no-pCR in the whole cohort (OR = 2.4, 95% CI: 1.3-4.2, p < 0.01). After a median follow-up of 4.5 years, 65 patients experienced recurrence and 39 patients died. High TMTV (>13.5 cm3) was associated with shorter RFS (HR = 4.0, 95% CI: 1.9-8.4, p < 0.01). CONCLUSION High TMTV in pre-therapeutic imaging is associated with no-pCR and recurrence. It can help in identifying high-risk patients and be considered as an intensified or alternative adjuvant therapy for closely monitoring patients.
Collapse
Affiliation(s)
- Sophia Najid
- Institut Curie, Inserm U900, 92210 Saint-Cloud, France
| | - Romain-David Seban
- Department of Nuclear Medicine, Institut Curie, 92210 Saint-Cloud, France;
| | - Laurence Champion
- Department of Nuclear Medicine, Institut Curie, 92210 Saint-Cloud, France;
| | - Alexandre De Moura
- Department of Medical Oncology, Institut Curie, PSL Research University, 75005 Paris, France; (A.D.M.); (C.S.); (H.S.); (L.C.)
- UVSQ, Paris Saclay University, 92210 Saint-Cloud, France
| | - Clara Sebbag
- Department of Medical Oncology, Institut Curie, PSL Research University, 75005 Paris, France; (A.D.M.); (C.S.); (H.S.); (L.C.)
- UVSQ, Paris Saclay University, 92210 Saint-Cloud, France
| | - Hélène Salaün
- Department of Medical Oncology, Institut Curie, PSL Research University, 75005 Paris, France; (A.D.M.); (C.S.); (H.S.); (L.C.)
- UVSQ, Paris Saclay University, 92210 Saint-Cloud, France
| | - Luc Cabel
- Department of Medical Oncology, Institut Curie, PSL Research University, 75005 Paris, France; (A.D.M.); (C.S.); (H.S.); (L.C.)
- UVSQ, Paris Saclay University, 92210 Saint-Cloud, France
| | - Claire Bonneau
- Department of Surgery, Institut Curie, 92210 Saint-Cloud, France
| |
Collapse
|
12
|
Zhang-Yin J. State of the Art in 2022 PET/CT in Breast Cancer: A Review. J Clin Med 2023; 12:968. [PMID: 36769616 PMCID: PMC9917740 DOI: 10.3390/jcm12030968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Molecular imaging with positron emission tomography is a powerful and well-established tool in breast cancer management. In this review, we aim to address the current place of the main PET radiopharmaceuticals in breast cancer care and offer perspectives on potential future radiopharmaceutical and technological advancements. A special focus is given to the following: the role of 18F-fluorodeoxyglucose positron emission tomography in the clinical management of breast cancer patients, especially during staging; detection of recurrence and evaluation of treatment response; the role of 16α-18Ffluoro-17β-oestradiol positron emission tomography in oestrogen receptors positive breast cancer; the promising radiopharmaceuticals, such as 89Zr-trastuzumab and 68Ga- or 18F-labeled fibroblast activation protein inhibitor; and the application of artificial intelligence.
Collapse
Affiliation(s)
- Jules Zhang-Yin
- Department of Nuclear Medicine, Clinique Sud Luxembourg, Vivalia, B-6700 Arlon, Belgium
| |
Collapse
|
13
|
A nomogram for predicting three or more axillary lymph node involvement before breast cancer surgery. Sci Rep 2022; 12:12141. [PMID: 35840785 PMCID: PMC9287421 DOI: 10.1038/s41598-022-16538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
Based on the American College of Surgeons Oncology Group (ACOSOG)-Z0011, a useful nomogram has been constructed to identify patients who do not require intraoperative frozen sections to evaluate sentinel lymph nodes in the previous study. This study investigated the developed nomogram by ultrasonography (US) and positron emission tomography (PET)/computed tomography (CT) as a modality. In the training set, 89/1030 (8.6%) patients had three or more positive nodes. Larger tumor size, higher grade ultrasonographic ALN classification, and findings suspicious of positive ALN on PET/CT were associated in multivariate analysis. The areas under the receiver operating characteristic curve (AUC) of the nomogram were 0.856 [95% CI 0.815-0.897] in the training set. The AUC in the validation set was 0.866 [95% CI 0.799-0.934]. Application of the nomogram to 1067 patients who met the inclusion criteria of ACOSOG-Z0011 showed that 90 (8.4%) patients had scores above the cut-off and a false-negative result was 37 (3.8%) patients. And the specificity was 93.8%, and the negative predictive value was 96.4%. The upgraded nomogram improved the predictive accuracy, using only US and PET/CT. This nomogram is useful for identifying patients who do not require intraoperative analysis of sentinel lymph nodes and considering candidates for identifying neoadjuvant chemotherapy. The patients consisted of clinical T1-2 and node-negative invasive breast cancer. The training and validation set consisted of 1030 and 781 patients, respectively. A nomogram was constructed by analyzing factors related to three or more axillary lymph node metastases. The patients who matched the ACOSOG-Z0011 criteria were selected and applied to the new nomogram.
Collapse
|
14
|
Groheux D. FDG-PET/CT for Primary Staging and Detection of Recurrence of Breast Cancer. Semin Nucl Med 2022; 52:508-519. [PMID: 35636977 DOI: 10.1053/j.semnuclmed.2022.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022]
Abstract
Breast cancer is the most frequent cancer diagnosed in women worldwide. Accurate baseline staging is necessary to plan optimal breast cancer management. Early detection and staging of recurrence are also essential for optimal therapeutic management. Hybrid FDG-PET/CT imaging offers high sensitivity in detecting extra axillary lymph nodes and distant metastases. Although FDG-PET/CT has some limitations for low proliferative tumors, low-grade tumors and for well-differentiated luminal breast cancer, PET/CT is useful for the initial staging of breast cancer, regardless of tumor phenotype (luminal, triple negative, or HER2+) and of tumor grade. Although FDG-PET/CT performs better for invasive ductal carcinoma (invasive carcinoma of no specific subtype), it is also helpful for staging invasive lobular carcinomas. At initial staging, FDG-PET/CT becomes very useful for staging from clinical stage IIB (T2N1 or T3N0). FDG-PET/CT could be useful in patients with clinical stage IIA (T1N1 or T2N0), but there is not enough strong evidence to recommend routine use in this subgroup. For clinical stage I (T1N0) patients, FDG-PET/CT offers no added value. In patients with recurrent breast cancer, FDG-PET/CT is more effective than conventional imaging in detecting locoregional or distant recurrence, whether suspected by clinical examination, conventional imaging, or elevation of a tumor marker (CA 15.3 or CEA). PET/CT is effective even in the presence of normal tumor markers. PET/CT is also a powerful imaging modality for performing a whole-body workup of a known recurrence and for determining whether or not the recurrence is isolated.
Collapse
Affiliation(s)
- David Groheux
- Department of Nuclear Medicine, Saint-Louis Hospital, Paris, France; University Paris-Diderot, INSERM U976, HIPI, Paris, France; Centre d'Imagerie Radio-isotopique, La Rochelle, France.
| |
Collapse
|
15
|
Abstract
Imaging plays an integral role in the clinical care of patients with breast cancer. This review article focuses on the use of PET imaging for breast cancer, highlighting the clinical indications and limitations of 2-deoxy-2-[18F]fluoro-d-glucose (FDG) PET/CT, the potential use of PET/MRI, and 16α-[18F]fluoroestradiol (FES), a newly approved radiopharmaceutical for estrogen receptor imaging.
Collapse
Affiliation(s)
- Amy M Fowler
- Breast Imaging and Intervention Section, Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, 600 Highland Avenue, Madison, WI 53792, USA.
| | - Steve Y Cho
- University of Wisconsin Carbone Cancer Center, 600 Highland Avenue, Madison, WI 53792, USA; Nuclear Medicine and Molecular Imaging Section, Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252, USA
| |
Collapse
|
16
|
Heath CL, Esserman LJ, Flavell RR, Melisko ME. Authors' Reply: To the Letter to the Editor by Groheux et al. J Natl Compr Canc Netw 2021; 19:xxx-xxxii. [PMID: 34416710 DOI: 10.6004/jnccn.2021.7080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Groheux D, Hindié E, Espié M, Ulaner GA. Letter to the Editor: PET/CT in Locally Advanced Breast Cancer: Time for a Guideline Change? J Natl Compr Canc Netw 2021; 19:xxx. [PMID: 34416711 DOI: 10.6004/jnccn.2021.7050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- David Groheux
- Department of Nuclear Medicine, Saint-Louis Hospital, Paris, France
| | - Elif Hindié
- Department of Nuclear Medicine, Bordeaux University Hospital, Bordeaux, France
| | - Marc Espié
- Breast Diseases Unit, Saint-Louis Hospital, Paris, France; and
| | - Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, California
| |
Collapse
|
18
|
Juengling FD, Maldonado A, Wuest F, Schindler TH. Identify. Quantify. Predict. Why Immunologists Should Widely Use Molecular Imaging for Coronavirus Disease 2019. Front Immunol 2021; 12:568959. [PMID: 34054793 PMCID: PMC8155634 DOI: 10.3389/fimmu.2021.568959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 04/16/2021] [Indexed: 01/18/2023] Open
Abstract
Molecular imaging using PET/CT or PET/MRI has evolved from an experimental imaging modality at its inception in 1972 to an integral component of diagnostic procedures in oncology, and, to lesser extent, in cardiology and neurology, by successfully offering in-vivo imaging and quantitation of key pathophysiological targets or molecular signatures, such as glucose metabolism in cancerous disease. Apart from metabolism probes, novel radiolabeled peptide and antibody PET tracers, including radiolabeled monoclonal antibodies (mAbs) have entered the clinical arena, providing the in-vivo capability to collect target-specific quantitative in-vivo data on cellular and molecular pathomechanisms on a whole-body scale, and eventually, extract imaging biomarkers possibly serving as prognostic indicators. The success of molecular imaging in mapping disease severity on a whole-body scale, and directing targeted therapies in oncology possibly could translate to the management of Coronavirus Disease 2019 (COVID-19), by identifying, localizing, and quantifying involvement of different immune mediated responses to the infection with SARS-COV2 during the course of acute infection and possible, chronic courses with long-term effects on specific organs. The authors summarize current knowledge for medical imaging in COVID-19 in general with a focus on molecular imaging technology and provide a perspective for immunologists interested in molecular imaging research using validated and immediately available molecular probes, as well as possible future targets, highlighting key targets for tailored treatment approaches as brought up by key opinion leaders.
Collapse
Affiliation(s)
- Freimut D. Juengling
- Medical Faculty, University Bern, Bern, Switzerland
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Antonio Maldonado
- Department of Nuclear Medicine and Molecular Imaging, Quironsalud Madrid University Hospital, Madrid, Spain
| | - Frank Wuest
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Thomas H. Schindler
- Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
19
|
Groheux D, Hindie E. Breast cancer: initial workup and staging with FDG PET/CT. Clin Transl Imaging 2021; 9:221-231. [PMID: 33937141 PMCID: PMC8075837 DOI: 10.1007/s40336-021-00426-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022]
Abstract
Purpose Precise staging is needed to plan optimal management in breast cancer. 18F-fluorodeoxyglucose positron emission tomography coupled with computed tomography (FDG-PET/CT) offers high sensitivity in detecting extra axillary lymph nodes and distant metastases. This review aims to clarify in which groups of patients staging with FDG-PET/CT would be beneficial and should be offered. We also discuss how tumor biology and breast cancer subtypes should be taken into account when interpreting FDG-PET/CT scans. Methods We performed a comprehensive literature review and rigorous appraisal of research studies assessing indications for FDG-PET/CT in breast cancer. This assessment regarding breast cancer served as a basis for the recommendations set by a working group of the French Society of Nuclear Medicine, in collaboration with oncological societies, for developing good clinical practice recommendations on the use of FDG-PET/CT in oncology. Results FDG-PET/CT is useful for initial staging of breast cancer, independently of tumor phenotype (triple negative, luminal or HER2 +) and regardless of tumor grade. Considering histological subtype, FDG-PET/CT performs better for staging invasive ductal carcinoma, although it is also helpful for staging invasive lobular carcinomas. Based on the available data, FDG-PET/CT becomes useful for staging starting from clinical stage IIB. FDG-PET/CT is possibly useful in patients with clinical stage IIA (T1N1 or T2N0), but there is not enough strong data to recommend routine use in this subgroup. For clinical stage I (T1N0) patients, staging with FDG-PET/CT offers no added value. Conclusion FDG-PET/CT is useful for staging patients with breast cancer, starting from clinical stage IIB.
Collapse
Affiliation(s)
- David Groheux
- Department of Nuclear Medicine, Saint-Louis Hospital, Paris, France
- University Paris-Diderot, INSERM U976, HIPI, Paris, France
| | - Elif Hindie
- Department of Nuclear Medicine, Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
20
|
Seban RD, Rouzier R, Latouche A, Deleval N, Guinebretiere JM, Buvat I, Bidard FC, Champion L. Total metabolic tumor volume and spleen metabolism on baseline [18F]-FDG PET/CT as independent prognostic biomarkers of recurrence in resected breast cancer. Eur J Nucl Med Mol Imaging 2021; 48:3560-3570. [PMID: 33774685 DOI: 10.1007/s00259-021-05322-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE We evaluated whether biomarkers on baseline [18F]-FDG PET/CT are associated with recurrence after surgery in patients with invasive breast cancer of no special type (NST). METHODS In this retrospective single-center study, we included consecutive patients with non-metastatic breast cancer of NST who underwent [18F]-FDG PET/CT before treatment, including surgery, between 2011 and 2016. Clinicopathological data were collected. Tumor SUVmax, total metabolic tumor volume (TMTV), and spleen- and bone marrow-to-liver SUVmax ratios (SLR, BLR) were measured from the PET images. Cut-off values were determined using predictiveness curves to predict 5-year recurrence-free survival (5y-RFS). A multivariable prediction model was developed using Cox regression. The association with stromal tumor-infiltrating lymphocytes (TILs) levels (low if <50%) was studied by logistic regression. RESULTS Three hundred and three women were eligible, including 93 (31%) with triple-negative breast carcinoma. After a median follow-up of 6.2 years, 56 and 35 patients experienced recurrence and death, respectively. The 5y-RFS rate was 86%. In multivariable analyses, high TMTV (>20 cm3) and high SLR (>0.76) were associated with shorter 5y-RFS (HR 2.4, 95%CI 1.3-4.5, and HR 1.9, 95%CI 1.0-3.6). In logistic regression, high SLR was the only independent factor associated with low stromal TILs (OR 2.8, 95%CI 1.4-5.7). CONCLUSION High total metabolic tumor volume and high spleen glucose metabolism on baseline [18F]-FDG PET/CT were associated with poor 5y-RFS after surgical resection in patients with breast cancer of NST. Spleen metabolism was inversely correlated with stromal TILs and might be a surrogate for an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Romain-David Seban
- Department of Nuclear Medicine, Institut Curie, 92210, Saint-Cloud, France. .,Laboratoire d'Imagerie Translationnelle en Oncologie, Inserm U1288, PSL Research University, Institut Curie, 91400, Orsay, France.
| | - Roman Rouzier
- Department of Surgery, Institut Curie, PSL Research University, 75005 Paris &, 92210, Saint-Cloud, France
| | - Aurelien Latouche
- Bioinformatics and Computational Systems Biology of Cancer, PSL Research University, Mines Paris Tech, INSERM U900, 75005, Paris, France.,Conservatoire national des arts et métiers, Paris, France
| | - Nicolas Deleval
- Department of Nuclear Medicine, Institut Curie, 92210, Saint-Cloud, France
| | | | - Irene Buvat
- Laboratoire d'Imagerie Translationnelle en Oncologie, Inserm U1288, PSL Research University, Institut Curie, 91400, Orsay, France
| | - Francois-Clement Bidard
- Department of Medical Oncology, Institut Curie, PSL Research University, 75005 Paris &, 92210, Saint-Cloud, France.,Circulating Tumor Biomarkers Laboratory, SiRIC, Institut Curie, PSL Research University, Paris, France
| | - Laurence Champion
- Department of Nuclear Medicine, Institut Curie, 92210, Saint-Cloud, France.,Laboratoire d'Imagerie Translationnelle en Oncologie, Inserm U1288, PSL Research University, Institut Curie, 91400, Orsay, France
| |
Collapse
|
21
|
Piciu A, Piciu D, Polocoser N, Kovendi AA, Almasan I, Mester A, Morariu DS, Cainap C, Cainap SS. Diagnostic Performance of F18-FDG PET/CT in Male Breast Cancers Patients. Diagnostics (Basel) 2021; 11:diagnostics11010119. [PMID: 33451072 PMCID: PMC7828478 DOI: 10.3390/diagnostics11010119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION F18-FDG PET/CT is the most important hybrid imaging used in the diagnostic, staging, follow-up, and treatment evaluation response in cancer patients. However, it is well-known that in breast cancer the use of F18-FDG is not included in the first line protocol of initial diagnostic, both in female and male breast cancer patients. F18-FDG PET/CT is a valuable tool to provide information on extra-axillary lymph node involvement, distant metastases, and other occult primary cancers. This study assesses F18-FDG PET/CT systemic staging in male patients with diagnosed breast cancer and determines detection rates for unsuspected distant metastases and synchronous malignancies. METHODS We analyzed a number of 170 male patients with breast cancer, seen between 2000-2020, in a tertiary center. From this group, between 2013-2020 a number of 23 patients underwent F18-FDG PET/CT. Rates of upstaging were determined for each case and the detection of other primary malignancies was analyzed. RESULTS Median age of male breast cancer group was 61.3 y (range, 34-85 y), most had intraductal carcinoma (82.4%) and unsuspected distant metastases, which increased patient stage to IV, observed in 27%. In 4 out 23 patients (17.4%), F18-FDG PET/CT identified synchronous cancers (2 prostate cancers, 1 thyroid and 1 colon cancer). CONCLUSION F18-FDG PET/CT is a valuable tool to provide information on extra-axillary lymph node involvement, distant metastases, and other occult primary cancers. Baseline F18-FDG PET/CT has a substantial impact on the initial staging and on clinical management in male breast patients and should be considered for use in newly diagnosed patients.
Collapse
Affiliation(s)
- Andra Piciu
- Department of Medical Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.P.); (N.P.); (A.A.K.); (C.C.)
| | - Doina Piciu
- PhD School of Iuliu Hatieganu, University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Department of Endocrine Tumors and Nuclear Medicine, Institute of Oncology, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Narcis Polocoser
- Department of Medical Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.P.); (N.P.); (A.A.K.); (C.C.)
| | - Anita A. Kovendi
- Department of Medical Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.P.); (N.P.); (A.A.K.); (C.C.)
| | - Iulia Almasan
- PhD School of Iuliu Hatieganu, University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Department of Endocrine Tumors and Nuclear Medicine, Institute of Oncology, 400012 Cluj-Napoca, Romania
| | - Alexandru Mester
- Departement of Oral Health, University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Dragos-Stefan Morariu
- Department of Surgery, University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Calin Cainap
- Department of Medical Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.P.); (N.P.); (A.A.K.); (C.C.)
| | - Simona Sorana Cainap
- Department of Mother and Child, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|