2
|
Guan Y, Cui Y, Gong Y, Liang X, Han X, Chen Y, Xie H, Zhang Y, Wang B, Ye X, Wang J. Dissociated response and treatment outcome with immune checkpoint blockade in advanced cancer. Sci Rep 2024; 14:32147. [PMID: 39738789 PMCID: PMC11686300 DOI: 10.1038/s41598-024-84009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025] Open
Abstract
Immune-related dissociated response (DR) has been recently recognized and have become a subject of ongoing interest. The purpose of the present study was to evaluate the frequency, treatment outcome, and predictors of DR in cancer patients with immune checkpoint inhibitors. We retrospectively collected clinicopathological data from a cohort of patients with cancer who received PD-1/PD-L1 inhibitor-based monotherapy or combination therapy at a single institution (developing cohort). An independent cohort of advanced non-small cell lung cancer (NSCLC) patients treated with immunotherapy at two institutions was used as the validating cohort. Progression-free survival (PFS) and overall survival (OS) were used as outcome measures. The pantumor cohort included 177 patients. DR were observed in 12 (6.8%) patients. The median PFS and OS were significantly longer in patients with atypical response versus nonresponse but shorter versus true response. Patients with DR had a longer median PFS and OS than those with true progressive disease (PD). Local treatment seemed to have a positive influence on DR patient outcomes, with a median OS of 32.3 months versus 21.9 months for no local treatment. No clinical characteristics remained significant predictors for DR. In the NSCLC cohort, DR was observed in 10 (12.5%) patients. Inferior PFS and OS were validated in patients with real PD when compared with patients with DR. Patients who experience DR exhibit a relatively favorable prognosis. Some patients with DR may benefit from the continuation of ICI administration and local treatment to the growing lesions and achieve a longer survival.
Collapse
Affiliation(s)
- Yaping Guan
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Cui
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
| | - Yanhong Gong
- Department of Stomatology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiuju Liang
- Department of Oncology, The 960 Hospital of the People's Liberation Army, Jinan, China
| | - Xinyue Han
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
| | - Yingcui Chen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
| | - Hong Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
| | - Yuekai Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
| | - Baocheng Wang
- Department of Oncology, The 960 Hospital of the People's Liberation Army, Jinan, China
| | - Xin Ye
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China.
- Shandong Lung Cancer Institute, Jinan, China.
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jun Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China.
- Shandong Lung Cancer Institute, Jinan, China.
| |
Collapse
|
3
|
Shortreed H, Burute N, Aseyev O. Management of undifferentiated adrenal gland metastases from malignant melanoma: case report. Front Oncol 2024; 14:1419827. [PMID: 39228985 PMCID: PMC11368835 DOI: 10.3389/fonc.2024.1419827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Adrenal gland metastases from malignant melanoma are a common but poorly characterised condition. Their lack of consistent clinical features and poor response to immune checkpoint inhibitors pose a significant diagnostic and therapeutic challenge to practitioners. This case report describes a 78-year-old male with no prior history of melanoma presenting with nonspecific abdominal symptoms and unintentional weight loss who was found to have undifferentiated bilateral adrenal gland metastases from malignant melanoma. Despite ongoing investigations, the primary site of the adrenal gland metastases remained unknown, prompting the consideration of primary adrenal melanoma as a diagnosis. The patient underwent four cycles of treatment with immune checkpoint inhibitors, nivolumab and ipilimumab, followed by maintenance therapy and subsequent adrenal metastasectomy. Despite therapeutic efforts, the patient's tumour was resistant to treatment and became undifferentiated. The patient continued with palliative care until his death, more than three years after the onset of symptoms. The clinical features, pathophysiology, diagnosis, treatment, and prognosis of this patient's disease are discussed in detail to help inform the management of similar cases.
Collapse
Affiliation(s)
- Hannah Shortreed
- Department of Undergraduate Medical Education, Northern Ontario School of Medicine University, Thunder Bay, ON, Canada
| | - Nishigandha Burute
- Department of Undergraduate Medical Education, Northern Ontario School of Medicine University, Thunder Bay, ON, Canada
- Department of Diagnostic Imaging, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON, Canada
| | - Olexiy Aseyev
- Department of Undergraduate Medical Education, Northern Ontario School of Medicine University, Thunder Bay, ON, Canada
- Department of Medical Oncology, Cancer Care Northwest, Thunder Bay, ON, Canada
- Department of Medical Oncology, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON, Canada
| |
Collapse
|
4
|
Mihai R, De Crea C, Guerin C, Torresan F, Agcaoglu O, Simescu R, Walz MK. Surgery for advanced adrenal malignant disease: recommendations based on European Society of Endocrine Surgeons consensus meeting. Br J Surg 2024; 111:znad266. [PMID: 38265812 PMCID: PMC10805373 DOI: 10.1093/bjs/znad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/02/2023] [Indexed: 01/25/2024]
Affiliation(s)
- Radu Mihai
- Churchill Cancer Centre, Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Carmela De Crea
- Centro di Ricerca in Chirurgia delle Ghiandole Endocrine e dell’Obesità, Università Cattolica del Sacro Cuore, Rome, Italy
- Endocrine Surgery Unit, Hospital Fatebenefratelli Isola Tiberina—Gemelli Isola, Rome, Italy
| | - Carole Guerin
- Department of Endocrine and Metabolic Surgery, Aix-Marseille University, Hôpital de La Conception, Marseille, France
| | - Francesca Torresan
- Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Orhan Agcaoglu
- Department of General Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Razvan Simescu
- Department of General and Endocrine Surgery, Medlife-Humanitas Hospital, Cluj-Napoca, Romania
| | - Martin K Walz
- Department of Surgery and Minimally Invasive Surgery, Kliniken Essen-Mitte, Essen, Germany
| |
Collapse
|
5
|
Wachtel H, Dickson P, Fisher SB, Kiernan CM, Solórzano CC. Adrenal Metastasectomy in the Era of Immuno- and Targeted Therapy. Ann Surg Oncol 2023:10.1245/s10434-023-13474-8. [PMID: 37079202 DOI: 10.1245/s10434-023-13474-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/26/2023] [Indexed: 04/21/2023]
Abstract
Adrenal metastasectomy has an increasing role in multimodality oncologic care for diverse primary cancer types. In this review, we discuss the epidemiology, evaluation, and contemporary best practices in the management of adrenal metastases from various primaries. Initial evaluation of suspected adrenal metastases should include diagnostic imaging to assess the extent of tumor involvement and determine surgical resectability, as well as biochemical evaluation for hormone secretion. Biopsy has a minimal role and should only be performed in tumors that are established to be non-hormone secreting and when the biopsy results would change clinical management. Adrenal metastasectomy is associated with survival benefit in selected patients. We suggest that adrenal metastasectomy has the greatest benefit in four clinical scenarios: (1) disease limited to the adrenal gland in which adrenalectomy renders the patient disease-free; (2) isolated progression in the adrenal gland in the setting of otherwise controlled metastatic extra-adrenal disease; (3) need for palliation of symptoms related to adrenal metastases; or (4) in the context of tissue-based clinical trials. Both minimally invasive and open adrenalectomy techniques are safe and appear to have equivalent oncologic outcomes. Minimally invasive approaches are favored when technically feasible while maintaining oncologic principles. A multidisciplinary evaluation including clinicians with expertise in the primary cancer type is essential to the successful management of adrenal metastases.
Collapse
Affiliation(s)
- Heather Wachtel
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Paxton Dickson
- Division of Surgical Oncology, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sarah B Fisher
- Division of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colleen M Kiernan
- Division of Surgical Oncology and Endocrine Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carmen C Solórzano
- Division of Surgical Oncology and Endocrine Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
6
|
Cui Y, Han X, Liu H, Xie Q, Guan Y, Yin B, Xiao J, Feng D, Wang X, Li J, Chen J, Liu X, Li X, Nie W, Ma L, Liu H, Liang J, Li Y, Wang B, Wang J. Impact of endogenous glucocorticoid on response to immune checkpoint blockade in patients with advanced cancer. Front Immunol 2023; 14:1081790. [PMID: 37114049 PMCID: PMC10126286 DOI: 10.3389/fimmu.2023.1081790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Background Previous studies indicate that exogenous use of glucocorticoid (GC) affects immune checkpoint inhibitor (ICI) efficacy. However, there is a paucity of clinical data evaluating the direct impact of endogenous GC on the efficacy for cancer patients with immune checkpoint blockade. Methods We first compared the endogenous circulating GC levels in healthy individuals and patients with cancer. We next retrospectively reviewed patients with advanced cancer with PD-1/PD-L1 inhibitor alone or combination therapy in a single center. The effects of baseline circulating GC levels on objective response rate (ORR), durable clinical benefit (DCB), progression-free survival (PFS), and overall survival (OS) were analyzed. The association of the endogenous GC levels with circulating lymphocytes, cytokines levels, and neutrophil to lymphocyte ratio, and tumor infiltrating immune cells, were systematically analyzed. Results The endogenous GC levels in advanced cancer patients were higher than those in early-stage cancer patients as well as healthy people. In the advanced cancer cohort with immune checkpoint blockade (n=130), patients with high baseline endogenous GC levels (n=80) had a significantly reduced ORR (10.0% vs 40.0%; p<0.0001) and DCB (35.0% vs 73.5%, p=0.001) compared to those with low endogenous GC levels (n=50). The increased GC levels was significantly associated with reduced PFS (HR 2.023; p=0.0008) and OS (HR 2.809; p=0.0005). Moreover, statistically significant differences regarding PFS, and OS were also detected after propensity score matching. In a multivariable model, the endogenous GC was identified as an independent indicator for predicting PFS (HR 1.779; p=0.012) and OS (HR 2.468; p=0.013). High endogenous GC levels were significantly associated with reduced lymphocytes (p=0.019), increased neutrophil to lymphocyte ratio (p=0.0009), and increased interleukin-6 levels (p=0.025). Patients with high levels of endogenous GC had low numbers of tumor infiltrating CD3+ (p=0.001), CD8+ T (p=0.059), and CD4+ T (p=0.002) cells, and the numbers of circulating PD-1+ NK cells (p=0.012), and the ratio of CD8+PD-1+ to CD4+PD-1+ (p=0.031) were higher in patients with high levels of endogenous GC compared to low levels of endogenous GC. Conclusion Baseline endogenous GC increase executes a comprehensive negative effect on immunosurveillance and response to immunotherapy in real-world cancer patients accompanied with cancer progression.
Collapse
Affiliation(s)
- Yu Cui
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Xinyue Han
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Hongtao Liu
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Qi Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Yaping Guan
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Beibei Yin
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Junjuan Xiao
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Dongfeng Feng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Xuan Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Junwei Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Jinghua Chen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Xiaolin Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Xingyu Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Weiwei Nie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Lin Ma
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Hairong Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Jing Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Yan Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
| | - Baocheng Wang
- Department of Oncology, The 960th Hospital, The PEOPLE’s Liberation Army, Jinan, China
| | - Jun Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Lung Cancer Institute, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, China
- *Correspondence: Jun Wang,
| |
Collapse
|
7
|
Conway JW, Braden J, Wilmott JS, Scolyer RA, Long GV, Pires da Silva I. The effect of organ-specific tumor microenvironments on response patterns to immunotherapy. Front Immunol 2022; 13:1030147. [DOI: 10.3389/fimmu.2022.1030147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Immunotherapy, particularly immune checkpoint inhibitors, have become widely used in various settings across many different cancer types in recent years. Whilst patients are often treated on the basis of the primary cancer type and clinical stage, recent studies have highlighted disparity in response to immune checkpoint inhibitors at different sites of metastasis, and their impact on overall response and survival. Studies exploring the tumor immune microenvironment at different organ sites have provided insights into the immune-related mechanisms behind organ-specific patterns of response to immunotherapy. In this review, we aimed to highlight the key learnings from clinical studies across various cancers including melanoma, lung cancer, renal cell carcinoma, colorectal cancer, breast cancer and others, assessing the association of site of metastasis and response to immune checkpoint inhibitors. We also summarize the key clinical and pre-clinical findings from studies exploring the immune microenvironment of specific sites of metastasis. Ultimately, further characterization of the tumor immune microenvironment at different metastatic sites, and understanding the biological drivers of these differences, may identify organ-specific mechanisms of resistance, which will lead to more personalized treatment approaches for patients with innate or acquired resistance to immunotherapy.
Collapse
|