1
|
Torres MB, Leung CH, Zoghbi M, Lazcano R, Ingram D, Wani K, Keung EZ, Zarzour MA, Scally CP, Hunt KK, Conley A, Bishop AJ, Guadagnolo BA, Farooqi A, Mitra D, Yoder AK, Nakazawa MS, Araujo D, Livingston A, Ratan R, Patel S, Ravi V, Lazar AJ, Roland CL, Somaiah N, Nassif Haddad EF. Dedifferentiated liposarcomas treated with immune checkpoint blockade: the MD Anderson experience. Front Immunol 2025; 16:1567736. [PMID: 40370451 PMCID: PMC12075363 DOI: 10.3389/fimmu.2025.1567736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/11/2025] [Indexed: 05/16/2025] Open
Abstract
Background Dedifferentiated liposarcoma (DDLPS) is one of the most common types of soft tissue sarcoma (STS) characterized by liposarcomatous differentiation and a predilection for the retroperitoneum. Despite the growing number of histology-specific immune checkpoint blockade (ICB) trials in STS, it is still difficult to identify the radiographic objective response rate (ORR) for DDLPS in the real world setting. This study aimed to evaluate the ORR and survival of patients with DDLPS treated with ICB at a single center. Methods We conducted a retrospective study of 31 patients with pathologically confirmed DDLPS treated with ICB at MD Anderson Cancer Center between 2018 and 2023. Patient demographics, disease characteristics, treatment history, and response to ICB were analyzed. Immunohistochemical analysis was performed on tumor samples to assess immune-related markers. Results ORR by RECIST 1.1 was 3.2% (n=1/31). Among all patients (n=31), 6% achieved partial radiographic response, while 39% had stable disease, and 55% showed progressive disease. Median progression-free survival (PFS) was 3.5 (95%CI:1.9, 4.7) months, and overall survival (OS) after ICB initiation was 19.7 (95%CI: 8.8, not reached) months. Patients without prior systemic therapy demonstrated better OS (p=0.004). Immunohistochemistry revealed no relationship between pre- or post-ICB expression of CD8, CD20, CD21 and PDL-1 and response. Conclusion While the response to ICB in DDLPS remains limited, specific immune markers may influence treatment outcomes. CD20/21 post-ICB appear more important for prognosis. Further research is warranted to identify predictive factors for ICB efficacy in DDLPS.
Collapse
Affiliation(s)
- Madeline B. Torres
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Surgery, Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Cheuk Hong Leung
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Marianne Zoghbi
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Davis Ingram
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Khalida Wani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Emily Z. Keung
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - M. Alejandra Zarzour
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christopher P. Scally
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kelly K. Hunt
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anthony Conley
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrew J. Bishop
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - B. Ashleigh Guadagnolo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ahsan Farooqi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Devarati Mitra
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alison K. Yoder
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael S. Nakazawa
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dejka Araujo
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrew Livingston
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ravin Ratan
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shreyaskumar Patel
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vinod Ravi
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexander J. Lazar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christina L. Roland
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elise F. Nassif Haddad
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
2
|
Chen A, Qiu Y, Yen Y, Wang C, Wang X, Li C, Wei Z, Li L, Yu L, Liu F, Li R. Expression of Cancer-Testis Antigens MAGE-A1, MAGE-A4, NY-ESO-1 and PRAME in Bone and Soft Tissue Sarcomas: The Experience From a Single Center in China. Cancer Med 2025; 14:e70750. [PMID: 40152485 PMCID: PMC11951172 DOI: 10.1002/cam4.70750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/01/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
OBJECTIVE Sarcomas are a heterogeneous group of malignancies, low disease-control levels and the limited durability of responses have prompted the exploration of various novel immunotherapeutic approaches. To preliminarily explore the feasibility of cancer vaccines based on cancer testis antigen in the immunotherapy of sarcomas, we investigate the expression of Cancer/Testis Antigens (CTA) MAGE-A4, PRAME, MAGE-A1, KK-LC-1, and NY-ESO-1 in bone and soft tissue sarcomas, with the aim of assessing their potential for use in sarcoma immunotherapy and determining their expression levels in different subtypes. METHODS AND RESULTS We employed immunohistochemistry and multiplex immunostaining microarrays (MI chips) to assess the expression of MAGE-A4, PRAME, MAGE-A1, KK-LC-1, and NY-ESO-1 in 21 cases of undifferentiated pleomorphic sarcoma (UPS), 26 cases of smooth muscle sarcoma, 28 cases of liposarcoma, 40 cases of osteosarcoma (OS), and 13 cases of chondrosarcoma. MAGE-A1 showed the highest expression in osteosarcoma (32.50%), while it was lower in liposarcoma and undifferentiated pleomorphic sarcoma (10.71% and 10.00%) and undetectable in chondrosarcoma. MAGE-A4 expression was elevated in osteosarcoma and undifferentiated pleomorphic sarcoma (40.00% and 33.00%), but lower in liposarcoma and smooth muscle sarcoma (17.00% and 33.00%). NY-ESO-1 expression was relatively low across all sarcoma subtypes. PRAME expression was highest in undifferentiated pleomorphic sarcoma (47.62%) and low in chondrosarcoma (7.69%). None of the sarcomas expressed KK-LC-1. Additionally, while there was no statistically significant correlation between CTA expression and patient age or gender, some differences related to age and gender were observed. CONCLUSIONS CTA expression in bone and soft tissue sarcomas was correlated with both CTA type and sarcoma subtype, showing relatively high levels of expression in undifferentiated pleomorphic sarcoma (UPS) and osteosarcoma (OS). The poly-expression of MAGE-A4, PRAME, and MAGE-A1 across all subtypes suggests that these antigens may serve as potential targets for sarcoma-specific immunotherapy.
Collapse
Affiliation(s)
- Anni Chen
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yuling Qiu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Ying‐Tzu Yen
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Chun Wang
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Xiaolu Wang
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Chunhua Li
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Zijian Wei
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Lin Li
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Lixia Yu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Fangcen Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- Department of Pathology, Nanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Rutian Li
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| |
Collapse
|
3
|
Zhuang AB, Xi Z, Cheng YX, Zhang CH, Li WG. Current status and future perspectives of immunotherapy for abdominal liposarcoma: From basic research to clinical practice. Shijie Huaren Xiaohua Zazhi 2025; 33:81-88. [DOI: 10.11569/wcjd.v33.i2.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/06/2024] [Accepted: 12/17/2024] [Indexed: 02/28/2025] Open
Abstract
Liposarcoma is a highly heterogeneous type of soft tissue sarcoma originating from adipose tissue, characterized by complex biological behavior and invasiveness. Traditional treatments have shown limited efficacy in high-grade and metastatic liposarcoma, with unsatisfactory patient outcomes. In recent years, the breakthroughs of immunotherapy in various solid tumors have sparked interest in its potential application to liposarcoma. This review systematically examines the progress in basic research and clinical practice of immunotherapy for liposarcoma, discussing the tumor immune microenvironment, mechanisms of immune evasion, the application of immune checkpoint inhibitors, combination therapy strategies, the challenges faced, as well as the future direction, with an aim to provide a theoretical basis for personalized treatment of liposarcoma, promote the development of novel immunotherapy strategies, and ultimately improve patient prognosis and quality of life.
Collapse
Affiliation(s)
- Ao-Bo Zhuang
- School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Zhe Xi
- School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Ying-Xue Cheng
- School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Chen-He Zhang
- School of Medicine, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Wen-Gang Li
- Department of Hepatobiliary and Pancreatic Surgery, Xiang'an Hospital of Xiamen University, Xiamen 361102, Fujian Province, China
- Cancer Research Center of Xiamen University, Xiamen 361005, Fujian Province, China
| |
Collapse
|
4
|
Liu H, Hao Q, Wang X, Cheng M, Qiu F, Zhou B. Efficacy and safety of the combination of anlotinib and envafolimab in the treatment of unresectable or metastatic liposarcoma: findings from a single-center retrospective study. Front Oncol 2025; 14:1502945. [PMID: 39868378 PMCID: PMC11757892 DOI: 10.3389/fonc.2024.1502945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025] Open
Abstract
Objective To evaluate the efficacy and safety of anlotinib combined with envafolimab in the treatment of unresectable or metastatic liposarcoma. Methods This single-center, retrospective study enrolled 15 patients with unresectable or metastatic liposarcoma, who were treated at the Retroperitoneal Tumor Surgery Research Center of Qingdao University Affiliated Hospital between April 2022 and November 2023. The treatment regimen consisted of anlotinib combined with envafolimab. Treatment efficacy was evaluated using the Response Evaluation Criteria in Solid Tumors version 1.1. Treatment-related adverse events (TRAEs) were assessed using Common Terminology Criteria for Adverse Events version 5.0. Results A total of 15 patients with unresectable or metastatic liposarcoma were included; among them, seven were male (46.7%) and eight were female (53.3%), with a median age of 55 years. The pathological subtype distribution was as follows: three (20.0%) patients with well-differentiated liposarcoma, 11 (73.3%) patients with dedifferentiated liposarcoma, and one (6.7%) patient with myxoid liposarcoma. At 12 weeks post-diagnosis, none of the patients achieved a complete response. The objective response rate was 6.7%, with one patient (6.7%) achieving a partial response. Disease stability was observed in 10 (66.6%) patients, which corresponded to a disease control rate of 73.3%. Disease progression occurred in four (26.7%) patients. The median follow-up time was 16.9 months and the median progression-free survival time was 14.2 months. Seven patients experienced TRAEs, of whom three (42.2%) had grade 3-4 TRAEs. The most common TRAEs were liver function abnormalities, hypertension, and fatigue. Conclusion Anlotinib combined with envafolimab demonstrates promising efficacy and manageable safety in treating unresectable or metastatic liposarcoma.
Collapse
Affiliation(s)
- Hongliang Liu
- Department of Hepatobiliary and Pancreatic Surgery & Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qisheng Hao
- Department of Hepatobiliary and Pancreatic Surgery & Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xi Wang
- Department of Oncology, Women and Children’s Hospital Affiliated to Qingdao University, Qingdao, China
| | - Mengxing Cheng
- Department of Hepatobiliary and Pancreatic Surgery & Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fabo Qiu
- Department of Hepatobiliary and Pancreatic Surgery & Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Zhou
- Department of Hepatobiliary and Pancreatic Surgery & Retroperitoneal Tumor Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Almeida JS, Sousa LM, Couceiro P, Andrade TF, Alves V, Martinho A, Rodrigues J, Fonseca R, Freitas-Tavares P, Santos-Rosa M, Casanova JM, Rodrigues-Santos P. Peripheral immune profiling of soft tissue sarcoma: perspectives for disease monitoring. Front Immunol 2024; 15:1391840. [PMID: 39502689 PMCID: PMC11536262 DOI: 10.3389/fimmu.2024.1391840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Studying the tumor microenvironment and surrounding lymph nodes is the main focus of current immunological research on soft tissue sarcomas (STS). However, due to the restricted opportunity to examine tumor samples, alternative approaches are required to evaluate immune responses in non-surgical patients. Therefore, the purpose of this study was to evaluate the peripheral immune profile of STS patients, characterize patients accordingly and explore the impact of peripheral immunotypes on patient survival. Blood samples were collected from 55 STS patients and age-matched healthy donors (HD) controls. Deep immunophenotyping and gene expression analysis of whole blood was analyzed using multiparametric flow cytometry and real-time RT-qPCR, respectively. Using xMAP technology, proteomic analysis was also carried out on plasma samples. Unsupervised clustering analysis was used to classify patients based on their immune profiles to further analyze the impact of peripheral immunotypes on patient survival. Significant differences were found between STS patients and HD controls. It was found a contraction of B cells and CD4 T cells compartment, along with decreased expression levels of ICOSLG and CD40LG; a major contribution of suppressor factors, as increased frequency of M-MDSC and memory Tregs, increased expression levels of ARG1, and increased plasma levels of IL-10, soluble VISTA and soluble TIMD-4; and a compromised cytotoxic potential associated with NK and CD8 T cells, namely decreased frequency of CD56dim NK cells, and decreased levels of PRF1, GZMB, and KLRK1. In addition, the patients were classified into three peripheral immunotype groups: "immune-high," "immune-intermediate," and "immune-low." Furthermore, it was found a correlation between these immunotypes and patient survival. Patients classified as "immune-high" exhibited higher levels of immune-related factors linked to cytotoxic/effector activity and longer survival times, whereas patients classified as "immune-low" displayed higher levels of immune factors associated with immunosuppression and shorter survival times. In conclusion, it can be suggested that STS patients have a compromised systemic immunity, and the correlation between immunotypes and survival emphasizes the importance of studying peripheral blood samples in STS. Assessing the peripheral immune response holds promise as a useful method for monitoring and forecasting outcomes in STS.
Collapse
Affiliation(s)
- Jani Sofia Almeida
- Center for Neurosciences and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Luana Madalena Sousa
- Center for Neurosciences and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Patrícia Couceiro
- Center for Neurosciences and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Tânia Fortes Andrade
- Center for Neurosciences and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
| | - Vera Alves
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - António Martinho
- Portuguese Institute for Blood and Transplantation (IPST), Blood and Transplantation Center of Coimbra, Coimbra, Portugal
| | - Joana Rodrigues
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Tumor Unit of the Locomotor Apparatus, University Clinic of Orthopedics, Orthopedics Oncology Service, Coimbra Hospital and Universitary Centre (CHUC), Coimbra, Portugal
| | - Ruben Fonseca
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Tumor Unit of the Locomotor Apparatus, University Clinic of Orthopedics, Orthopedics Oncology Service, Coimbra Hospital and Universitary Centre (CHUC), Coimbra, Portugal
| | - Paulo Freitas-Tavares
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Tumor Unit of the Locomotor Apparatus, University Clinic of Orthopedics, Orthopedics Oncology Service, Coimbra Hospital and Universitary Centre (CHUC), Coimbra, Portugal
| | - Manuel Santos-Rosa
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - José Manuel Casanova
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Tumor Unit of the Locomotor Apparatus, University Clinic of Orthopedics, Orthopedics Oncology Service, Coimbra Hospital and Universitary Centre (CHUC), Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Center for Neurosciences and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
6
|
Iwai Y, Baldwin XL, Feeney T, Agala CB, Yanagihara TK, Stein JN, Kim HJ, Spanheimer PM. Trends in the use of immunotherapy to treat soft tissue sarcoma. Am J Surg 2024; 236:115794. [PMID: 38879356 PMCID: PMC11392640 DOI: 10.1016/j.amjsurg.2024.115794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/29/2024] [Accepted: 06/04/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND The role of immune-oncology (IO) therapy in soft tissue sarcoma (STS) is underexplored. This study characterized IO use in STS. METHODS This is a retrospective analysis of patients with a soft tissue mass in the National Cancer Database, 2011-2021. Patients were categorized by IO receipt status. Groupwise testing and proportional trend tests were performed with Chi-squared tests. Multivariate logistic regression was performed to assess factors associated with IO receipt. RESULTS Of the 103,092 patients with STS, 1935 (1.9 %) received or were recommended IO therapy. IO use increased 10-fold (0.24 %-2.5 % from 2011 to 2021; p < 0.0001). Patients had higher odds of receiving IO when having higher grade tumors and metastatic disease, and when treated at an academic research center (all p < 0.001). CONCLUSIONS IO use in STS is low but increasing and primarily used in the metastatic setting. Future studies should identify biomarkers of IO response and facilitators for treatment receipt.
Collapse
Affiliation(s)
- Yoshiko Iwai
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xavier L Baldwin
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy Feeney
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chris B Agala
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ted K Yanagihara
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacob N Stein
- Department of Medical Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hong Jin Kim
- Division of Surgical Oncology, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Philip M Spanheimer
- Division of Surgical Oncology, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Jirovec A, Flaman A, Godbout E, Serrano D, Werier J, Purgina B, Diallo JS. Immune profiling of dedifferentiated liposarcoma and identification of novel antigens for targeted immunotherapy. Sci Rep 2024; 14:11254. [PMID: 38755218 PMCID: PMC11099179 DOI: 10.1038/s41598-024-61860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Dedifferentiated liposarcoma (DDLS) is an aggressive, recurring sarcoma with limited treatments. T-cell immunotherapies selectively target malignant cells, holding promise against DDLS. The development of successful immunotherapy for DDLS requires a thorough evaluation of the tumor immune microenvironment and the identification and characterization of targetable immunogenic tumor antigens. To assess the complexity of the human DDLS tumor immune microenvironment and to identify target antigens, we used the nCounter NanoString platform, analyzing gene expression profiles across 29 DDLS and 10 healthy adipose tissue samples. Hierarchical clustering of tumors based on expression of tumor inflammation signature genes revealed two distinct groups, consisting of 15 inflamed tumors and 14 non-inflamed tumors, demonstrating tumor heterogeneity within this sarcoma subtype. Among the identified antigens, PBK and TTK exhibited substantial upregulation in mRNA expression compared to healthy adipose tissue controls, further corroborated by positive protein expression by IHC. This data shows considerable inter-tumoral heterogeneity of inflammation, which should be taken into consideration when designing an immunotherapy for DDLS, and provides a novel targetable antigen in DDLS. The results of this study lay the groundwork for the development of a novel immunotherapy for this highly aggressive sarcoma.
Collapse
Affiliation(s)
- Anna Jirovec
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
- Centre for Innovative Cancer Research, Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Box 926, Ottawa, ON, K1H 8L6, Canada.
| | - Ashley Flaman
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Elena Godbout
- Centre for Innovative Cancer Research, Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Box 926, Ottawa, ON, K1H 8L6, Canada
| | - Daniel Serrano
- Centre for Innovative Cancer Research, Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Box 926, Ottawa, ON, K1H 8L6, Canada
| | - Joel Werier
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Orthopedic Surgery, The Ottawa Hospital, Ottawa, ON, Canada
| | - Bibianna Purgina
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Jean-Simon Diallo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Innovative Cancer Research, Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Box 926, Ottawa, ON, K1H 8L6, Canada
| |
Collapse
|
8
|
Li Y, Zheng Y, Liu T, Liao C, Shen G, He Z. The potential and promise for clinical application of adoptive T cell therapy in cancer. J Transl Med 2024; 22:413. [PMID: 38693513 PMCID: PMC11064426 DOI: 10.1186/s12967-024-05206-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Adoptive cell therapy has revolutionized cancer treatment, especially for hematologic malignancies. T cells are the most extensively utilized cells in adoptive cell therapy. Currently, tumor-infiltrating lymphocytes, T cell receptor-transgenic T cells and chimeric antigen receptor T cells are the three main adoptive T cell therapies. Tumor-infiltrating lymphocytes kill tumors by reinfusing enlarged lymphocytes that naturally target tumor-specific antigens into the patient. T cell receptor-transgenic T cells have the ability to specifically destroy tumor cells via the precise recognition of exogenous T cell receptors with major histocompatibility complex. Chimeric antigen receptor T cells transfer genes with specific antigen recognition structural domains and T cell activation signals into T cells, allowing T cells to attack tumors without the assistance of major histocompatibility complex. Many barriers have been demonstrated to affect the clinical efficacy of adoptive T cell therapy, such as tumor heterogeneity and antigen loss, hard trafficking and infiltration, immunosuppressive tumor microenvironment and T cell exhaustion. Several strategies to improve the efficacy of adoptive T cell therapy have been explored, including multispecific chimeric antigen receptor T cell therapy, combination with immune checkpoint blockade, targeting the immunosuppressive tumor microenvironment, etc. In this review, we will summarize the current status and clinical application, followed by major bottlenecks in adoptive T cell therapy. In addition, we will discuss the promising strategies to improve adoptive T cell therapy. Adoptive T cell therapy will result in even more incredible advancements in solid tumors if the aforementioned problems can be handled.
Collapse
Affiliation(s)
- Yinqi Li
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Yeteng Zheng
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Taiqing Liu
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Chuanyun Liao
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
| | - Zhiyao He
- Department of Pharmacy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Gundle KR, Rajasekaran K, Houlton J, Deutsch GB, Ow TJ, Maki RG, Pang J, Nathan CAO, Clayburgh D, Newman JG, Brinkmann E, Wagner MJ, Pollack SM, Thompson MJ, Li RJ, Mehta V, Schiff BA, Wenig BI, Swiecicki PL, Tang AL, Davis JL, van Zante A, Bertout JA, Jenkins W, Turner A, Grenley M, Burns C, Frazier JP, Merrell A, Sottero KHW, Derry JMJ, Gillespie KC, Mills B, Klinghoffer RA. Early, precise, and safe clinical evaluation of the pharmacodynamic effects of novel agents in the intact human tumor microenvironment. Front Pharmacol 2024; 15:1367581. [PMID: 38681192 PMCID: PMC11048044 DOI: 10.3389/fphar.2024.1367581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/04/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction: Drug development is systemically inefficient. Research and development costs for novel therapeutics average hundreds of millions to billions of dollars, with the overall likelihood of approval estimated to be as low as 6.7% for oncology drugs. Over half of these failures are due to a lack of drug efficacy. This pervasive and repeated low rate of success exemplifies how preclinical models fail to adequately replicate the complexity and heterogeneity of human cancer. Therefore, new methods of evaluation, early in the development trajectory, are essential both to rule-in and rule-out novel agents with more rigor and speed, but also to spare clinical trial patients from the potentially toxic sequelae (high risk) of testing investigational agents that have a low likelihood of producing a response (low benefit). Methods: The clinical in vivo oncology (CIVO®) platform was designed to change this drug development paradigm. CIVO precisely delivers microdose quantities of up to 8 drugs or combinations directly into patient tumors 4-96 h prior to planned surgical resection. Resected tissue is then analyzed for responses at each site of intratumoral drug exposure. Results: To date, CIVO has been used safely in 6 clinical trials, including 68 subjects, with 5 investigational and 17 approved agents. Resected tissues were analyzed initially using immunohistochemistry and in situ hybridization assays (115 biomarkers). As technology advanced, the platform was paired with spatial biology analysis platforms, to successfully track anti-neoplastic and immune-modulating activity of the injected agents in the intact tumor microenvironment. Discussion: Herein we provide a report of the use of CIVO technology in patients, a depiction of the robust analysis methods enabled by this platform, and a description of the operational and regulatory mechanisms used to deploy this approach in synergistic partnership with pharmaceutical partners. We further detail how use of the CIVO platform is a clinically safe and scientifically precise alternative or complement to preclinical efficacy modeling, with outputs that inform, streamline, and de-risk drug development.
Collapse
Affiliation(s)
- Kenneth R. Gundle
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
- Portland Veterans Affairs Medical Center, Portland, OR, United States
| | - Karthik Rajasekaran
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Jeffrey Houlton
- Sarah Cannon Research Institute, Charleston, SC, United States
| | - Gary B. Deutsch
- Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, United States
| | - Thomas J. Ow
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Pathology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Robert G. Maki
- Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, United States
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - John Pang
- Department of Otolaryngology/Head and Neck Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Cherie-Ann O. Nathan
- Department of Otolaryngology/Head and Neck Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Daniel Clayburgh
- Portland Veterans Affairs Medical Center, Portland, OR, United States
- Department of Otolaryngology‐Head and Neck Surgery, Oregon Health and Science University, Portland, OR, United States
| | - Jason G. Newman
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Elyse Brinkmann
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Michael J. Wagner
- Division of Oncology, University of Washington, Seattle, WA, United States
| | - Seth M. Pollack
- Division of Oncology, University of Washington, Seattle, WA, United States
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Matthew J. Thompson
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Ryan J. Li
- Department of Otolaryngology‐Head and Neck Surgery, Oregon Health and Science University, Portland, OR, United States
| | - Vikas Mehta
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Bradley A. Schiff
- Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Barry I. Wenig
- Department of Otolaryngology—Head and Neck Surgery, University of Illinois at Chicago, Chicago, IL, United States
| | - Paul L. Swiecicki
- Department of Hematology Oncology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Alice L. Tang
- Department of Otolaryngology—Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jessica L. Davis
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Annemieke van Zante
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | | | - Wendy Jenkins
- Presage Biosciences, Inc., Seattle, WA, United States
| | | | - Marc Grenley
- Presage Biosciences, Inc., Seattle, WA, United States
| | - Connor Burns
- Presage Biosciences, Inc., Seattle, WA, United States
| | | | | | | | | | | | - Bre Mills
- Presage Biosciences, Inc., Seattle, WA, United States
| | | |
Collapse
|
10
|
Benesova I, Capkova L, Ozaniak A, Pacas P, Kopeckova K, Galova D, Lischke R, Buchler T, Ozaniak Strizova Z. A comprehensive analysis of CD47 expression in various histological subtypes of soft tissue sarcoma: exploring novel opportunities for macrophage-directed treatments. J Cancer Res Clin Oncol 2024; 150:134. [PMID: 38493445 PMCID: PMC10944806 DOI: 10.1007/s00432-024-05661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE The CD47 molecule, often referred to as the "do not eat me" signal, is frequently overexpressed in tumor cells. This signaling pathway limits phagocytosis by macrophages. Our objective was to determine CD47 abundance in various soft tissue sarcomas (STS) to investigate whether it could serve as a potential evasion mechanism for tumor cells. Additionally, we aimed to assess the prognostic value of CD47 expression by examining its association with different clinicopathological factors. This study aimed to elucidate the significance of CD47 in the context of emerging anti-tumor targeting approaches. METHODS In this retrospective study, formalin-fixed paraffine-embedded (FFPE) tumor tissues of 55 treatment-naïve patients were evaluated by immunohistochemistry for the abundance of CD47 molecule on tumor cells. The categorization of CD47 positivity was as follows: 0 (no staining of tumor cells), 1 + (less than 1/3 of tumor area positive), 2 + (between 1/3 and 2/3 of tumor area positive), and 3 + (more than 2/3 of tumor area positive for CD47). Next, we compared CD47 abundance between different tumor grades (G1-3). We used Kaplan-Meier survival curves with log-rank test to analyze the differences in survival between patients with different CD47 expression. Moreover, we performed Cox proportional hazards regression model to evaluate the clinical significance of CD47. RESULTS CD47 is widely prevalent across distinct STS subtypes. More than 80% of high grade undifferentiated pleiomorphic sarcoma (UPS), 70% of myxofibrosarcoma (MFS) and more than 60% of liposarcoma (LPS) samples displayed a pattern of moderate-to-diffuse positivity. This phenomenon remains consistent regardless of the tumor grade. However, there was a tendency for higher CD47 expression levels in the G3 group compared to the combined G1 + G2 groups when all LPS, MFS, and UPS were analyzed together. No significant associations were observed between CD47 abundance, death, and metastatic status. Additionally, high CD47 expression was associated with a statistically significant increase in progression-free survival in the studied cohort of patients. CONCLUSION This study highlights the potential of the CD47 molecule as a promising immunotherapeutic target in STS, particularly given its elevated expression levels in diverse sarcoma types. Our data showed a notable trend linking CD47 expression to tumor grade, while also suggesting an interesting correlation between enhanced abundance of CD47 expression and a reduced hazard risk of disease progression. Although these findings shed light on different roles of CD47 in STS, further research is crucial to assess its potential in clinical settings.
Collapse
Affiliation(s)
- Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague 5, Czech Republic
| | - Linda Capkova
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Andrej Ozaniak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Pavel Pacas
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Katerina Kopeckova
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Dominika Galova
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Robert Lischke
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Zuzana Ozaniak Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague 5, Czech Republic.
| |
Collapse
|
11
|
Dalal S, Shan KS, Thaw Dar NN, Hussein A, Ergle A. Role of Immunotherapy in Sarcomas. Int J Mol Sci 2024; 25:1266. [PMID: 38279265 PMCID: PMC10816403 DOI: 10.3390/ijms25021266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Sarcomas are a group of malignancies of mesenchymal origin with a plethora of subtypes. Given the sheer heterogeneity of various subtypes and the rarity of the disease, the management of sarcomas has been challenging, with poor patient outcomes. Surgery, radiation therapy and chemotherapy have remained the backbone of treatment in patients with sarcoma. The introduction of immunotherapy has revolutionized the treatment of various solid and hematological malignancies. In this review, we discuss the basics of immunotherapy and the immune microenvironment in sarcomas; various modalities of immunotherapy, like immune checkpoint blockade, oncolytic viruses, cancer-targeted antibodies, vaccine therapy; and adoptive cell therapies like CAR T-cell therapy, T-cell therapy, and TCR therapy.
Collapse
Affiliation(s)
- Shivani Dalal
- Memorial Healthcare, Division of Hematology and Oncology, Pembroke Pines, FL 33028, USA; (K.S.S.); (N.N.T.D.); (A.H.); (A.E.)
| | | | | | | | | |
Collapse
|
12
|
Nielsen M, Monberg T, Sundvold V, Albieri B, Hovgaard D, Petersen MM, Krarup-Hansen A, Met Ö, Camilio K, Clancy T, Stratford R, Sveinbjornsson B, Rekdal Ø, Junker N, Svane IM. LTX-315 and adoptive cell therapy using tumor-infiltrating lymphocytes generate tumor specific T cells in patients with metastatic soft tissue sarcoma. Oncoimmunology 2023; 13:2290900. [PMID: 38125722 PMCID: PMC10732595 DOI: 10.1080/2162402x.2023.2290900] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
LTX-315 is an oncolytic peptide that elicits both local and systemic immune responses upon intratumoral injection. In the present pilot trial, we treated patients with metastatic soft tissue sarcoma with the combination of LTX-315 and adoptive T-cell therapy using in vitro expanded tumor-infiltrating lymphocytes. Six heavily pretreated patients were included in the trial and treated with LTX-315 of which four patients proceeded to adoptive T-cell therapy. Overall, the treatment was considered safe with only expected and manageable toxicity. The best overall clinical response was stable disease for 208 days, and in this patient, we detected tumor-reactive T cells in the blood that lasted until disease progression. In three patients T-cell reactivity against in silico predicted neoantigens was demonstrated. Additionally, de novo T-cell clones were generated and expanded in the blood following LTX-315 injections. In conclusion, this pilot study provides proof that it is feasible to combine LTX-315 and adoptive T-cell therapy, and that this treatment can induce systemic immune responses that resulted in stabilization of the disease in sarcoma patients with otherwise progressive disease. Further optimization of the treatment protocol is warranted to increase clinical activity. ClinicalTrials.gov Identifier: NCT03725605.
Collapse
Affiliation(s)
- Morten Nielsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Tine Monberg
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Benedetta Albieri
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Dorrit Hovgaard
- Department of Orthopedic Surgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Michael Mørk Petersen
- Department of Orthopedic Surgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | | | - Niels Junker
- Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
13
|
Tian Z, Yao W. Chemotherapeutic drugs for soft tissue sarcomas: a review. Front Pharmacol 2023; 14:1199292. [PMID: 37637411 PMCID: PMC10450752 DOI: 10.3389/fphar.2023.1199292] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Despite the low incidence of soft tissue sarcomas (STSs), hundreds of thousands of new STS cases are diagnosed annually worldwide, and approximately half of them eventually progress to advanced stages. Currently, chemotherapy is the first-line treatment for advanced STSs. There are difficulties in selecting appropriate drugs for multiline chemotherapy, or for combination treatment of different STS histological subtypes. In this study, we first comprehensively reviewed the efficacy of various chemotherapeutic drugs in the treatment of STSs, and then described the current status of sensitive drugs for different STS subtypes. anthracyclines are the most important systemic treatment for advanced STSs. Ifosfamide, trabectedin, gemcitabine, taxanes, dacarbazine, and eribulin exhibit certain activities in STSs. Vinca alkaloid agents (vindesine, vinblastine, vinorelbine, vincristine) have important therapeutic effects in specific STS subtypes, such as rhabdomyosarcoma and Ewing sarcoma family tumors, whereas their activity in other subtypes is weak. Other chemotherapeutic drugs (methotrexate, cisplatin, etoposide, pemetrexed) have weak efficacy in STSs and are rarely used. It is necessary to select specific second- or above-line chemotherapeutic drugs depending on the histological subtype. This review aims to provide a reference for the selection of chemotherapeutic drugs for multi-line therapy for patients with advanced STSs who have an increasingly long survival.
Collapse
Affiliation(s)
| | - Weitao Yao
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
14
|
In vivo immunomodulatory activity of fucoidan from brown alga Undaria pinnatifida in sarcoma 180-bearing mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
15
|
Pavlidis ET, Pavlidis TE. New trends in the surgical management of soft tissue sarcoma: The role of preoperative biopsy. World J Clin Oncol 2023; 14:89-98. [PMID: 36908679 PMCID: PMC9993143 DOI: 10.5306/wjco.v14.i2.89] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 02/21/2023] Open
Abstract
Soft tissue sarcoma (STS) accounts for 1% of all malignant neoplasms in adults. Their diagnosis and management constitute a challenging target. They originate from the mesenchyme, and 50 subtypes with various cytogenetic profiles concerning soft tissue and bones have been recognized. These tumors mainly affect middle-aged adults but may be present at any age. Half of the patients have metastatic disease at the time of diagnosis and require systemic therapy. Tumors above 3-5 cm in size must be suspected of potential malignancy. A thorough history, clinical examination and imaging that must precede biopsy are necessary. Modern imaging techniques include ultrasound, computed tomography (CT), new magnetic resonance imaging (MRI), and positron emission tomography/CT. MRI findings may distinguish low-grade from high-grade STS based on a diagnostic score (tumor heterogeneity, intratumoral and peritumoral enhancement). A score ≥ 2 indicates a high-grade lesion, and a score ≤ 1 indicates a low-grade lesion. For disease staging, abdominal imaging is recommended to detect early abdominal or retroperitoneal metastases. Liquid biopsy by detecting genomic material in serum is a novel diagnostic tool. A preoperative biopsy is necessary for diagnosis, prognosis and optimal planning of surgical intervention. Core needle biopsy is the most indicative and effective. Its correct performance influences surgical management. An unsuccessful biopsy means the dissemination of cancer cells into healthy anatomical structures that ultimately affect resectability and survival. Complete therapeutic excision (R0) with an acceptable resection margin of 1 cm is the method of choice. However, near significant structures, i.e., vessels, nerves, an R2 resection (macroscopic margin involvement) preserving functionality but having a risk of local recurrence can be an acceptable choice, after informing the patient, to prevent an unavoidable amputation. For borderline resectability of the tumor, neoadjuvant chemo/radiotherapy has a place. Likewise, after surgical excision, adjuvant therapy is indicated, but chemotherapy in nonmetastatic disease is still debatable. The five-year survival rate reaches up to 55%. Reresection is considered after positive or uncertain resection margins. Current strategies are based on novel chemotherapeutic agents, improved radiotherapy applications to limit local side effects and targeted biological therapy or immunotherapy, including vaccines. Young age is a risk factor for distant metastasis within 6 mo following primary tumor resection. Neoadjuvant radiotherapy lasting 5-6 wk and surgical resection are indicated for high-grade STS (grade 2 or 3). Wide surgical excision alone may be acceptable for patients older than 70 years. However, locally advanced disease requires a multidisciplinary task of decision-making for amputation or limb salvage.
Collapse
Affiliation(s)
- Efstathios T Pavlidis
- 2nd Propedeutic Department of Surgery, Hippocration Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Theodoros E Pavlidis
- 2nd Propedeutic Department of Surgery, Hippocration Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| |
Collapse
|
16
|
Gingrich AA, Nassif EF, Roland CL, Keung EZ. The Landscape of Immunotherapy for Retroperitoneal Sarcoma. Curr Oncol 2023; 30:2144-2158. [PMID: 36826126 PMCID: PMC9955848 DOI: 10.3390/curroncol30020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Significant multidisciplinary scientific effort has been undertaken to understand the heterogeneous family of neoplasms that comprise soft tissue sarcomas. Within this family of neoplasms, outcomes for retroperitoneal sarcomas (RPS) are currently limited given a lack of effective therapies. In this review, we focus on immunotherapy and its relationship with the common RPS histologic subtypes. Although initial outcomes for RPS patients with immune checkpoint inhibition alone have been somewhat disappointing, subsequent analyses on histologies, the tumor microenvironment, sarcoma immune class, tumor infiltrating lymphocytes and genetic analysis for tumor mutational burden have yielded insight into the interplay between sarcomas and immunotherapy. Such approaches have all provided critical insight into the environment and characterization of these tumors, with targets for potential immunotherapy in future clinical trials. With this insight, molecularly tailored combination treatments for improving response rates and oncologic outcomes for RPS are promising.
Collapse
Affiliation(s)
- Alicia A. Gingrich
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elise F. Nassif
- Sarcoma Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christina L. Roland
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emily Z. Keung
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
17
|
Weng W, Yu L, Li Z, Tan C, Lv J, Lao IW, Hu W, Deng Z, Liu Z, Wang J, Xu M. The immune subtypes and landscape of sarcomas. BMC Immunol 2022; 23:46. [PMID: 36153483 PMCID: PMC9508767 DOI: 10.1186/s12865-022-00522-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Considering the molecular heterogeneity of sarcomas and their immunologically quiet character, immunotherapy (e.g., immune checkpoint inhibitors) plays a viable role in only a subset of these tumors. This study aimed to determine the immune subtypes (IMSs) of sarcomas for selecting suitable patients from an extremely heterogeneous population.
Results
By performing consensus clustering analysis of the gene expression profiles of 538 patients with sarcomas in online databases, we stratified sarcomas into three IMSs characterized by different immune cell features, tumor mutational burdens (TMBs), gene mutations, and clinical outcomes. IMS1 showed an immune “hot” and immunosuppressive phenotype, the highest frequencies of CSMD3 mutation but the lowest frequencies of HMCN1 and LAMA2 mutations; these patients had the worst progression-free survival (PFS). IMS2 was defined by a high TMB and more gene mutations, but had the lowest frequency of MND1 mutations. IMS3 displayed the highest MDN1 expression level and an immune “cold” phenotype, these patients had the worst PFS. Each subtype was associated with different expression levels of immunogenic cell death modulators and immune checkpoints. Moreover, we applied graph learning-based dimensionality reduction to the immune landscape and identified significant intra-cluster heterogeneity within each IMS. Finally, we developed and validated an immune gene signature with good prognostic performance.
Conclusions
Our results provide a conceptual framework for understanding the immunological heterogeneity of sarcomas. The identification of immune-related subtypes may facilitate optimal selection of sarcoma patients who will respond to appropriate therapeutic strategies.
Collapse
|