1
|
Wu F, Chang J, Bai D. Synthesis of Sterically Hindered Dialkyl Ethers via Palladium-Catalyzed Fluoro-alkoxylation of gem-Difluoroalkenes. Org Lett 2024; 26:4953-4957. [PMID: 38815137 DOI: 10.1021/acs.orglett.4c01541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Organofluorine compounds are of high value in medicinal and agricultural chemistry. Herein, we report a palladium-catalyzed fluoro-alkoxylation of gem-difluoroalkenes for the synthesis of much more challenging sterically hindered ethers. This reaction represents a direct synthesis method for α-trifluoromethyl ethers with a broad functional group tolerance and excellent regioselectivity. This system employs N-fluorobenzenesulfonimide (NFSI) as an electrophilic fluorine source and alcohols as nucleophilic donors, including but not limited to sterically hindered tert-substituted alcohols.
Collapse
Affiliation(s)
- Fen Wu
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| | - Dachang Bai
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Zhang G, Wang L, Cui L, Gao P, Chen F. Deaminative defluoroalkylation of α-trifluoromethylalkenes enabled by photoredox catalysis. Org Biomol Chem 2023; 21:294-299. [PMID: 36510767 DOI: 10.1039/d2ob02114e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we disclose a new photoredox-catalysed strategy to access gem-difluoroallylarenes from α-trifluoromethylalkenes with sterically hindered primary amines via C-N and C-F bond activation. This deaminative and defluorinative allylation is generally compatible with diverse functional groups and sterically hindered α-3° and 2° primary amines.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Liping Cui
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Pan Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| |
Collapse
|
3
|
Franke MC, Longley VR, Rafiee M, Stahl SS, Hansen EC, Weix DJ. Zinc-Free, Scalable Reductive Cross-Electrophile Coupling Driven by Electrochemistry in an Undivided Cell. ACS Catal 2022; 12:12617-12626. [PMID: 37065181 PMCID: PMC10101217 DOI: 10.1021/acscatal.2c03033] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nickel-catalyzed reductive cross-electrophile coupling reactions are becoming increasingly important in organic synthesis, but application at scale is limited by three interconnected challenges: a reliance on amide solvents (complicated workup, regulated), the generation of stoichiometric Zn salts (complicated isolation, waste disposal issue), and mixing/activation challenges of zinc powder. We show here an electrochemical approach that addresses these three issues: the reaction works in acetonitrile with diisopropylethylamine as the terminal reductant in a simple undivided cell (graphite(+)/nickel foam(-)). The reaction utilizes a combination of two ligands, 4,4'-di-tert-butyl-2,2'-bipyridine and 4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine. Studies show that, alone, the bipyridine nickel catalyst predominantly forms protodehalogenated aryl and aryl dimer, whereas the terpyridine nickel catalyst predominantly forms bialkyl and product. By combining these two unselective catalysts, a tunable, general system results because excess radical formed by the terpyridine catalyst can be converted to product by the bipyridine catalyst. As the aryl bromide becomes more electron rich, the optimal ratio shifts to have more of the bipyridine nickel catalyst. Lastly, examination of a variety of flow-cell configurations establishes that batch recirculation can achieve higher productivity (mmol product/time/electrode area) than single-pass, that high flow rates are essential to maximizing current, and that two flow cells in parallel can nearly halve the reaction time. The resulting reaction is demonstrated on gram scale and should be scalable to kilogram scale.
Collapse
Affiliation(s)
- Mareena C. Franke
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706 USA
| | - Victoria R. Longley
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706 USA
| | - Mohammad Rafiee
- Department of Chemistry, University of Missouri–Kansas City, Kansas City, MO 64110 USA
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706 USA
| | - Eric C. Hansen
- Chemical Research and Development, Pfizer, Inc., Eastern Point Road, Groton, CT 06340 USA
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706 USA
| |
Collapse
|
4
|
Wang Q, Yue L, Bao Y, Wang Y, Kang D, Gao Y, Yuan Z. Oxalates as Activating Groups for Tertiary Alcohols in Photoredox-Catalyzed gem-Difluoroallylation To Construct All-Carbon Quaternary Centers. J Org Chem 2022; 87:8237-8247. [PMID: 35612278 DOI: 10.1021/acs.joc.2c00664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Construction of challenging and important all-carbon quaternary centers has received growing attention. Herein, with oxalates as activating groups for tertiary alcohols, we report photoredox-catalyzed gem-difluoroallylation to construct all-carbon quaternary centers enabled by efficient tertiary radical addition to α-trifluoromethyl alkenes. This transformation shows good functional group tolerance for both α-trifluoromethyl alkenes and oxalates. Moreover, this strategy is also successfully applied to the synthesis of monofluoralkenes from the corresponding electron-rich gem-difluoroalkenes and cesium tertiary alkyl oxalates under modified conditions.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Ling Yue
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yanyang Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Danni Kang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yan Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| |
Collapse
|
5
|
Zeng W, Li W, Chen H, Zhou L. Relay Photocatalytic Reaction of N-Aryl Amino Acids and 2-Bromo-3,3,3-trifluoropropene: Synthesis of 4-(Difluoromethylidene)-tetrahydroquinolines. Org Lett 2022; 24:3265-3269. [PMID: 35467357 DOI: 10.1021/acs.orglett.2c01117] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bulk industrial chemical 2-bromo-3,3,3-trifluoropropene (BTP) was first employed as a coupling partner in photocatalytic defluorinative reactions with N-aryl amino acids. Photoredox activation of the C(sp2)-Br bond of the resultant 2-bromo-1,1-difluoroalkenes generates gem-difluoro vinyl radicals for further radical cyclization. Various 4-(difluoromethylidene)-tetrahydroquinolines were assembled in good yields by combining two photoredox cycles with a single photocatalyst.
Collapse
Affiliation(s)
- Weidi Zeng
- School of Chemistry, Sun Yat-Sen University, Panyu District, Guangzhou 510006, China
| | - Weiyu Li
- School of Chemistry, Sun Yat-Sen University, Panyu District, Guangzhou 510006, China
| | - Haoguo Chen
- School of Chemistry, Sun Yat-Sen University, Panyu District, Guangzhou 510006, China
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University, Panyu District, Guangzhou 510006, China
| |
Collapse
|
6
|
Zhang H, Liang M, Zhang X, He MK, Yang C, Guo L, Xia W. Electrochemical synthesis of functionalized gem-difluoroalkenes with diverse alkyl sources via a defluorinative alkylation process. Org Chem Front 2022. [DOI: 10.1039/d1qo01460a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An electrochemical defluorinative alkylation of α-trifluoromethyl alkenes is described. This reaction enables the preparation of functionalized gem-difluoroalkenes with diverse alkyl sources including organohalides, NHP esters, and Katritzky salts.
Collapse
Affiliation(s)
- Haoxiang Zhang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Mengze Liang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xiao Zhang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Meng-Ke He
- Wenzhou University, Wenzhou, Zhejiang 325000, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|