1
|
Zhang H, Shao Y, Yao Z, Liu L, Zhang H, Yin J, Xie H, Li K, Lai P, Zeng H, Xiao G, Zeng C, Cai D, Bai X. Mechanical overloading promotes chondrocyte senescence and osteoarthritis development through downregulating FBXW7. Ann Rheum Dis 2022; 81:676-686. [PMID: 35058228 DOI: 10.1136/annrheumdis-2021-221513] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/27/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To investigate the role of mechanical stress in cartilage ageing and identify the mechanistic association during osteoarthritis (OA) progression. METHODS F-box and WD repeat domain containing 7 (FBXW7) ubiquitin ligase expression and chondrocyte senescence were examined in vitro, in experimental OA mice and in human OA cartilage. Mice with Fbxw7 knockout in chondrocytes were generated and adenovirus-expressing Fbxw7 (AAV-Fbxw7) was injected intra-articularly in mice. Destabilised medial meniscus surgery was performed to induce OA. Cartilage damage was measured using the Osteoarthritis Research Society International score and the changes in chondrocyte senescence were determined. mRNA sequencing was performed in articular cartilage from Fbxw7 knockout and control mice. RESULTS Mechanical overloading accelerated senescence in cultured chondrocytes and in mice articular cartilage. FBXW7 was downregulated by mechanical overloading in primary chondrocytes and mice cartilage, and decreased in the cartilage of patients with OA, aged mice and OA mice. FBXW7 deletion in chondrocytes induced chondrocyte senescence and accelerated cartilage catabolism in mice, as manifested by an upregulation of p16INK4A, p21 and Colx and downregulation of Col2a1 and ACAN, which resulted in the exacerbation of OA. By contrast, intra-articular injection of adenovirus expressing Fbxw7 alleviated OA in mice. Mechanistically, mechanical overloading decreased Fbxw7 mRNA transcription and FBXW7-mediated MKK7 degradation, which consequently stimulated JNK signalling. In particular, inhibition of JNK activity by DTP3, a MKK7 inhibitor, ameliorated chondrocyte senescence and cartilage degeneration CONCLUSIONS: FBXW7 is a key factor in the association between mechanical overloading and chondrocyte senescence and cartilage ageing in the pathology of OA.
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Shao
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Zihao Yao
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Liangliang Liu
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Hongbo Zhang
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jianbin Yin
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Haoyu Xie
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Kai Li
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Pinglin Lai
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Hua Zeng
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Chun Zeng
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Daozhang Cai
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaochun Bai
- Department of Orthopedics, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third School of Clinical Medicine, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Leung S, Kim JJ, Musson DS, McGlashan SR, Cornish J, Anderson I, Shim VBK. A Novel In Vitro and In Silico System for Analyzing Complex Mechanobiological Behavior of Chondrocytes in Three-Dimensional Hydrogel Constructs. J Biomech Eng 2021; 143:084503. [PMID: 33972989 DOI: 10.1115/1.4051116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Indexed: 11/08/2022]
Abstract
Physiological loading is essential for the maintenance of articular cartilage through the regulation of tissue remodeling. To correctly understand the behavior of chondrocytes in their native environment, cell stimulating devices and bioreactors have been developed to examine the effect of mechanical stimuli on chondrocytes. This study describes the design and validation of a novel system for analyzing chondrocyte deformation patterns. This involves an in vitro mechanical device for a controlled application of multi-axial-loading regimes to chondrocyte-seeded agarose constructs and in silico models for analyzing chondrocyte deformation patterns. The computer-controlled device precisely applies compressive, tensile, and shear strains to hydrogel constructs using a customizable macro-based program. The synchronization of the displacements is shown to be accurate with a 1.2% error and is highly reproducible. The device design allows housing for up to eight novel designed free-swelling three-dimensional hydrogel constructs. Constructs include mesh ends and are optimized to withstand the application of up to 7% mechanical tensile and 15% shear strains. Constructs were characterized through mapping the strain within as mechanical load was applied and was validated using light microscopy methods, chondrocyte viability using live/dead imaging, and cell deformation strains. Images were then analyzed to determine the complex deformation strain patterns of chondrocytes under a range of dynamic mechanical stimulations. This is one of the first systems that have characterized construct strains to cellular strains. The features in this device make the system ideally suited for a systematic approach for the investigation of the response of chondrocytes to a complex physiologically relevant deformation profile.
Collapse
Affiliation(s)
- Sophia Leung
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Jung-Joo Kim
- Department of Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea
| | - David S Musson
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Sue R McGlashan
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Jillian Cornish
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Iain Anderson
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Vickie B K Shim
- Auckland Bioengineering Institute, University of Auckland, Level 6, 70 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
3
|
Chong PP, Panjavarnam P, Ahmad WNHW, Chan CK, Abbas AA, Merican AM, Pingguan-Murphy B, Kamarul T. Mechanical compression controls the biosynthesis of human osteoarthritic chondrocytes in vitro. Clin Biomech (Bristol, Avon) 2020; 79:105178. [PMID: 32988676 DOI: 10.1016/j.clinbiomech.2020.105178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/29/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cartilage damage, which can potentially lead to osteoarthritis, is a leading cause of morbidity in the elderly population. Chondrocytes are sensitive to mechanical stimuli and their matrix-protein synthesis may be altered when chondrocytes experience a variety of in vivo loadings. Therefore, a study was conducted to evaluate the biosynthesis of isolated osteoarthritic chondrocytes which subjected to compression with varying dynamic compressive strains and loading durations. METHODS The proximal tibia was resected as a single osteochondral unit during total knee replacement from patients (N = 10). The osteoarthritic chondrocytes were isolated from the osteochondral units, and characterized using reverse transcriptase-polymerase chain reaction. The isolated osteoarthritic chondrocytes were cultured and embedded in agarose, and then subjected to 10% and 20% uniaxial dynamic compression up to 8-days using a bioreactor. The morphological features and changes in the osteoarthritic chondrocytes upon compression were evaluated using scanning electron microscopy. Safranin O was used to detect the presence of cartilage matrix proteoglycan expression while quantitative analysis was conducted by measuring type VI collagen using an immunohistochemistry and fluorescence intensity assay. FINDINGS Gene expression analysis indicated that the isolated osteoarthritic chondrocytes expressed chondrocyte-specific markers, including BGN, CD90 and HSPG-2. Moreover, the compressed osteoarthritic chondrocytes showed a more intense and broader deposition of proteoglycan and type VI collagen than control. The expression of type VI collagen was directly proportional to the duration of compression in which 8-days compression was significantly higher than 4-days compression. The 20% compression showed significantly higher intensity compared to 10% compression in 4- and 8-days. INTERPRETATION The biosynthetic activity of human chondrocytes from osteoarthritic joints can be enhanced using selected compression regimes.
Collapse
Affiliation(s)
- Pan Pan Chong
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Ponnurajah Panjavarnam
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wan Nor Hanis Wan Ahmad
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chee Ken Chan
- Mahkota Medical Centre, No 3, Mahkota Melaka, Jalan Merdeka, 75000 Melaka, Malaysia
| | - Azlina A Abbas
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Azhar M Merican
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Tunku Kamarul
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Dreiner M, Willwacher S, Kramer A, Kümmel J, Frett T, Zaucke F, Liphardt AM, Gruber M, Niehoff A. Short-term Response of Serum Cartilage Oligomeric Matrix Protein to Different Types of Impact Loading Under Normal and Artificial Gravity. Front Physiol 2020; 11:1032. [PMID: 32982779 PMCID: PMC7489036 DOI: 10.3389/fphys.2020.01032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
Microgravity during long-term space flights induces degeneration of articular cartilage. Artificial gravity through centrifugation combined with exercise has been suggested as a potential countermeasure for musculoskeletal degeneration. The purpose of this study was to investigate the effect of different types of impact loading under normal and artificial gravity conditions on serum concentrations of cartilage oligomeric matrix protein (COMP), a biomarker of cartilage metabolism. Fifteen healthy male adults (26 ± 4 years, 181 ± 4 cm, 77 ± 6 kg) performed four different 30-min impact loading protocols on four experimental days: jumping with artificial gravity elicited by centrifugation in a short-arm centrifuge (AGJ), jumping with artificial gravity generated by low-pressure cylinders in a sledge jump system (SJS), vertical jumping under Earth gravity (EGJ), and running under Earth gravity (RUN). Five blood samples per protocol were taken: 30 min before, immediately before, immediately after, 30 min after, and 60 min after impact loading. Serum COMP concentrations were analyzed in these samples. During the impact exercises, ground reaction forces were recorded. Peak ground reaction forces were significantly different between the three jumping protocols (p < 0.001), increasing from AGJ (14 N/kg) to SJS (22 N/kg) to EGJ (29 N/kg) but were similar in RUN (22 N/kg) compared to SJS. The serum COMP concentration was increased (p < 0.001) immediately after all loading protocols, and then decreased (p < 0.001) at 30 min post-exercise compared to immediately after the exercise. Jumping and running under Earth gravity (EGJ and RUN) resulted in a significantly higher (p < 0.05) increase of serum COMP levels 30 min after impact loading compared to the impact loading under artificial gravity (RUN +30%, EGJ +20%, AGJ +17%, and SJS +13% compared to baseline). In conclusion, both the amplitude and the number of the impacts contribute to inducing higher COMP responses and are therefore likely important factors affecting cartilage metabolism. RUN had the largest effect on serum COMP concentration, presumably due to the high number of impacts, which was 10 times higher than for the jump modalities. Future studies should aim at establishing a dose-response relationship for different types of exercise using comparable amounts of impacts.
Collapse
Affiliation(s)
- Maren Dreiner
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Steffen Willwacher
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Andreas Kramer
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Jakob Kümmel
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Timo Frett
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, Germany
| | - Anna-Maria Liphardt
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany.,Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Cheng HW, Yuan MT, Li CW, Chan BP. Cell-derived matrices (CDM)-Methods, challenges and applications. Methods Cell Biol 2020; 156:235-258. [PMID: 32222221 DOI: 10.1016/bs.mcb.2020.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular matrix (ECM) provides both physical support and bioactive signals such as growth factors and cytokines to cells at their microenvironment or niche. Engineering the matrix niche becomes an important approach to study or manipulate cellular fate. This work presents an overview on the reconstitution of the ECM niche through a wide range of approaches ranging from coating culture dish with ECM molecules to decellularization of native tissues. In particular, we focused on reconstituting the complex ECM niche through cell-derived matrix (CDM) by reviewing the methodological approaches used in our group to derive ECM from mature cells such as chondrocytes and nucleus pulposus cells (NPCs), undifferentiated stem cells such as mesenchymal stem cells (MSCs), as well as MSCs undergoing chondrogenic and osteogenic differentiation, in 2D or 3D models. Specific attention has also been given to key factors that should be considered in various applications and challenges in relation to the CDM. Last but not the least, a few future perspectives and their significance have been proposed.
Collapse
Affiliation(s)
- H W Cheng
- Tissue Engineering Laboratory, Biomedical Engineering Programme, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - M T Yuan
- Tissue Engineering Laboratory, Biomedical Engineering Programme, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - C W Li
- Tissue Engineering Laboratory, Biomedical Engineering Programme, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong
| | - B P Chan
- Tissue Engineering Laboratory, Biomedical Engineering Programme, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
6
|
Ogura T, Minas T, Tsuchiya A, Mizuno S. Effects of hydrostatic pressure and deviatoric stress on human articular chondrocytes for designing neo-cartilage construct. J Tissue Eng Regen Med 2019; 13:1143-1152. [PMID: 30964967 DOI: 10.1002/term.2863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/23/2019] [Accepted: 02/13/2019] [Indexed: 01/21/2023]
Abstract
Autologous chondrocyte implantation is a promising therapy for the treatment of the articular cartilage defects. Recently, we have developed a three-dimensional chondrocyte construct manufactured with a collagen gel/sponge scaffold and cyclic hydrostatic pressure. However, the roles of various mechanical stresses, specifically hydrostatic pressure and deviatoric stress, as well as poststress loading, were unclear on metabolic function in chondrocytes. We hypothesized that hydrostatic pressure and deviatoric stresses each alter individual metabolic characteristics of chondrocytes. We embedded human articular chondrocytes within an agarose hydrogel and applied hydrostatic pressure and/or deviatoric stress individually or simultaneously for 4 days. Subsequently, we kept the cell constructs without stress for an additional 3 days. With hydrostatic pressure and/or deviatoric stress, more cells proliferated significantly than no stress (p < .05) and more cells proliferated near the inner side of the construct than the outer (p < .05). Cartilage specific aggrecan core protein and collagen type II were upregulated significantly after off-loading hydrostatic pressure alone at Day 7 (p < .05). On the other hand, these molecules were upregulated significantly immediately after deviatoric stress alone and combined with hydrostatic pressure at Day 4 (p < .05). Tissue inhibitor of metalloproteinase-2 was upregulated significantly after off-loading hydrostatic pressure alone and combined deviatoric stress at Day 7 (p < .05). Metalloproteinnase-13 was upregulated significantly with deviatoric stress at Day 4 (p < .05) and combined with hydrostatic pressure at Day 4. These results suggest that metabolic functions are regulated by the combination of hydrostatic pressure and deviatoric stress and by the timing of stress loading.
Collapse
Affiliation(s)
- Takahiro Ogura
- Department of Orthopaedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Tom Minas
- Department of Orthopaedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Akihiro Tsuchiya
- Sports Medicine Center, Funabashi Orthopaedic Hospital, Funabashi, Japan
| | - Shuichi Mizuno
- Department of Orthopaedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Johnson CI, Argyle DJ, Clements DN. In vitro models for the study of osteoarthritis. Vet J 2015; 209:40-9. [PMID: 26831151 DOI: 10.1016/j.tvjl.2015.07.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is a prevalent disease of most mammalian species and is a significant cause of welfare and economic morbidity in affected individuals and populations. In vitro models of osteoarthritis are vital to advance research into the causes of the disease, and the subsequent design and testing of potential therapeutics. However, a plethora of in vitro models have been used by researchers but with no consensus on the most appropriate model. Models attempt to mimic factors and conditions which initiate OA, or dissect the pathways active in the disease. Underlying uncertainty as to the cause of OA and the different attributes of isolated cells and tissues used mean that similar models may produce differing results and can differ from the naturally occurring disease. This review article assesses a selection of the in vitro models currently used in OA research, and considers the merits of each. Particular focus is placed on the more prevalent cytokine stimulation and load-based models. A brief review of the mechanism of these models is given, with their relevance to the naturally occurring disease. Most in vitro models have used supraphysiological loads or cytokine concentrations (compared with the natural disease) in order to impart a timely response from the cells or tissue assessed. Whilst models inducing OA-like pathology with a single stimulus can answer important biological questions about the behaviour of cells and tissues, the development of combinatorial models encompassing different physiological and molecular aspects of the disease should more accurately reflect the pathogenesis of the naturally occurring disease.
Collapse
Affiliation(s)
- Craig I Johnson
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies, Division of Veterinary Clinical Sciences, The University of Edinburgh, Easter Bush Veterinary Centre, Edinburgh EH25 9RG, UK.
| | - David J Argyle
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies, Division of Veterinary Clinical Sciences, The University of Edinburgh, Easter Bush Veterinary Centre, Edinburgh EH25 9RG, UK
| | - Dylan N Clements
- The Roslin Institute and the Royal (Dick) School of Veterinary Studies, Division of Veterinary Clinical Sciences, The University of Edinburgh, Easter Bush Veterinary Centre, Edinburgh EH25 9RG, UK
| |
Collapse
|