1
|
Qiu Y, Hu G. Lung-on-a-chip: From design principles to disease applications. BIOMICROFLUIDICS 2025; 19:021501. [PMID: 40161998 PMCID: PMC11954643 DOI: 10.1063/5.0257908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/12/2025] [Indexed: 04/02/2025]
Abstract
To address the growing need for accurate lung models, particularly in light of respiratory diseases, lung cancer, and the COVID-19 pandemic, lung-on-a-chip technology is emerging as a powerful alternative. Lung-on-a-chip devices utilize microfluidics to create three-dimensional models that closely mimic key physiological features of the human lung, such as the air-liquid interface, mechanical forces associated with respiration, and fluid dynamics. This review provides a comprehensive overview of the fundamental components of lung-on-a-chip systems, the diverse fabrication methods used to construct these complex models, and a summary of their wide range of applications in disease modeling and aerosol deposition studies. Despite existing challenges, lung-on-a-chip models hold immense potential for advancing personalized medicine, drug development, and disease prevention, offering a transformative approach to respiratory health research.
Collapse
Affiliation(s)
- Yan Qiu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Guoqing Hu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Sznitman J. Revisiting Airflow and Aerosol Transport Phenomena in the Deep Lungs with Microfluidics. Chem Rev 2021; 122:7182-7204. [PMID: 34964615 DOI: 10.1021/acs.chemrev.1c00621] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The dynamics of respiratory airflows and the associated transport mechanisms of inhaled aerosols characteristic of the deep regions of the lungs are of broad interest in assessing both respiratory health risks and inhalation therapy outcomes. In the present review, we present a comprehensive discussion of our current understanding of airflow and aerosol transport phenomena that take place within the unique and complex anatomical environment of the deep lungs, characterized by submillimeter 3D alveolated airspaces and nominally slow resident airflows, known as low-Reynolds-number flows. We exemplify the advances brought forward by experimental efforts, in conjunction with numerical simulations, to revisit past mechanistic theories of respiratory airflow and particle transport in the distal acinar regions. Most significantly, we highlight how microfluidic-based platforms spanning the past decade have accelerated opportunities to deliver anatomically inspired in vitro solutions that capture with sufficient realism and accuracy the leading mechanisms governing both respiratory airflow and aerosol transport at true scale. Despite ongoing challenges and limitations with microfabrication techniques, the efforts witnessed in recent years have provided previously unattainable in vitro quantifications on the local transport properties in the deep pulmonary acinar airways. These may ultimately provide new opportunities to explore improved strategies of inhaled drug delivery to the deep acinar regions by investigating further the mechanistic interactions between airborne particulate carriers and respiratory airflows at the pulmonary microscales.
Collapse
Affiliation(s)
- Josué Sznitman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
3
|
Syed A, Kerdi S, Qamar A. Bioengineering Progress in Lung Assist Devices. Bioengineering (Basel) 2021; 8:89. [PMID: 34203316 PMCID: PMC8301204 DOI: 10.3390/bioengineering8070089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
Artificial lung technology is advancing at a startling rate raising hopes that it would better serve the needs of those requiring respiratory support. Whether to assist the healing of an injured lung, support patients to lung transplantation, or to entirely replace native lung function, safe and effective artificial lungs are sought. After 200 years of bioengineering progress, artificial lungs are closer than ever before to meet this demand which has risen exponentially due to the COVID-19 crisis. In this review, the critical advances in the historical development of artificial lungs are detailed. The current state of affairs regarding extracorporeal membrane oxygenation, intravascular lung assists, pump-less extracorporeal lung assists, total artificial lungs, and microfluidic oxygenators are outlined.
Collapse
Affiliation(s)
- Ahad Syed
- Nanofabrication Core Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Sarah Kerdi
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Adnan Qamar
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
4
|
Sedláková V, Kloučková M, Garlíková Z, Vašíčková K, Jaroš J, Kandra M, Kotasová H, Hampl A. Options for modeling the respiratory system: inserts, scaffolds and microfluidic chips. Drug Discov Today 2019; 24:971-982. [PMID: 30877077 DOI: 10.1016/j.drudis.2019.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/08/2019] [Accepted: 03/06/2019] [Indexed: 12/29/2022]
Abstract
The human respiratory system is continuously exposed to varying levels of hazardous substances ranging from environmental toxins to purposely administered drugs. If the noxious effects exceed the inherent regenerative capacity of the respiratory system, injured tissue undergoes complex remodeling that can significantly affect lung function and lead to various diseases. Advanced near-to-native in vitro lung models are required to understand the mechanisms involved in pulmonary damage and repair and to reliably test the toxicity of compounds to lung tissue. This review is an overview of the development of in vitro respiratory system models used for study of lung diseases. It includes discussion of using these models for environmental toxin assessment and pulmonary toxicity screening.
Collapse
Affiliation(s)
- Veronika Sedláková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; Division of Cardiac Surgery, Cardiovascular Tissue Engineering Laboratory, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa K1Y 4W7, Canada.
| | - Michaela Kloučková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Zuzana Garlíková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; International Clinical Research Center, St Anne's University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Kateřina Vašíčková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; International Clinical Research Center, St Anne's University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Josef Jaroš
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; International Clinical Research Center, St Anne's University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Mário Kandra
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; International Clinical Research Center, St Anne's University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| | - Hana Kotasová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; International Clinical Research Center, St Anne's University Hospital Brno, Pekařská 664/53, 656 91 Brno, Czech Republic
| |
Collapse
|
5
|
Tenenbaum-Katan J, Artzy-Schnirman A, Fishler R, Korin N, Sznitman J. Biomimetics of the pulmonary environment in vitro: A microfluidics perspective. BIOMICROFLUIDICS 2018; 12:042209. [PMID: 29887933 PMCID: PMC5973897 DOI: 10.1063/1.5023034] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/20/2018] [Indexed: 05/08/2023]
Abstract
The entire luminal surface of the lungs is populated with a complex yet confluent, uninterrupted airway epithelium in conjunction with an extracellular liquid lining layer that creates the air-liquid interface (ALI), a critical feature of healthy lungs. Motivated by lung disease modelling, cytotoxicity studies, and drug delivery assessments amongst other, in vitro setups have been traditionally conducted using macroscopic cultures of isolated airway cells under submerged conditions or instead using transwell inserts with permeable membranes to model the ALI architecture. Yet, such strategies continue to fall short of delivering a sufficiently realistic physiological in vitro airway environment that cohesively integrates at true-scale three essential pillars: morphological constraints (i.e., airway anatomy), physiological conditions (e.g., respiratory airflows), and biological functionality (e.g., cellular makeup). With the advent of microfluidic lung-on-chips, there have been tremendous efforts towards designing biomimetic airway models of the epithelial barrier, including the ALI, and leveraging such in vitro scaffolds as a gateway for pulmonary disease modelling and drug screening assays. Here, we review in vitro platforms mimicking the pulmonary environment and identify ongoing challenges in reconstituting accurate biological airway barriers that still widely prevent microfluidic systems from delivering mainstream assays for the end-user, as compared to macroscale in vitro cell cultures. We further discuss existing hurdles in scaling up current lung-on-chip designs, from single airway models to more physiologically realistic airway environments that are anticipated to deliver increasingly meaningful whole-organ functions, with an outlook on translational and precision medicine.
Collapse
Affiliation(s)
- Janna Tenenbaum-Katan
- Department of Biomedical Engineering, Technion–Israel Institute of Technology, 32000 Haifa, Israel
| | - Arbel Artzy-Schnirman
- Department of Biomedical Engineering, Technion–Israel Institute of Technology, 32000 Haifa, Israel
| | - Rami Fishler
- Department of Biomedical Engineering, Technion–Israel Institute of Technology, 32000 Haifa, Israel
| | - Netanel Korin
- Department of Biomedical Engineering, Technion–Israel Institute of Technology, 32000 Haifa, Israel
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion–Israel Institute of Technology, 32000 Haifa, Israel
| |
Collapse
|
6
|
Cho S, Yoon JY. Organ-on-a-chip for assessing environmental toxicants. Curr Opin Biotechnol 2017; 45:34-42. [PMID: 28088094 PMCID: PMC5474140 DOI: 10.1016/j.copbio.2016.11.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
Abstract
Man-made xenobiotics, whose potential toxicological effects are not fully understood, are oversaturating the already-contaminated environment. Due to the rate of toxicant accumulation, unmanaged disposal, and unknown adverse effects to the environment and the human population, there is a crucial need to screen for environmental toxicants. Animal models and in vitro models are ineffective models in predicting in vivo responses due to inter-species difference and/or lack of physiologically-relevant 3D tissue environment. Such conventional screening assays possess limitations that prevent dynamic understanding of toxicants and their metabolites produced in the human body. Organ-on-a-chip systems can recapitulate in vivo like environment and subsequently in vivo like responses generating a realistic mock-up of human organs of interest, which can potentially provide human physiology-relevant models for studying environmental toxicology. Feasibility, tunability, and low-maintenance features of organ-on-chips can also make possible to construct an interconnected network of multiple-organs-on-chip toward a realistic human-on-a-chip system. Such interconnected organ-on-a-chip network can be efficiently utilized for toxicological studies by enabling the study of metabolism, collective response, and fate of toxicants through its journey in the human body. Further advancements can address the challenges of this technology, which potentiates high predictive power for environmental toxicology studies.
Collapse
Affiliation(s)
- Soohee Cho
- Department of Agricultural and Biosystems Engineering, The University of Arizona, Tucson, AZ 85721-0038, USA
| | - Jeong-Yeol Yoon
- Department of Agricultural and Biosystems Engineering, The University of Arizona, Tucson, AZ 85721-0038, USA; Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721-0020, USA.
| |
Collapse
|
7
|
Rahimi R, Htwe SS, Ochoa M, Donaldson A, Zieger M, Sood R, Tamayol A, Khademhosseini A, Ghaemmaghami AM, Ziaie B. A paper-based in vitro model for on-chip investigation of the human respiratory system. LAB ON A CHIP 2016; 16:4319-4325. [PMID: 27731881 DOI: 10.1039/c6lc00866f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Culturing cells at the air-liquid interface (ALI) is essential for creating functional in vitro models of lung tissues. We present the use of direct-patterned laser-treated hydrophobic paper as an effective semi-permeable membrane, ideal for ALI cell culture. The surface properties of the paper are modified through a selective CO2 laser-assisted treatment to create a unique porous substrate with hydrophilic regions that regulate fluid diffusion and cell attachment. To select the appropriate model, four promising hydrophobic films were compared with each other in terms of gas permeability and long-term strength in an aqueous environment (wet-strength). Among the investigated substrates, parchment paper showed the fastest rate of oxygen permeability (3 times more than conventional transwell cell culture membranes), with the least variation in its dry and wet tensile strengths (124 MPa and 58 MPa, remaining unchanged after 7 days of submersion in PBS).The final paper-based platform provides an ideal, robust, and inexpensive device for generating monolayers of lung epithelial cells on-chip in a high-throughput fashion for disease modelling and in vitro drug testing.
Collapse
Affiliation(s)
- Rahim Rahimi
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Su Su Htwe
- Division of Immunology, School of Life Sciences, Faculty of Medicine & Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Manuel Ochoa
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| | - Amy Donaldson
- Division of Immunology, School of Life Sciences, Faculty of Medicine & Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Michael Zieger
- Indiana University School of Medicine, Division of Plastic Surgery, Indianapolis, IN, USA
| | - Rajiv Sood
- Indiana University School of Medicine, Division of Plastic Surgery, Indianapolis, IN, USA
| | - Ali Tamayol
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea and Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Amir M Ghaemmaghami
- Division of Immunology, School of Life Sciences, Faculty of Medicine & Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Babak Ziaie
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Fishler R, Sznitman J. A Microfluidic Model of Biomimetically Breathing Pulmonary Acinar Airways. J Vis Exp 2016:53588. [PMID: 27214269 PMCID: PMC4942038 DOI: 10.3791/53588] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Quantifying respiratory flow characteristics in the pulmonary acinar depths and how they influence inhaled aerosol transport is critical towards optimizing drug inhalation techniques as well as predicting deposition patterns of potentially toxic airborne particles in the pulmonary alveoli. Here, soft-lithography techniques are used to fabricate complex acinar-like airway structures at the truthful anatomical length-scales that reproduce physiological acinar flow phenomena in an optically accessible system. The microfluidic device features 5 generations of bifurcating alveolated ducts with periodically expanding and contracting walls. Wall actuation is achieved by altering the pressure inside water-filled chambers surrounding the thin PDMS acinar channel walls both from the sides and the top of the device. In contrast to common multilayer microfluidic devices, where the stacking of several PDMS molds is required, a simple method is presented to fabricate the top chamber by embedding the barrel section of a syringe into the PDMS mold. This novel microfluidic setup delivers physiological breathing motions which in turn give rise to characteristic acinar air-flows. In the current study, micro particle image velocimetry (µPIV) with liquid suspended particles was used to quantify such air flows based on hydrodynamic similarity matching. The good agreement between µPIV results and expected acinar flow phenomena suggest that the microfluidic platform may serve in the near future as an attractive in vitro tool to investigate directly airborne representative particle transport and deposition in the acinar regions of the lungs.
Collapse
Affiliation(s)
- Rami Fishler
- Department of Biomedical Engineering, Technion - Israel Institute of Technology
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology;
| |
Collapse
|
9
|
Maina JN. Structural and Biomechanical Properties of the Exchange Tissue of the Avian Lung. Anat Rec (Hoboken) 2015; 298:1673-88. [DOI: 10.1002/ar.23162] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/29/2015] [Accepted: 02/20/2015] [Indexed: 11/06/2022]
Affiliation(s)
- John N. Maina
- Department of Zoology; University of Johannesburg; Kingsway, Johannesburg South Africa
| |
Collapse
|
10
|
Abstract
RATIONALE Much recent interest in lung bioengineering by pulmonary investigators, industry and the organ transplant field has seen a rapid growth of bioreactor development ranging from the microfluidic scale to the human-sized whole lung systems. A comprehension of the findings from these models is needed to provide the basis for further bioreactor development. OBJECTIVE The goal was to comprehensively review the current state of bioreactor development for the lung. METHODS A search using PubMed was done for published, peer-reviewed papers using the keywords "lung" AND "bioreactor" or "bioengineering" or "tissue engineering" or "ex vivo perfusion". MAIN RESULTS Many new bioreactors ranging from the microfluidic scale to the human-sized whole lung systems have been developed by both academic and commercial entities. Microfluidic, lung-mimic and lung slice cultures have the advantages of cost-efficiency and high throughput analyses ideal for pharmaceutical and toxicity studies. Perfused/ventilated rodent whole lung systems can be adapted for mid-throughput studies of lung stem/progenitor cell development, cell behavior, understanding and treating lung injury and for preliminary work that can be translated to human lung bioengineering. Human-sized ex vivo whole lung bioreactors incorporating perfusion and ventilation are amenable to automation and have been used for whole lung decellularization and recellularization. Clinical scale ex vivo lung perfusion systems have been developed for lung preservation and reconditioning and are currently being evaluated in clinical trials. CONCLUSIONS Significant advances in bioreactors for lung engineering have been made at both the microfluidic and the macro scale. The most advanced are closed systems that incorporate pressure-controlled perfusion and ventilation and are amenable to automation. Ex vivo lung perfusion systems have advanced to clinical trials for lung preservation and reconditioning. The biggest challenges that lie ahead for lung bioengineering can only be overcome by future advances in technology that solve the problems of cell production and tissue incorporation.
Collapse
Affiliation(s)
- Angela Panoskaltsis-Mortari
- Departments of Pediatrics and Medicine; Blood and Marrow Transplant Program; Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, MN, 55455, U.S.A
| |
Collapse
|
11
|
Tenenbaum-Katan J, Fishler R, Rothen-Rutishauser B, Sznitman J. Biomimetics of fetal alveolar flow phenomena using microfluidics. BIOMICROFLUIDICS 2015; 9:014120. [PMID: 25759753 PMCID: PMC4336252 DOI: 10.1063/1.4908269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/23/2015] [Indexed: 05/12/2023]
Abstract
At the onset of life in utero, the respiratory system begins as a liquid-filled tubular organ and undergoes significant morphological changes during fetal development towards establishing a respiratory organ optimized for gas exchange. As airspace morphology evolves, respiratory alveolar flows have been hypothesized to exhibit evolving flow patterns. In the present study, we have investigated flow topologies during increasing phases of embryonic life within an anatomically inspired microfluidic device, reproducing real-scale features of fetal airways representative of three distinct phases of in utero gestation. Micro-particle image velocimetry measurements, supported by computational fluid dynamics simulations, reveal distinct respiratory alveolar flow patterns throughout different stages of fetal life. While attached, streamlined flows characterize the shallow structures of premature alveoli indicative of the onset of saccular stage, separated recirculating vortex flows become the signature of developed and extruded alveoli characteristic of the advanced stages of fetal development. To further mimic physiological aspects of the cellular environment of developing airways, our biomimetic devices integrate an alveolar epithelium using the A549 cell line, recreating a confluent monolayer that produces pulmonary surfactant. Overall, our in vitro biomimetic fetal airways model delivers a robust and reliable platform combining key features of alveolar morphology, flow patterns, and physiological aspects of fetal lungs developing in utero.
Collapse
Affiliation(s)
- Janna Tenenbaum-Katan
- Department of Biomedical Engineering, Technion-Israel Institute of Technology , 32000 Haifa, Israel
| | - Rami Fishler
- Department of Biomedical Engineering, Technion-Israel Institute of Technology , 32000 Haifa, Israel
| | | | - Josué Sznitman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology , 32000 Haifa, Israel
| |
Collapse
|
12
|
Bhise NS, Ribas J, Manoharan V, Zhang YS, Polini A, Massa S, Dokmeci MR, Khademhosseini A. Organ-on-a-chip platforms for studying drug delivery systems. J Control Release 2014; 190:82-93. [PMID: 24818770 DOI: 10.1016/j.jconrel.2014.05.004] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/24/2014] [Accepted: 05/02/2014] [Indexed: 01/03/2023]
Abstract
Novel microfluidic tools allow new ways to manufacture and test drug delivery systems. Organ-on-a-chip systems - microscale recapitulations of complex organ functions - promise to improve the drug development pipeline. This review highlights the importance of integrating microfluidic networks with 3D tissue engineered models to create organ-on-a-chip platforms, able to meet the demand of creating robust preclinical screening models. Specific examples are cited to demonstrate the use of these systems for studying the performance of drug delivery vectors and thereby reduce the discrepancies between their performance at preclinical and clinical trials. We also highlight the future directions that need to be pursued by the research community for these proof-of-concept studies to achieve the goal of accelerating clinical translation of drug delivery nanoparticles.
Collapse
Affiliation(s)
- Nupura S Bhise
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - João Ribas
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; Biocant - Biotechnology Innovation Center, 3060-197 Cantanhede, Portugal
| | - Vijayan Manoharan
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Yu Shrike Zhang
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Alessandro Polini
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Solange Massa
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Mehmet R Dokmeci
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Ali Khademhosseini
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, USA; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
13
|
Fishler R, Mulligan MK, Sznitman J. Acinus-on-a-chip: A microfluidic platform for pulmonary acinar flows. J Biomech 2013; 46:2817-23. [DOI: 10.1016/j.jbiomech.2013.08.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/23/2013] [Accepted: 08/31/2013] [Indexed: 01/21/2023]
|