1
|
Chen CK, Chang YM, Jiang TX, Yue Z, Liu TY, Lu J, Yu Z, Lin JJ, Vu TD, Huang TY, Harn HIC, Ng CS, Wu P, Chuong CM, Li WH. Conserved regulatory switches for the transition from natal down to juvenile feather in birds. Nat Commun 2024; 15:4174. [PMID: 38755126 PMCID: PMC11099144 DOI: 10.1038/s41467-024-48303-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
The transition from natal downs for heat conservation to juvenile feathers for simple flight is a remarkable environmental adaptation process in avian evolution. However, the underlying epigenetic mechanism for this primary feather transition is mostly unknown. Here we conducted time-ordered gene co-expression network construction, epigenetic analysis, and functional perturbations in developing feather follicles to elucidate four downy-juvenile feather transition events. We report that extracellular matrix reorganization leads to peripheral pulp formation, which mediates epithelial-mesenchymal interactions for branching morphogenesis. α-SMA (ACTA2) compartmentalizes dermal papilla stem cells for feather renewal cycling. LEF1 works as a key hub of Wnt signaling to build rachis and converts radial downy to bilateral symmetry. Novel usage of scale keratins strengthens feather sheath with SOX14 as the epigenetic regulator. We show that this primary feather transition is largely conserved in chicken (precocial) and zebra finch (altricial) and discuss the possibility that this evolutionary adaptation process started in feathered dinosaurs.
Collapse
Affiliation(s)
- Chih-Kuan Chen
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - ZhiCao Yue
- Department of Cell Biology and Medical Genetics, Shenzhen University Medical School, Shenzhen, Guangdong, China
- International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Tzu-Yu Liu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jiayi Lu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhou Yu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jinn-Jy Lin
- National Applied Research Laboratories, National Center for High-performance Computing, Hsinchu, Taiwan
| | - Trieu-Duc Vu
- Michigan Neuroscience Institute, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Tao-Yu Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hans I-Chen Harn
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chen Siang Ng
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Bioresource Conservation Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Mota-Rojas D, Marcet-Rius M, Domínguez-Oliva A, Buenhombre J, Daza-Cardona EA, Lezama-García K, Olmos-Hernández A, Verduzco-Mendoza A, Bienboire-Frosini C. Parental behavior and newborn attachment in birds: life history traits and endocrine responses. Front Psychol 2023; 14:1183554. [PMID: 37599744 PMCID: PMC10434784 DOI: 10.3389/fpsyg.2023.1183554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
In birds, parental care and attachment period differ widely depending on the species (altricial or precocial), developmental strategies, and life history traits. In most bird species, parental care can be provided by both female and male individuals and includes specific stages such as nesting, laying, and hatching. During said periods, a series of neuroendocrine responses are triggered to motivate parental care and attachment. These behaviors are vital for offspring survival, development, social bonding, intergenerational learning, reproductive success, and ultimately, the overall fitness and evolution of bird populations in a variety of environments. Thus, this review aims to describe and analyze the behavioral and endocrine systems of parental care and newborn attachment in birds during each stage of the post-hatching period.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Míriam Marcet-Rius
- Department of Animal Behaviour and Welfare, Research Institute in Semiochemistry and Applied Ethology, Apt, France
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Jhon Buenhombre
- Faculty of Veterinary Medicine, Antonio Nariño University, Bogotá, Colombia
| | | | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology, Apt, France
| |
Collapse
|
3
|
Wu Q, Liu H, Yang Q, Wei B, Wang L, Tang Q, Wang J, Xi Y, Han C, Wang J, Li L. Developmental Transcriptome Profiling of the Tibial Reveals the Underlying Molecular Basis for Why Newly Hatched Quails Can Walk While Newly Hatched Pigeons Cannot. Front Cell Dev Biol 2022; 10:745129. [PMID: 35198553 PMCID: PMC8858812 DOI: 10.3389/fcell.2022.745129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Birds can be classified into altricial and precocial species. The hatchlings of altricial birds cannot stand, whereas precocial birds can walk and run soon after hatching. It might be owing to the development of the hindlimb bones in the embryo stage, but the molecular regulatory basis underlying the divergence is unclear. To address this issue, we chose the altricial pigeon and the precocial Japanese quail as model animals. The data of tibia weight rate, embryonic skeletal staining, and tibia tissues paraffin section during the embryonic stage showed that the Japanese quail and pigeon have similar skeletal development patterns, but the former had a faster calcification rate. We utilized the comparative transcriptome approach to screen the genes and pathways related to this heterochronism. We separately analyzed the gene expression of tibia tissues of quail and pigeon at two consecutive time points from an inability to stand to be able to stand. There were 2910 differentially expressed genes (DEGs) of quail, and 1635 DEGs of pigeon, respectively. A total of 409 DEGs in common in the quail and pigeon. On the other hand, we compared the gene expression profiles of pigeons and quails at four time points, and screened out eight pairs of expression profiles with similar expression trends but delayed expression in pigeons. By screening the common genes in each pair of expression profiles, we obtained a gene set consisting of 152 genes. A total of 79 genes were shared by the 409 DEGs and the 152 genes. Gene Ontology analysis of these common genes showed that 21 genes including the COL gene family (COL11A1, COL9A3, COL9A1), IHH, MSX2, SFRP1, ATP6V1B1, SRGN, CTHRC1, NOG, and GDF5 involved in the process of endochondral ossification. These genes were the candidate genes for the difference of tibial development between pigeon and quail. This is the first known study on the embryo skeletal staining in pigeon. It provides some new insights for studying skeletal development mechanisms and locomotor ability of altricial and precocial bird species.
Collapse
|
4
|
Leishman EM, van Staaveren N, McIntyre DR, Mohr J, Wood BJ, Baes CF, Harlander-Matauschek A. Describing the growth and molt of modern domestic turkey (Meleagris gallopavo) primary wing feathers. J Anim Sci 2021; 98:5986750. [PMID: 33205202 PMCID: PMC7755177 DOI: 10.1093/jas/skaa373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/16/2020] [Indexed: 01/30/2023] Open
Abstract
The use of feathers as noninvasive physiological measurements of biomarkers in poultry research is expanding. Feather molting patterns and growth rates, however, are not well described in domestic poultry. These parameters could influence the measurement of these biomarkers. Therefore, the objective of this study was to describe the juvenile primary feather molting patterns and feather growth rates for domestic turkeys. The 10 primary wing feathers of 48 female turkeys were measured weekly from week 1 (0 d of age) to week 20. Feathers were manually measured, and the presence or absence of each primary feather was recorded weekly. Generalized linear mixed models were used to investigate if feather growth differed between the primary feathers. The molting of the juvenile primary feathers followed a typical descending pattern starting with P1 (5 wk of age), while P9 and P10 had not molted by the end of the study (20 wk of age). The average feather growth rate was 2.4 cm/wk, although there was a significant difference between the 10 primary feathers (P < 0.0001, 2.1 to 2.8 cm/wk). Over time, feather growth followed a pattern where the growth rate reaches a peak and then declines until the feather is molted. The results of this study provide a critical update of patterns of molting and feather growth in primary wing feathers of modern turkeys. This can have implications for the interpretation of physiological biomarkers, such as the longitudinal deposition of corticosterone, in the feathers of domestic turkeys.
Collapse
Affiliation(s)
- Emily M Leishman
- Department of Animal Biosciences, Centre for the Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Nienke van Staaveren
- Department of Animal Biosciences, Centre for the Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada.,Department of Animal Biosciences, The Campbell Centre for the Study of Animal Welfare, University of Guelph, Guelph, ON, Canada
| | | | - Jeff Mohr
- Department is Research and Development, Hybrid Turkeys, Kitchener, ON, Canada
| | - Benjamin J Wood
- Department of Animal Biosciences, Centre for the Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada.,Department is Research and Development, Hybrid Turkeys, Kitchener, ON, Canada.,School of Veterinary Science, University of Queensland, Gatton, Queensland, Australia
| | - Christine F Baes
- Department of Animal Biosciences, Centre for the Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada.,Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Alexandra Harlander-Matauschek
- Department of Animal Biosciences, The Campbell Centre for the Study of Animal Welfare, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
5
|
Meiri S, Murali G, Zimin A, Shak L, Itescu Y, Caetano G, Roll U. Different solutions lead to similar life history traits across the great divides of the amniote tree of life. ACTA ACUST UNITED AC 2021; 28:3. [PMID: 33557958 PMCID: PMC7869468 DOI: 10.1186/s40709-021-00134-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Amniote vertebrates share a suite of extra-embryonic membranes that distinguish them from anamniotes. Other than that, however, their reproductive characteristics could not be more different. They differ in basic ectothermic vs endothermic physiology, in that two clades evolved powered flight, and one clade evolved a protective shell. In terms of reproductive strategies, some produce eggs and others give birth to live young, at various degrees of development. Crucially, endotherms provide lengthy parental care, including thermal and food provisioning—whereas ectotherms seldom do. These differences could be expected to manifest themselves in major differences between clades in quantitative reproductive traits. We review the reproductive characteristics, and the distributions of brood sizes, breeding frequencies, offspring sizes and their derivatives (yearly fecundity and biomass production rates) of the four major amniote clades (mammals, birds, turtles and squamates), and several major subclades (birds: Palaeognathae, Galloanserae, Neoaves; mammals: Metatheria and Eutheria). While there are differences between these clades in some of these traits, they generally show similar ranges, distribution shapes and central tendencies across birds, placental mammals and squamates. Marsupials and turtles, however, differ in having smaller offspring, a strategy which subsequently influences other traits.
Collapse
Affiliation(s)
- Shai Meiri
- School of Zoology, Tel Aviv University, 6997801, Tel Aviv, Israel. .,The Steinhardt Museum of Natural History, Tel Aviv University, 6997801, Tel Aviv, Israel.
| | - Gopal Murali
- Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | - Anna Zimin
- School of Zoology, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Lior Shak
- School of Zoology, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Yuval Itescu
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587, Berlin, Germany.,Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Gabriel Caetano
- Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion, Israel
| | - Uri Roll
- Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion, Israel
| |
Collapse
|