1
|
Bidkhori HR, Farshchian M, Hasanzadeh H, Jafarzadeh Esfehani R, Alsadat Mahmoudian R, Moradi Marjaneh M, Rafatpanah H. Unraveling The Effects of DICER1 Overexpression on Immune-Related Genes Expression in Mesenchymal Stromal/Stem Cells: Insights for Therapeutic Applications. CELL JOURNAL 2023; 25:696-705. [PMID: 37865878 PMCID: PMC10591266 DOI: 10.22074/cellj.2023.1988987.1221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVE The immunoregulatory properties of mesenchymal stromal/stem cells (MSCs) bring a promise for the treatment of inflammatory diseases. However, their ability to suppress the immune system is unstable. To enhance their effectiveness against immune responses, it may be necessary to manipulate MSCs. Although some dsRNA transcripts come from invading viruses, the majority of dsRNA has an endogenous origin and is known as endo-siRNA. DICER1 is a ribonuclease protein that can generate small RNAs to modulate gene expression at the post-transcriptional level. We aimed to evaluate the expression of several immune-related genes at mRNA and protein levels in MSCs overexpressing DICER1 exogenously. MATERIALS AND METHODS In this comparative transcriptomic experimental study, the adipose-derived MSCs (Ad-MSCs) were transfected using the pCAGGS-Flag-hsDicer vector for the DICER1 overexpression. Following the RNA extraction, mRNA expression level of DICER1 and several inflammatory cytokines were examined. We performed a relative real-time polymerase chain reaction (PCR) assay and transcriptome analysis between two groups including DICER1- transfected MSCs and control MSCs. Moreover, media from the transfected MSCs were evaluated for various interferon response factors by ELISA. RESULTS The overexpression of DICER1 is associated with a significant increase in the mRNA expression level of COX-2, DDX-58, IFIH1, MYD88, RNase L, TLR3/4, and TDO2 genes and a downregulation of the TSG-6 gene in MSCs. Moreover, the expression levels of IL-1, 6, 8, 17, 18, CCL2, INF-γ, TGF-β, and TNF-α were higher in the DICER1-transfected MSCs group. CONCLUSION It seems that the ectopic expression of DICER1 in Ad-MSCs is linked to alterations in the expression level of immune-related genes. It is suggested that the manipulation of immune-related pathways in MSCs via the Dicer1 overexpression could facilitate the development of MSCs with distinct immunoregulatory phenotypes.
Collapse
Affiliation(s)
- Hamid Reza Bidkhori
- Immunology Research Centre, Division of Inflammation and Inflammatory Diseases, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moein Farshchian
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture, and Research (ACECR) - Khorasan Razavi, Iran
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Halimeh Hasanzadeh
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture, and Research (ACECR) - Khorasan Razavi, Iran
| | - Reza Jafarzadeh Esfehani
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR) - Khorasan Razavi, Iran
| | - Reihaneh Alsadat Mahmoudian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Moradi Marjaneh
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Houshang Rafatpanah
- Immunology Research Centre, Division of Inflammation and Inflammatory Diseases, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Lv B, Shen N, Cheng Z, Chen Y, Ding H, Yuan J, Zhao K, Zhang Y. Strategies for Biomaterial-Based Spinal Cord Injury Repair via the TLR4-NF-κB Signaling Pathway. Front Bioeng Biotechnol 2022; 9:813169. [PMID: 35600111 PMCID: PMC9116428 DOI: 10.3389/fbioe.2021.813169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
The repair and motor functional recovery after spinal cord injury (SCI) has remained a clinical challenge. Injury-induced gliosis and inflammation lead to a physical barrier and an extremely inhibitory microenvironment, which in turn hinders the recovery of SCI. TLR4-NF-κB is a classic implant-related innate immunomodulation signaling pathway and part of numerous biomaterial-based treatment strategies for SCI. Numerous experimental studies have demonstrated that the regulation of TLR4-NF-κB signaling pathway plays an important role in the alleviation of inflammatory responses, the modulation of autophagy, apoptosis and ferroptosis, and the enhancement of anti-oxidative effect post-SCI. An increasing number of novel biomaterials have been fabricated as scaffolds and carriers, loaded with phytochemicals and drugs, to inhibit the progression of SCI through regulation of TLR4-NF-κB. This review summarizes the empirical strategies for the recovery after SCI through individual or composite biomaterials that mediate the TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bin Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Naiting Shen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangrong Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Ding
- Department of Orthopedics, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jishan Yuan
- Department of Orthopedics, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Kangchen Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Miranda M, Nadel S. Impact of Inherited Genetic Variants on Critically Ill Septic Children. Pathogens 2022; 11:pathogens11010096. [PMID: 35056044 PMCID: PMC8781648 DOI: 10.3390/pathogens11010096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Sepsis remains an important source of morbidity and mortality in children, despite the development of standardized care. In the last decades, there has been an increased interest in genetic and genomic approaches to early recognition and development of treatments to manipulate the host inflammatory response. This review will present a summary of the normal host response to infection and progression to sepsis, followed by highlighting studies with a focus on gene association studies, epigenetics, and genome-wide expression profiling. The susceptibility (or outcome) of sepsis in children has been associated with several polymorphisms of genes broadly involved in inflammation, immunity, and coagulation. More recently, gene expression profiling has been focused on identifying novel biomarkers, pathways and therapeutic targets, and gene expression-based subclassification. Knowledge of a patient’s individual genotype may, in the not-too-remote future, be used to guide tailored treatment for sepsis. However, at present, the impact of genomics remains far from the bedside of critically ill children.
Collapse
Affiliation(s)
- Mariana Miranda
- Paediatric Unit, Imperial College Healthcare NHS Trust, London W2 1NY, UK
- Correspondence:
| | - Simon Nadel
- St. Mary’s Hospital, Imperial College Healthcare NHS Trust, and Imperial College, London W2 1NY, UK;
| |
Collapse
|
4
|
Fatmi A, Chabni N, Cernada M, Vento M, González-López M, Aribi M, Pallardó FV, García-Giménez JL. Clinical and immunological aspects of microRNAs in neonatal sepsis. Biomed Pharmacother 2021; 145:112444. [PMID: 34808550 DOI: 10.1016/j.biopha.2021.112444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Neonatal sepsis constitutes a highly relevant public health challenge and is the most common cause of infant morbidity and mortality worldwide. Recent studies have demonstrated that during infection epigenetic changes may occur leading to reprogramming of gene expression. Post-transcriptional regulation by short non-coding RNAs (e.g., microRNAs) have recently acquired special relevance because of their role in the regulation of the pathophysiology of sepsis and their potential clinical use as biomarkers. ~22-nucleotide of microRNAs are not only involved in regulating multiple relevant cellular and molecular functions, such as immune cell function and inflammatory response, but have also been proposed as good candidates as biomarkers in sepsis. Nevertheless, establishing clinical practice guidelines based on microRNA patterns as biomarkers for diagnosis and prognosis in neonatal sepsis has yet to be achieved. Given their differential expression across tissues in neonates, the release of specific microRNAs to blood and their expression pattern can differ compared to sepsis in adult patients. Further in-depth research is necessary to fully understand the biological relevance of microRNAs and assess their potential use in clinical settings. This review provides a general overview of microRNAs, their structure, function and biogenesis before exploring their potential clinical interest as diagnostic and prognostic biomarkers of neonatal sepsis. An important part of the review is focused on immune and inflammatory aspects of selected microRNAs that may become biomarkers for clinical use and therapeutic intervention.
Collapse
Affiliation(s)
- Ahlam Fatmi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, W0414100, 13000 Tlemcen, Algeria
| | - Nafissa Chabni
- Faculty of Medicine, Tlemcen Medical Centre University, 13000 Tlemcen, Algeria
| | - María Cernada
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain; Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Máximo Vento
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain; Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - María González-López
- Department of Pediatrics. Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, W0414100, 13000 Tlemcen, Algeria; Biotechnology Center of Constantine (CRBt), 25000 Constantine, Algeria
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
| |
Collapse
|
5
|
Hashemian SM, Pourhanifeh MH, Fadaei S, Velayati AA, Mirzaei H, Hamblin MR. Non-coding RNAs and Exosomes: Their Role in the Pathogenesis of Sepsis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:51-74. [PMID: 32506014 PMCID: PMC7272511 DOI: 10.1016/j.omtn.2020.05.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/16/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
Sepsis is characterized as an uncontrolled host response to infection, and it represents a serious health challenge, causing excess mortality and morbidity worldwide. The discovery of sepsis-related epigenetic and molecular mechanisms could result in improved diagnostic and therapeutic approaches, leading to a reduced overall risk for affected patients. Accumulating data show that microRNAs, non-coding RNAs, and exosomes could all be considered as novel diagnostic markers for sepsis patients. These biomarkers have been demonstrated to be involved in regulation of sepsis pathophysiology. However, epigenetic modifications have not yet been widely reported in actual clinical settings, and further investigation is required to determine their importance in intensive care patients. Further studies should be carried out to explore tissue-specific or organ-specific epigenetic RNA-based biomarkers and their therapeutic potential in sepsis patients.
Collapse
Affiliation(s)
- Seyed MohammadReza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sara Fadaei
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Velayati
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
6
|
Ding Y, He P, Li Z. MicroRNA-9119 regulates cell viability of granulosa cells in polycystic ovarian syndrome via mediating Dicer expression. Mol Cell Biochem 2020; 465:187-197. [PMID: 31894528 DOI: 10.1007/s11010-019-03678-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/14/2019] [Indexed: 02/05/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a hormonal disorder common among women of reproductive age. Although much is understood concerning the pathology of PCOS, further investigation into the influence of microribonucleic acids (miRNAs) on the proliferation of ovarian granulosa cells (GCs) is needed. This study investigated the role of specific miRNAs in ovarian dysfunction of PCOS and its effect on the proliferation of GCs. Initially, miRNA profiling was performed on the ovarian cortexes of 15 rats in which PCOS had been induced and 15 rats without PCOS (non-PCOS). This mechanical study was performed on ovarian GCs extracted from human chorionic gonadotrophin (hCG)-induced rats. Insulin was used to treat GCs to establish the PCOS cell model. Increased Equus caballus mir-9119 expression was observed and confirmed in the insulin-induced model of PCOS in GCs (GC-PCOS) as well as in the hCG-induced rats when compared to non-PCOS rats and cells. Observation and confirmation were carried out through both miRNA array and quantitative PCR. In contrast, downregulation of the nuclear factor kappa B (NFκB) p65 was observed in the PCOS cell model. Additionally, annexin V, FITC, and propidium iodide flow cytometry showed overexpression of miR-9119-induced apoptosis. In this study, we revealed that miR-9119 inhibition regulates p65 expression levels in insulin-treated GCs by binding to the 3'-untranslated of p65. Additionally, regulation of p65 expression was positively correlated with the expression of the double-stranded RNA endoribonuclease DICER. Moreover, RNA silencing/overexpression of p65 affected the functional role of miR-9119. In conclusion, GCs of PCOS, the expression of miR-9119, and targeted NFκB/p65-DICER axis are upregulated in order to maintain cell viability and prevent apoptosis, thereby promoting Anti-Müllerian hormone production in GCs. This study may provide a new understanding of the mechanism of GC dysfunction.
Collapse
Affiliation(s)
- Yang Ding
- Reproductive Center of the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Pei He
- Reproductive Center of the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China
| | - Zhiling Li
- Reproductive Center of the First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, Guangdong, China.
| |
Collapse
|
7
|
Sadlon A, Takousis P, Alexopoulos P, Evangelou E, Prokopenko I, Perneczky R. miRNAs Identify Shared Pathways in Alzheimer's and Parkinson's Diseases. Trends Mol Med 2019; 25:662-672. [PMID: 31221572 DOI: 10.1016/j.molmed.2019.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Despite the identification of several dozens of common genetic variants associated with Alzheimer's disease (AD) and Parkinson's disease (PD), most of the genetic risk remains uncharacterised. Therefore, it is important to understand the role of regulatory elements, such as miRNAs. Dysregulated miRNAs are implicated in AD and PD, with potential value in dissecting the shared pathophysiology between the two disorders. miRNAs relevant to both neurodegenerative diseases are related to axonal guidance, apoptosis, and inflammation, therefore, AD and PD likely arise from similar underlying biological pathway defects. Furthermore, pathways regulated by APP, L1CAM, and genes of the caspase family may represent promising therapeutic miRNA targets in AD and PD since they are targeted by dysregulated miRNAs in both disorders.
Collapse
Affiliation(s)
- Angélique Sadlon
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| | - Petros Takousis
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| | - Panagiotis Alexopoulos
- Department of Psychiatry, University of Patras, Patras, Greece; Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK; Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Inga Prokopenko
- Section of Genomics of Common Disease, Department of Medicine, Imperial College London, London, UK; Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK
| | - Robert Perneczky
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK; Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
8
|
Hoppstädter J, Diesel B, Linnenberger R, Hachenthal N, Flamini S, Minet M, Leidinger P, Backes C, Grässer F, Meese E, Bruscoli S, Riccardi C, Huwer H, Kiemer AK. Amplified Host Defense by Toll-Like Receptor-Mediated Downregulation of the Glucocorticoid-Induced Leucine Zipper (GILZ) in Macrophages. Front Immunol 2019; 9:3111. [PMID: 30723476 PMCID: PMC6349698 DOI: 10.3389/fimmu.2018.03111] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
Activation of toll-like receptors (TLRs) plays a pivotal role in the host defense against bacteria and results in the activation of NF-κB-mediated transcription of proinflammatory mediators. Glucocorticoid-induced leucine zipper (GILZ) is an anti-inflammatory mediator, which inhibits NF-κB activity in macrophages. Thus, we aimed to investigate the regulation and role of GILZ expression in primary human and murine macrophages upon TLR activation. Treatment with TLR agonists, e.g., Pam3CSK4 (TLR1/2) or LPS (TLR4) rapidly decreased GILZ mRNA and protein levels. In consequence, GILZ downregulation led to enhanced induction of pro-inflammatory mediators, increased phagocytic activity, and a higher capacity to kill intracellular bacteria (Salmonella enterica serovar typhimurium), as shown in GILZ knockout macrophages. Treatment with the TLR3 ligand polyinosinic: polycytidylic acid [Poly(I:C)] did not affect GILZ mRNA levels, although GILZ protein expression was decreased. This effect was paralleled by sensitization toward TLR1/2- and TLR4-agonists. A bioinformatics approach implicated more than 250 miRNAs as potential GILZ regulators. Microarray analysis revealed that the expression of several potentially GILZ-targeting miRNAs was increased after Poly(I:C) treatment in primary human macrophages. We tested the ability of 11 of these miRNAs to target GILZ by luciferase reporter gene assays. Within this small set, four miRNAs (hsa-miR-34b*,−222,−320d,−484) were confirmed as GILZ regulators, suggesting that GILZ downregulation upon TLR3 activation is a consequence of the synergistic actions of multiple miRNAs. In summary, our data show that GILZ downregulation promotes macrophage activation. GILZ downregulation occurs both via MyD88-dependent and -independent mechanisms and can involve decreased mRNA or protein stability and an attenuated translation.
Collapse
Affiliation(s)
- Jessica Hoppstädter
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Britta Diesel
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Rebecca Linnenberger
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Nina Hachenthal
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Sara Flamini
- Pharmacology, Department of Medicine, Perugia University, Perugia, Italy
| | - Marie Minet
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Petra Leidinger
- Human Genetics, Department of Medicine, Saarland University, Homburg, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Friedrich Grässer
- Virology, Department of Medicine, Saarland University, Homburg, Germany
| | - Eckart Meese
- Human Genetics, Department of Medicine, Saarland University, Homburg, Germany
| | - Stefano Bruscoli
- Pharmacology, Department of Medicine, Perugia University, Perugia, Italy
| | - Carlo Riccardi
- Pharmacology, Department of Medicine, Perugia University, Perugia, Italy
| | - Hanno Huwer
- Cardiothoracic Surgery, Völklingen Heart Centre, Völklingen, Germany
| | - Alexandra K Kiemer
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Saarbrücken, Germany
| |
Collapse
|
9
|
Non-coding RNA: a potential biomarker and therapeutic target for sepsis. Oncotarget 2017; 8:91765-91778. [PMID: 29207683 PMCID: PMC5710963 DOI: 10.18632/oncotarget.21766] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/03/2017] [Indexed: 12/13/2022] Open
Abstract
Sepsis, a syndrome of physiologic, pathologic, and biochemical abnormalities caused by an altered systemic host response to infection, has become the main cause of death among patients admitted to the intensive care units. Recently, genome-wide expression analysis revealed that over 80% of the essential genetic elements were altered in critically ill patients. Notably, non-coding RNAs, including microRNAs, long non-coding RNAs and circular RNAs, have been proven to play essential roles in innate immunity, mitochondrial dysfunction and organ dysfunction. In this review, we introduced the biogenesis of non-coding RNAs briefly and summed up different kinds of non-coding RNAs in regulation of sepsis, which could provide a more comprehensive understanding about pathogenesis of the disease. Additionally, we summarized the limitations of current biomarkers and then recommended some non-coding RNAs as novel potential biomarkers for sepsis and sepsis-induced organ dysfunction. Besides, we also introduced some problems and challenges that need to be overcome during the clinical application of non-coding RNAs. Future research should focus on elucidating their molecular mechanisms, particularly long non-coding RNAs as well as circular RNAs and sepsis, to further understanding of the disease process. With the in-depth understanding of the mechanism of sepsis, non-coding RNAs provide a new insight into sepsis and could become the novel therapeutic targets in the future.
Collapse
|
10
|
Wang S, Yuan M, Song L, Zhang X, Geng Q, Zhang H, Li X. Expression of Dicer in rheumatoid arthritis is associated with disease activity and balances the production of TNF-α. Mol Med Rep 2017. [DOI: 10.3892/mmr.2017.6746] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
11
|
He Q, Wang Q, Yuan C, Wang Y. Downregulation of miR-7116-5p in microglia by MPP+sensitizes TNF-α production to induce dopaminergic neuron damage. Glia 2017; 65:1251-1263. [DOI: 10.1002/glia.23153] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/25/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Qian He
- Laboratory of Neural Signal Transduction; Institute of Neuroscience; Shanghai 200031 China
- Graduate School of Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai 200031 China
| | - Qing Wang
- Laboratory of Neural Signal Transduction; Institute of Neuroscience; Shanghai 200031 China
- Graduate School of Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai 200031 China
| | - Chao Yuan
- Center of Cognition and Brain Science, Institute of Basic Medical Science; Beijing 100039 China
| | - Yizheng Wang
- Laboratory of Neural Signal Transduction; Institute of Neuroscience; Shanghai 200031 China
| |
Collapse
|
12
|
Hoffend NC, Magner WJ, Tomasi TB. The epigenetic regulation of Dicer and microRNA biogenesis by Panobinostat. Epigenetics 2016; 12:105-112. [PMID: 27935420 DOI: 10.1080/15592294.2016.1267886] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
microRNAs (miRs) are small noncoding RNAs that regulate/fine tune many cellular protein networks by targeting mRNAs for either degradation or translational inhibition. Dicer, a type III endoribonuclease, is a critical component in miR biogenesis and is required for mature microRNA production. Abnormal Dicer expression occurs in numerous cancer types and correlates with poor patient prognosis. Recent reports have demonstrated that epigenetic agents, including histone deacetylase inhibitors (HDACi), may regulate Dicer and miR expression. HDACi are a class of epigenetic agents used to treat cancer, viral infections, and inflammatory disorders. However, little is known regarding the epigenetic regulation of miR biogenesis and function. We therefore investigated whether clinically successful HDACi modulated Dicer expression and found that Panobinostat, a clinically approved HDACi, enhanced Dicer expression via posttranscriptional mechanisms. Studies using proteasome inhibitors suggested that Panobinostat regulated the proteasomal degradation of Dicer. Further studies demonstrated that Panobinostat, despite increasing Dicer protein expression, decreased Dicer activity. This suggests that Dicer protein levels do not necessarily correlate with Dicer activity and mature miR levels. Taken together, we present evidence here that Panobinostat posttranscriptionally regulates Dicer/miR biogenesis and suggest Dicer as a potential therapeutic target in cancer.
Collapse
Affiliation(s)
- Nicholas C Hoffend
- a Laboratory of Molecular Medicine, Department of Immunology , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - William J Magner
- a Laboratory of Molecular Medicine, Department of Immunology , Roswell Park Cancer Institute , Buffalo , NY , USA.,b Department of Microbiology & Immunology , School of Medicine and Biomedical Sciences, State University of New York , Buffalo , NY , USA
| | - Thomas B Tomasi
- a Laboratory of Molecular Medicine, Department of Immunology , Roswell Park Cancer Institute , Buffalo , NY , USA.,b Department of Microbiology & Immunology , School of Medicine and Biomedical Sciences, State University of New York , Buffalo , NY , USA.,c Department of Medicine , School of Medicine and Biomedical Sciences, State University of New York , Buffalo , NY , USA
| |
Collapse
|
13
|
Ho J, Chan H, Wong SH, Wang MHT, Yu J, Xiao Z, Liu X, Choi G, Leung CCH, Wong WT, Li Z, Gin T, Chan MTV, Wu WKK. The involvement of regulatory non-coding RNAs in sepsis: a systematic review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:383. [PMID: 27890015 PMCID: PMC5125038 DOI: 10.1186/s13054-016-1555-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022]
Abstract
Background Sepsis coincides with altered gene expression in different tissues. Accumulating evidence has suggested that microRNAs, long non-coding RNAs, and circular RNAs are important molecules involved in the crosstalk with various pathways pertinent to innate immunity, mitochondrial functions, and apoptosis. Methods We searched articles indexed in PubMed (MEDLINE), EMBASE and Europe PubMed Central databases using the Medical Subject Heading (MeSH) or Title/Abstract words (“microRNA”, “long non-coding RNA”, “circular RNA”, “sepsis” and/or “septic shock”) from inception to Sep 2016. Studies investigating the role of host-derived microRNA, long non-coding RNA, and circular RNA in the pathogenesis of and as biomarkers or therapeutics in sepsis were included. Data were extracted in terms of the role of non-coding RNAs in pathogenesis, and their applicability for use as biomarkers or therapeutics in sepsis. Two independent researchers assessed the quality of studies using a modified guideline from the Systematic Review Center for Laboratory animal Experimentation (SYRCLE), a tool based on the Cochrane Collaboration Risk of Bias tool. Results Observational studies revealed dysregulation of non-coding RNAs in septic patients. Experimental studies confirmed their crosstalk with JNK/NF-κB and other cellular pathways pertinent to innate immunity, mitochondrial function, and apoptosis. Of the included studies, the SYRCLE scores ranged from 3 to 7 (average score of 4.55). This suggests a moderate risk of bias. Of the 10 articles investigating non-coding RNAs as biomarkers, none of them included a validation cohort. Selective reporting of sensitivity, specificity, and receiver operating curve was common. Conclusions Although non-coding RNAs appear to be good candidates as biomarkers and therapeutics for sepsis, their differential expression across tissues complicated the process. Further investigation on organ-specific delivery of these regulatory molecules may be useful. Electronic supplementary material The online version of this article (doi:10.1186/s13054-016-1555-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeffery Ho
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Hung Chan
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Sunny H Wong
- State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China. .,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China.
| | - Maggie H T Wang
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaodong Liu
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Gordon Choi
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Czarina C H Leung
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Wai T Wong
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Zheng Li
- Department of Orthopedics Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Tony Gin
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China
| | - Matthew T V Chan
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China.
| | - William K K Wu
- Department of Anesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, Hong Kong, Special Administrative Region of China. .,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong, Special Administrative Region of China.
| |
Collapse
|