1
|
Kullik GA, Waldmann M, Renné T. Analysis of polyphosphate in mammalian cells and tissues: methods, functions and challenges. Curr Opin Biotechnol 2024; 90:103208. [PMID: 39321579 DOI: 10.1016/j.copbio.2024.103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Polyphosphates play a crucial role in various biological processes, such as blood coagulation, energy homeostasis, and cellular stress response. However, their isolation, detection, and quantification present significant challenges. These difficulties arise primarily from their solubility, low concentration in mammals, and structural similarity to other ubiquitous biopolymers. This review provides an overview of the current understanding of polyphosphates in mammals, including their proposed functions and tissue distribution. It also examines key isolation techniques, such as chromatography and precipitation, alongside detection methods, such as colorimetric assays and enzymatic digestion. The strengths and limitations of these methods are discussed, as well as the challenges in preserving polyphosphate integrity. Recent advancements in isolation and detection are also highlighted, offering a comprehensive perspective essential for advancing polyphosphate research.
Collapse
Affiliation(s)
- Giuliano A Kullik
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Waldmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
2
|
Garcés P, Amaro A, Montecino M, van Zundert B. Inorganic polyphosphate: from basic research to diagnostic and therapeutic opportunities in ALS/FTD. Biochem Soc Trans 2024; 52:123-135. [PMID: 38323662 DOI: 10.1042/bst20230257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/08/2024]
Abstract
Inorganic polyphosphate (polyP) is a simple, negatively charged biopolymer with chain lengths ranging from just a few to over a thousand ortho-phosphate (Pi) residues. polyP is detected in every cell type across all organisms in nature thus far analyzed. Despite its structural simplicity, polyP has been shown to play important roles in a remarkably broad spectrum of biological processes, including blood coagulation, bone mineralization and inflammation. Furthermore, polyP has been implicated in brain function and the neurodegenerative diseases amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease and Parkinson's disease. In this review, we first address the challenges associated with identifying mammalian polyP metabolizing enzymes, such as Nudt3, and quantifying polyP levels in brain tissue, cultured neural cells and cerebrospinal fluid. Subsequently, we focus on recent studies that unveil how the excessive release of polyP by human and mouse ALS/FTD astrocytes contributes to these devastating diseases by inducing hyperexcitability, leading to motoneuron death. Potential implications of elevated polyP levels in ALS/FTD patients for innovative diagnostic and therapeutic approaches are explored. It is emphasized, however, that caution is required in targeting polyP in the brain due to its diverse physiological functions, serving as an energy source, a chelator for divalent cations and a scaffold for amyloidogenic proteins. Reducing polyP levels, especially in neurons, might thus have adverse effects in brain functioning. Finally, we discuss how activated mast cells and platelets also can significantly contribute to ALS progression, as they can massively release polyP.
Collapse
Affiliation(s)
- Polett Garcés
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Armando Amaro
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
| | - Martin Montecino
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile
| | - Brigitte van Zundert
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA, U.S.A
| |
Collapse
|
3
|
Schröder HC, Neufurth M, Zhou H, Wang S, Wang X, Müller WEG. Inorganic Polyphosphate: Coacervate Formation and Functional Significance in Nanomedical Applications. Int J Nanomedicine 2022; 17:5825-5850. [PMID: 36474526 PMCID: PMC9719705 DOI: 10.2147/ijn.s389819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/03/2022] [Indexed: 12/07/2024] Open
Abstract
Inorganic polyphosphates (polyP) are long-chain polymers of orthophosphate residues, which, depending on the external conditions, can be present both physiologically and synthetically in either soluble, nanoparticulate or coacervate form. In recent years, these polymers have received increasing attention due to their unprecedented ability to exhibit both morphogenetic and metabolic energy delivering properties. There are no other physiological molecules that contain as many metabolically utilizable, high-energy bonds as polyP, making these polymers of particular medical interest as components of advanced hydrogel scaffold materials for potential applications in ATP-dependent tissue regeneration and repair. However, these polymers show physiological activity only in soluble form and in the coacervate phase, but not as stable metal-polyP nanoparticles. Therefore, understanding the mechanisms of formation of polyP coacervates and nanoparticles as well as their transformations is important for the design of novel materials for tissue implants, wound healing, and drug delivery and is discussed here.
Collapse
Affiliation(s)
- Heinz C Schröder
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Huan Zhou
- School of Health Sciences and Biomedical Engineering, Heibei University of Technology, Tianjin, People’s Republic of China
| | - Shunfeng Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
4
|
Gawri R, Bielecki R, Salter EW, Zelinka A, Shiba T, Collingridge G, Nagy A, Kandel RA. The anabolic effect of inorganic polyphosphate on chondrocytes is mediated by calcium signalling. J Orthop Res 2022; 40:310-322. [PMID: 33719091 DOI: 10.1002/jor.25032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/08/2021] [Accepted: 03/10/2021] [Indexed: 02/04/2023]
Abstract
Inorganic polyphosphates (polyP) are polymers composed of phosphate residues linked by energy-rich phosphoanhydride bonds. As polyP can bind calcium, the hypothesis of this study is that polyP enters chondrocytes and exerts its anabolic effect by calcium influx through calcium channels. PolyP treatment of cartilage tissue formed in 3D culture by bovine chondrocytes showed an increase in proteoglycan accumulation but only when calcium was also present at a concentration of 1.5 mM. This anabolic effect could be prevented by treatment with either ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid or the calcium channel inhibitors gadolinium and nifedipine. Calcium and polyP cotreatment of chondrocytes in monolayer culture resulted in calcium oscillations that were polyP chain length specific and were inhibited by gadolinium and nifedipine. The calcium influx resulted in increased gene expression of sox9, collagen type II, and aggrecan which was prevented by treatment with either calphostin, an inhibitor of protein kinase C, and W7, an inhibitor of calmodulin; suggesting activation of the protein kinase C-calmodulin pathway. Tracing studies using 4',6-diamidino-2-phenylindole, Mitotracker Red, and/or Fura-AM staining showed that polyP was detected in the nucleus, mitochondria, and intracellular vacuoles suggesting that polyP may also enter the cell. PolyP colocalizes with calcium in mitochondria. This study demonstrates that polyP requires the influx of calcium to regulate chondrocyte matrix production, likely via activating calcium signaling. These findings identify the mechanism regulating the anabolic effect of polyP in chondrocytes which will help in its clinical translation into a therapeutic agent for cartilage repair.
Collapse
Affiliation(s)
- Rahul Gawri
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ryszard Bielecki
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Eric W Salter
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Alena Zelinka
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Toshikazu Shiba
- Regenetiss Inc., Kunitachi, Japan.,Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Graham Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Rita A Kandel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Ouyang Y, Zhang R, Chen H, Chen L, Xi W, Li X, Zhang Q, Yan Y. Novel, degradable, and cytoactive bone cements based on magnesium polyphosphate and calcium citrate. NEW J CHEM 2022. [DOI: 10.1039/d2nj01706g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ideal bone-filling materials should be degradable and efficient for fast bone remodeling.
Collapse
Affiliation(s)
- Yalan Ouyang
- School of Chemical Engineering, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| | - Rongguang Zhang
- School of Chemical Engineering, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| | - Hong Chen
- College of Physics, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| | - Lichao Chen
- School of Chemical Engineering, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| | - Wenjing Xi
- College of Physics, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| | - Xiaodan Li
- College of Physics, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| | - Qiyi Zhang
- School of Chemical Engineering, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| | - Yonggang Yan
- College of Physics, Sichuan University, No. 24, Section 1, South First Ring Road, Chengdu 610065, P. R. China
| |
Collapse
|
6
|
Urquiza P, Solesio ME. Inorganic Polyphosphate, Mitochondria, and Neurodegeneration. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2022; 61:27-49. [PMID: 35697936 DOI: 10.1007/978-3-031-01237-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With an aging population, the presence of aging-associated pathologies is expected to increase within the next decades. Regrettably, we still do not have any valid pharmacological or non-pharmacological tools to prevent, revert, or cure these pathologies. The absence of therapeutical approaches against aging-associated pathologies can be at least partially explained by the relatively lack of knowledge that we still have regarding the molecular mechanisms underlying them, as well as by the complexity of their etiopathology. In fact, a complex number of changes in the physiological function of the cell has been described in all these aging-associated pathologies, including neurodegenerative disorders. Based on multiple scientific manuscripts produced by us and others, it seems clear that mitochondria are dysfunctional in many of these aging-associated pathologies. For example, mitochondrial dysfunction is an early event in the etiopathology of all the main neurodegenerative disorders, and it could be a trigger of many of the other deleterious changes which are present at the cellular level in these pathologies. While mitochondria are complex organelles and their regulation is still not yet entirely understood, inorganic polyphosphate (polyP) could play a crucial role in the regulation of some mitochondrial processes, which are dysfunctional in neurodegeneration. PolyP is a well-preserved biopolymer; it has been identified in every organism that has been studied. It is constituted by a series of orthophosphates connected by highly energetic phosphoanhydride bonds, comparable to those found in ATP. The literature suggests that the role of polyP in maintaining mitochondrial physiology might be related, at least partially, to its effects as a key regulator of cellular bioenergetics. However, further research needs to be conducted to fully elucidate the molecular mechanisms underlying the effects of polyP in the regulation of mitochondrial physiology in aging-associated pathologies, including neurodegenerative disorders. With a significant lack of therapeutic options for the prevention and/or treatment of neurodegeneration, the search for new pharmacological tools against these conditions has been continuous in past decades, even though very few therapeutic approaches have shown potential in treating these pathologies. Therefore, increasing our knowledge about the molecular mechanisms underlying the effects of polyP in mitochondrial physiology as well as its metabolism could place this polymer as a promising and innovative pharmacological target not only in neurodegeneration, but also in a wide range of aging-associated pathologies and conditions where mitochondrial dysfunction has been described as a crucial component of its etiopathology, such as diabetes, musculoskeletal disorders, and cardiovascular disorders.
Collapse
Affiliation(s)
- Pedro Urquiza
- Department of Biology, Rutgers University, Camden, NJ, USA
| | | |
Collapse
|
7
|
Liu K, Yu S, Ye L, Gao B. The Regenerative Potential of bFGF in Dental Pulp Repair and Regeneration. Front Pharmacol 2021; 12:680209. [PMID: 34354584 PMCID: PMC8329335 DOI: 10.3389/fphar.2021.680209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023] Open
Abstract
Regenerative endodontic therapy intends to induce the host’s natural wound-healing process, which can restore the vitality, immunity, and sensitivity of the inflammatory or necrotic pulp tissue destroyed by infection or trauma. Myriads of growth factors are critical in the processes of pulp repair and regeneration. Among the key regulatory factors are the fibroblast growth factors, which have turned out to be the master regulators of both organogenesis and tissue homeostasis. Fibroblast growth factors, a family composed of 22 polypeptides, have been used in tissue repair and regeneration settings, in conditions as diverse as burns, ulcers, bone-related diseases, and spinal cord injuries. Meanwhile, in dentistry, the basic fibroblast growth factor is the most frequently investigated. Thereby, the aim of this review is 2-fold: 1) foremost, to explore the underlying mechanisms of the bFGF in dental pulp repair and regeneration and 2) in addition, to shed light on the potential therapeutic strategies of the bFGF in dental pulp–related clinical applications.
Collapse
Affiliation(s)
- Keyue Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sijing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Wang X, Gawri R, Lei C, Lee J, Sowa G, Kandel R, Vo N. Inorganic polyphosphates stimulates matrix production in human annulus fibrosus cells. JOR Spine 2021; 4:e1143. [PMID: 34337332 PMCID: PMC8313173 DOI: 10.1002/jsp2.1143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/20/2021] [Accepted: 02/13/2021] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Ubiquitously found in all life forms, inorganic polyphosphates (polyP) are linear polymers of repeated orthophosphate units. Present in intervertebral disc tissue, polyP was previously shown to increase extracellular matrix production in nucleus pulposus (NP) cells. However, the effects of polyP on human annulus fibrosus (hAF) cell metabolism is not known. METHODS AND RESULTS Here, hAF cells cultured in the presence of 0.5 to 1 mM polyP, chain length 22 (polyP-22), showed an increase in glycosaminoglycan content, proteoglycan and collagen synthesis, and aggrecan and collagen type 1 gene expression. Gene expression level of matrix metalloproteinases 1 was reduced while matrix metalloproteinases 3 level was increased in hAF cells treated with 1 mM polyP. Adenosine triphosphate (ATP) synthesis was also significantly increased in hAF cell culture 72 hours after the exposure to 1 mM polyP-22. CONCLUSIONS PolyP thus has both anabolic and bioenergetic effects in AF cells, similar to that observed in NP cells. Together, these results suggest polyP as a potential energy source and a metabolic regulator of disc cells.
Collapse
Affiliation(s)
- Xiangjiang Wang
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopaedic SurgeryThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuanChina
- Department of OrthopedicsThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Rahul Gawri
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Pathology and Laboratory MedicineMount Sinai HospitalTorontoCanada
- Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - Changbin Lei
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopaedic SurgeryAffiliated Hospital of Xiangnan UniversityChenzhouChina
- Department of Clinical Medical Research CenterAffiliated Hospital of Xiangnan UniversityChenzhouChina
| | - Joon Lee
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Gwendolyn Sowa
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Physical Medicine and RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rita Kandel
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
- Pathology and Laboratory MedicineMount Sinai HospitalTorontoCanada
- Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
| | - Nam Vo
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of PathologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
9
|
Bird RP, Eskin NAM. The emerging role of phosphorus in human health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 96:27-88. [PMID: 34112356 DOI: 10.1016/bs.afnr.2021.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phosphorus, an essential nutrient, performs vital functions in skeletal and non-skeletal tissues and is pivotal for energy production. The last two decades of research on the physiological importance of phosphorus have provided several novel insights about its dynamic nature as a nutrient performing functions as a phosphate ion. Phosphorous also acts as a signaling molecule and induces complex physiological responses. It is recognized that phosphorus homeostasis is critical for health. The intake of phosphorus by the general population world-wide is almost double the amount required to maintain health. This increase is attributed to the incorporation of phosphate containing food additives in processed foods purchased by consumers. Research findings assessed the impact of excessive phosphorus intake on cells' and organs' responses, and highlighted the potential pathogenic consequences. Research also identified a new class of bioactive phosphates composed of polymers of phosphate molecules varying in chain length. These polymers are involved in metabolic responses including hemostasis, brain and bone health, via complex mechanism(s) with positive or negative health effects, depending on their chain length. It is amazing, that phosphorus, a simple element, is capable of exerting multiple and powerful effects. The role of phosphorus and its polymers in the renal and cardiovascular system as well as on brain health appear to be important and promising future research directions.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| | - N A Michael Eskin
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
10
|
Sun H, Zhang M, Liu M, Yu Y, Xu X, Li J. Fabrication of Double-Network Hydrogels with Universal Adhesion and Superior Extensibility and Cytocompatibility by One-Pot Method. Biomacromolecules 2020; 21:4699-4708. [PMID: 33075226 DOI: 10.1021/acs.biomac.0c00822] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogels, which demand simultaneously tailorable mechanical properties and excellent biocompatibility, act as a promoting material for biomedical applications, e.g., tissue engineering scaffolds, wound dressing materials, and cartilage substitutes. Double-network hydrogels (DN hydrogels) have attracted widespread concerns due to their extraordinary mechanical strength and toughness, while traditional DN hydrogels are limited in terms of their biofunctionality. Based on the DN hydrogels composed of agar and acrylamide (AM), we incorporate vinylphosphoric acid (VPA) into the network to obtain agar/PAM/PVPA hydrogels with universal adhesion and superior cytocompatibility. Meanwhile, the agar/PAM/PVPA hydrogel maintains its high strength and toughness. It is noted that the elongation of the agar/PAM/PVPA hydrogel (molar ratio of VPA is 2%) is up to 3418.9 ± 54.9%. The cell experiment also demonstrates that the addition of VPA in a proper concentration can promote cell adhesion and proliferation. Furthermore, the hydrogel has the potential to be used as 3D printing and injectable materials because of the thermoreversible sol-gel agar. The reported agar/PAM/PVPA hydrogel in this work with universal adhesion, excellent mechanical properties, and excellent cytocompatibility is able to be used for biomedical applications as scaffolds, wound dressing materials, or cartilage repair materials.
Collapse
Affiliation(s)
- Hui Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Min Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Meiling Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Phelipe Hatt L, Thompson K, Müller WEG, Stoddart MJ, Armiento AR. Calcium Polyphosphate Nanoparticles Act as an Effective Inorganic Phosphate Source during Osteogenic Differentiation of Human Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:5801. [PMID: 31752206 PMCID: PMC6887735 DOI: 10.3390/ijms20225801] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
The ability of bone-marrow-derived mesenchymal stem/stromal cells (BM-MSCs) to differentiate into osteoblasts makes them the ideal candidate for cell-based therapies targeting bone-diseases. Polyphosphate (polyP) is increasingly being studied as a potential inorganic source of phosphate for extracellular matrix mineralisation. The aim of this study is to investigate whether polyP can effectively be used as a phosphate source during the in vitro osteogenic differentiation of human BM-MSCs. Human BM-MSCs are cultivated under osteogenic conditions for 28 days with phosphate provided in the form of organic β-glycerolphosphate (BGP) or calcium-polyP nanoparticles (polyP-NP). Mineralisation is demonstrated using Alizarin red staining, cellular ATP content, and free phosphate levels are measured in both the cells and the medium. The effects of BGP or polyP-NP on alkaline phosphatase (ALP) activity and gene expression of a range of osteogenic-related markers are also assessed. PolyP-NP supplementation displays comparable effects to the classical BGP-containing osteogenic media in terms of mineralisation, ALP activity and expression of osteogenesis-associated genes. This study shows that polyP-NP act as an effective source of phosphate during mineralisation of BM-MSC. These results open new possibilities with BM-MSC-based approaches for bone repair to be achieved through doping of conventional biomaterials with polyP-NP.
Collapse
Affiliation(s)
- Luan Phelipe Hatt
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (L.P.H.); (K.T.); (M.J.S.)
| | - Keith Thompson
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (L.P.H.); (K.T.); (M.J.S.)
| | - Werner E. G. Müller
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany;
| | - Martin James Stoddart
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (L.P.H.); (K.T.); (M.J.S.)
| | - Angela Rita Armiento
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (L.P.H.); (K.T.); (M.J.S.)
| |
Collapse
|
12
|
Progress and Applications of Polyphosphate in Bone and Cartilage Regeneration. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5141204. [PMID: 31346519 PMCID: PMC6620837 DOI: 10.1155/2019/5141204] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/29/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Patients with bone and cartilage defects due to infection, tumors, and trauma are quite common. Repairing bone and cartilage defects is thus a major problem for clinicians. Autologous and artificial bone transplantations are associated with many challenges, such as limited materials and immune rejection. Bone and cartilage regeneration has become a popular research topic. Inorganic polyphosphate (polyP) is a widely occurring biopolymer with high-energy phosphoanhydride bonds that exists in organisms from bacteria to mammals. Much data indicate that polyP acts as a regulator of gene expression in bone and cartilage tissues and exerts morphogenetic effects on cells involved in bone and cartilage formation. Exposure of these cells to polyP leads to the increase of cytokines that promote the differentiation of mesenchymal stem cells into osteoblasts, accelerates the osteoblast mineralization process, and inhibits the differentiation of osteoclast precursors to functionally active osteoclasts. PolyP-based materials have been widely reported in in vivo and in vitro studies. This paper reviews the current cellular mechanisms and material applications of polyP in bone and cartilage regeneration.
Collapse
|
13
|
Suess PM, Chinea LE, Pilling D, Gomer RH. Extracellular Polyphosphate Promotes Macrophage and Fibrocyte Differentiation, Inhibits Leukocyte Proliferation, and Acts as a Chemotactic Agent for Neutrophils. THE JOURNAL OF IMMUNOLOGY 2019; 203:493-499. [PMID: 31160533 DOI: 10.4049/jimmunol.1801559] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
Fibrocytes are monocyte-derived fibroblast like cells that participate in wound healing, but little is known about what initiates fibrocyte differentiation. Blood platelets contain 60-100-mer polymers of phosphate groups called polyphosphate, and when activated, platelets induce blood clotting (the first step in wound healing) in part by the release of polyphosphate. We find that activated platelets release a factor that promotes fibrocyte differentiation. The factor is abolished by treating the crude platelet factor with the polyphosphate-degrading enzyme polyphosphatase, and polyphosphate promotes fibrocyte differentiation. Macrophages and recruited neutrophils also potentiate wound healing, and polyphosphate also promotes macrophage differentiation and induces chemoattraction of neutrophils. In support of the hypothesis that polyphosphate is a signal that affects leukocytes, we observe saturable binding of polyphosphate to these cells. Polyphosphate also inhibits leukocyte proliferation and proteasome activity. These results suggest new roles for extracellular polyphosphate as a mediator of wound healing and inflammation and also provide a potential link between platelet activation and the progression of fibrosing diseases.
Collapse
Affiliation(s)
- Patrick M Suess
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Luis E Chinea
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843
| |
Collapse
|
14
|
Du Y, Han Z, Wang X, Wan C. [A fluorometric method for direct detection of inorganic polyphosphate in enterohemorrhagic Escherichia coli O157:H7]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:344-350. [PMID: 31068308 DOI: 10.12122/j.issn.1673-4254.2019.03.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To establish a quantitative fluorescent detection method using DAPI for detecting inorganic polyphosphate (polyP) in enterohemorrhagic Escherichia coli (EHEC) O157:H7. METHODS The DNA of wild-type strain of EHEC O157:H7 was extracted and purified. DAPI was combined with the extracted DNA and polyP45 standards for measurement of the emission spectra at 360 nm and 415 nm fluorescence spectrophotometry. The fluorescence of DAPI-DNA and DAPI-polyP complexes was detected by fluorescence confocal microscopy to verify the feasibility of DAPI for detecting polyP. To determine the optimal pretreatment protocol for improving the cell membrane permeability, the effects of 6 pretreatments of the cells (namely snap-freezing in liquid nitrogen, freezing at -80 ℃, and freezing at -20 ℃, all followed by thawing at room temperature; heating at 60 ℃ for 10 min; treatment with Triton x-100; and placement at room temperature) were tested on the survival of EHEC O157:H7. The fluorescence values of the treated bacteria were then measured after DAPI staining. A standard calibration curve of polyP standard was established for calculation of the content of polyP in the live cells of wildtype EHEC strain and two ppk1 mutant strains. RESULTS At the excitation wavelength of 360 nm, the maximum emission wavelength of DAPI-DNA was 460 nm, and the maximum emission wavelength of DAPI-polyP was 550 nm at the excitation wavelength of 415 nm. The results of confocal microscopy showed that 405 nm excitation elicited blue fluorescence from DAPIDNA complex with the emission wavelength of 425-475 nm; excitation at 488 nm elicited green fluorescence from the DAPIpolyP complex with the emission wavelength of 500-560 nm of. Snap-freezing of cells at -80 ℃ followed by thawing at room temperature was the optimal pretreatment to promote DAPI penetration into the live cells. The standard calibration curve was Y=1849X+127.5 (R2=0.991) was used for determining polyP content in the EHEC strains. The experimental results showed that wild-type strain had significantly higher polyP content than the mutant strains with ppk1 deletion. CONCLUSIONS We established a convenient quantitative method for direct and reliable detection polyP content to facilitate further study of polyP and its catalytic enzymes in EHEC O157:H7.
Collapse
Affiliation(s)
- Yanli Du
- Department Medical Technology and Nursing, Shenzhen Polytechnic Institute, Shenzhen 518036, China
| | - Zongli Han
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xiangyu Wang
- Biosafety Level-3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China.,Department of Gastroenterology, First Affiliated Hospital of
| | - Chengsong Wan
- Biosafety Level-3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
15
|
Suess PM, Tang Y, Gomer RH. The putative G protein-coupled receptor GrlD mediates extracellular polyphosphate sensing in Dictyostelium discoideum. Mol Biol Cell 2019; 30:1118-1128. [PMID: 30785840 PMCID: PMC6724513 DOI: 10.1091/mbc.e18-10-0686] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Five or more orthophosphates bound together by high-energy phosphoanhydride bonds are highly ubiquitous inorganic molecules called polyphosphate. Polyphosphate acts as a signaling molecule eliciting a number of responses in eukaryotic cells, but the mechanisms mediating these effects are poorly understood. Proliferating Dictyostelium discoideum cells accumulate extracellular polyphosphate. At extracellular concentrations similar to those observed in stationary phase cells, polyphosphate inhibits proteasome activity and proliferation, and induces aggregation. Here we identify GrlD as a putative G protein–coupled receptor that mediates binding of extracellular polyphosphate to the cell surface. Cells lacking GrlD do not respond to polyphosphate-induced proteasome inhibition, aggregation, or proliferation inhibition. Polyphosphate also elicits differential effects on cell-substratum adhesion and cytoskeletal F-actin levels based on nutrient availability, and these effects were also mediated by GrlD. Starving cells also accumulate extracellular polyphosphate. Starved cells treated with exopolyphosphatase failed to aggregate effectively, suggesting that polyphosphate also acts as a signaling molecule during starvation-induced development of Dictyostelium. Together, these results suggest that a eukaryotic cell uses a G protein–coupled receptor to mediate the sensing and response to extracellular polyphosphate.
Collapse
Affiliation(s)
- Patrick M Suess
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Yu Tang
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| |
Collapse
|
16
|
Long-chain polyphosphate in osteoblast matrix vesicles: Enrichment and inhibition of mineralization. Biochim Biophys Acta Gen Subj 2018; 1863:199-209. [PMID: 30312769 DOI: 10.1016/j.bbagen.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/24/2018] [Accepted: 10/05/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Inorganic polyphosphate (polyP) is a fundamental and ubiquitous molecule in prokaryotes and eukaryotes. PolyP has been found in mammalian tissues with particularly high levels of long-chain polyP in bone and cartilage where critical questions remain as to its localization and function. Here, we investigated polyP presence and function in osteoblast-like SaOS-2 cells and cell-derived matrix vesicles (MVs), the initial sites of bone mineral formation. METHODS PolyP was quantified by 4',6-diamidino-2-phenylindole (DAPI) fluorescence and characterized by enzymatic methods coupled to urea polyacrylamide gel electrophoresis. Transmission electron microscopy and confocal microscopy were used to investigate polyP localization. A chicken embryo cartilage model was used to investigate the effect of polyP on mineralization. RESULTS PolyP increased in concentration as SaOS-2 cells matured and mineralized. Particularly high levels of polyP were observed in MVs. The average length of MV polyP was determined to be longer than 196 Pi residues by gel chromatography. Electron micrographs of MVs, stained by two polyP-specific staining approaches, revealed polyP localization in the vicinity of the MV membrane. Additional extracellular polyP binds to MVs and inhibits MV-induced hydroxyapatite formation. CONCLUSION PolyP is highly enriched in matrix vesicles and can inhibit apatite formation. PolyP may be hydrolysed to phosphate for further mineralization in the extracellular matrix. GENERAL SIGNIFICANCE PolyP is a unique yet underappreciated macromolecule which plays a critical role in extracellular mineralization in matrix vesicles.
Collapse
|
17
|
Lee WD, Gawri R, Shiba T, Ji AR, Stanford WL, Kandel RA. Simple Silica Column-Based Method to Quantify Inorganic Polyphosphates in Cartilage and Other Tissues. Cartilage 2018; 9:417-427. [PMID: 28357919 PMCID: PMC6139591 DOI: 10.1177/1947603517690856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Inorganic polyphosphates (polyP) play a multitude of roles in mammalian biology. PolyP research is hindered by the lack of a simple and sensitive quantification method. The aim of this study was to develop a robust method for quantifying the low levels of polyP in mammalian tissue such as cartilage, which is rich in macromolecules that interfere with its determination. DESIGN Native and in vitro formed tissues were digested with proteinase K to release sequestrated polyP. The tissue digest was loaded on to silica spin columns, followed by elution of bound polyP and various treatments were assessed to minimize non-polyP fluorescence. The eluent was then quantified for polyP content using fluorometry based on DAPI (4',6-diamidino-2-phenylindole) fluorescence shift occurring with polyP. RESULTS Proteinase K pretreatment reduced the inhibitory effect of proteins on polyP recovery. The eluent was contaminated with nucleic acids and glycosaminoglycans, which cause extraneous fluorescence signals. These were then effectively eliminated by nucleases treatment and addition of concentrated Tris buffer. PolyP levels were quantified and recovery ratio determined using samples spiked with a known amount of polyP. This silica spin column method was able to recover at least 80% of initially loaded polyP, and detect as little as 10-10 mol. CONCLUSIONS This sensitive, reproducible, easy to do method of quantifying polyP will be a useful tool for investigation of polyP biology in mammalian cells and tissues. Although the protocol was developed for mammalian tissues, this method should be able to quantify polyP in most biological sources, including fluid samples such as blood and serum.
Collapse
Affiliation(s)
- Whitaik David Lee
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Rahul Gawri
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Ae-Ri Ji
- Centre for Modeling Human Disease, The Centre for Phenogenomics, Toronto, Ontario, Canada
| | - William L. Stanford
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada,Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Ontario, Canada,Department of Cellular & Molecular Medicine and Biochemistry, University of Ottawa, Ottawa, Ontario, Canada,Department of Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Rita A. Kandel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada,Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada,Rita Kandel, Pathology & Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Room 6-500-1, Toronto, Ontario, M5G 1X5, Canada.
| |
Collapse
|
18
|
Tsikandelova R, Mladenov P, Planchon S, Kalenderova S, Praskova M, Mihaylova Z, Stanimirov P, Mitev V, Renaut J, Ishkitiev N. Proteome response of dental pulp cells to exogenous FGF8. J Proteomics 2018; 183:14-24. [PMID: 29758290 DOI: 10.1016/j.jprot.2018.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/17/2018] [Accepted: 05/02/2018] [Indexed: 12/14/2022]
Abstract
FGF8 specifies early tooth development by directing the migration of the early tooth founder cells to the site of tooth emergence. To date the effect of the FGF8 in adult dental pulp has not been studied. We have assessed the regenerative potential of FGF8 by evaluating changes in the proteome landscape of dental pulp following short- and long-term exposure to recombinant FGF8 protein. In addition, we carried out qRT PCR analysis to determine extracellular/adhesion gene marker expression and assessed cell proliferation and mineralization in response to FGF8 treatment. 2D and mass spectrometry data showed differential expression of proteins implicated in cytoskeleton/ECM remodeling and migration, cell proliferation and odontogenic differentiation as evidenced by the upregulation of gelsolin, moesin, LMNA, WDR1, PLOD2, COPS5 and downregulation of P4HB. qRT PCR showed downregulation of proteins involved in cell-matrix adhesion such as ADAMTS8, LAMB3 and ANOS1 and increased expression of the angiogenesis marker PECAM1. We have observed that, FGF8 treatment was able to boost dental pulp cell proliferation and to enhance dental pulp mineralization. Collectively, our data suggest that, FGF8 treatment could promote endogenous healing of the dental pulp via recruitment of dental pulp progenitors as well as by promoting their angiogenic and odontogenic differentiation. SIGNIFICANCE Dental pulp cells (DP) have been studied extensively for the purposes of mineralized tissue repair, particularly for the reconstruction of hard and soft tissue maxillofacial defects. Canonical FGF signaling has been implicated throughout multiple stages of tooth development by regulating cell proliferation, differentiation, survival as well as cellular migration. FGF8 expression is indispensible for normal tooth development and particularly for the migration of early tooth progenitors to the sites of tooth emergence. The present study provides proteome and qRT PCR data with regard to the future application and biological relevance of FGF8 in dental regenerative medicine. AUTHORS WITH ORCID Rozaliya Tsikandelova - 0000-0003-0178-3767 Zornitsa Mihaylova - 0000-0003-1748-4489 Sébastien Planchon - 0000-0002-0455-0574 Nikolay Ishkitiev - 0000-0002-4351-5579.
Collapse
Affiliation(s)
- Rozaliya Tsikandelova
- Medical University Sofia, Dept. of Medical Chemistry and Biochemistry, 2 Zdrave Str. Sofia, 1431, Bulgaria
| | - Petko Mladenov
- Agrobioinstitute, Agricultural Academy, Dr. Tsankov Blvd 8, 1164 Sofia, Bulgaria
| | - Sébastien Planchon
- Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Silvia Kalenderova
- Medical University Sofia, Dept. of Medical Chemistry and Biochemistry, 2 Zdrave Str. Sofia, 1431, Bulgaria
| | - Maria Praskova
- Medical University Sofia, Dept. of Medical Chemistry and Biochemistry, 2 Zdrave Str. Sofia, 1431, Bulgaria
| | - Zornitsa Mihaylova
- Medical University Sofia, Dept. of Oral and Maxillofacial Surgery, 1 G. Sofiyski str. Sofia, 1431, Bulgaria
| | - Pavel Stanimirov
- Medical University Sofia, Dept. of Oral and Maxillofacial Surgery, 1 G. Sofiyski str. Sofia, 1431, Bulgaria
| | - Vanyo Mitev
- Medical University Sofia, Dept. of Medical Chemistry and Biochemistry, 2 Zdrave Str. Sofia, 1431, Bulgaria
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
| | - Nikolay Ishkitiev
- Medical University Sofia, Dept. of Medical Chemistry and Biochemistry, 2 Zdrave Str. Sofia, 1431, Bulgaria.
| |
Collapse
|
19
|
Lui ELH, Ao CKL, Li L, Khong ML, Tanner JA. Inorganic polyphosphate triggers upregulation of interleukin 11 in human osteoblast-like SaOS-2 cells. Biochem Biophys Res Commun 2016; 479:766-771. [PMID: 27693781 DOI: 10.1016/j.bbrc.2016.09.137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 02/03/2023]
Abstract
Polyphosphate (polyP) is abundant in bone but its roles in signaling and control of gene expression remain unclear. Here, we investigate the effect of extracellular polyP on proliferation, migration, apoptosis, gene and protein expression in human osteoblast-like SaOS-2 cells. Extracellular polyP promoted SaOS-2 cell proliferation, increased rates of migration, inhibited apoptosis and stimulated the rapid phosphorylation of extracellular-signal-regulated kinase (ERK) directly through basic fibroblast growth factor receptor (bFGFR). cDNA microarray revealed that polyP induced significant upregulation of interleukin 11 (IL-11) at both RNA and protein levels.
Collapse
Affiliation(s)
- Eric Lik-Hang Lui
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Carl Ka-Leong Ao
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Lina Li
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Mei-Li Khong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Julian Alexander Tanner
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
20
|
Wu X, Kang H, Liu X, Gao J, Zhao K, Ma Z. Serum and xeno-free, chemically defined, no-plate-coating-based culture system for mesenchymal stromal cells from the umbilical cord. Cell Prolif 2016; 49:579-88. [PMID: 27492579 DOI: 10.1111/cpr.12279] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/25/2016] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Umbilical cord mesenchymal stromal cells (UCMSCs) can be considered to become a new gold standard for MSC-based therapies. A serum and xeno-free, chemically defined and no-plate-coating-based culture system will greatly facilitate development of robust, clinically acceptable bioprocesses for reproducibly generating quality-assured UCMSCs. MATERIALS AND METHODS In this study, we report for the first time, such a serum-free, xeno-free, completely chemically defined and no-plate-coating-based culture system for the isolation and expansion of UCMSCs, whose biological characteristics were evaluated and compared with serum-containing medium (SCM) methods. RESULTS This culture system not only supported UCMSC primary cultures but also allowed for their expansion at low seeding density. Compared to SCM, UCMSCs in SFM exhibited (i) higher proliferative and colony-forming capacities; (ii) distinctly different morphologies; (iii) similar phenotype; (iv) similar pluripotency-associated marker expression; (v) superior osteogenic, but reduced adipogenic differentiation capacitities. In addition, UCMSCs cultured in SFM retained similar immunomodulatory properties to those in SCM. CONCLUSIONS Our findings demonstrate the feasibility of isolating and expanding UCMSCs in a completely serum-free, xeno-free, chemically defined and no-plate-coating-based culture system and represent an important step forward for development of robust, clinically acceptable bioprocesses for UCMSCs. Further, this provides a superior study platform for UCMSCs biology in a controlled environment.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Department of pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Technology, Beijing JingMeng Stem Cell Technology. Co. Ltd., Beijing, China
| | - Huiyan Kang
- Department of Technology, Beijing JingMeng Stem Cell Technology. Co. Ltd., Beijing, China
| | - Xuemin Liu
- Department of Technology, Beijing JingMeng Stem Cell Technology. Co. Ltd., Beijing, China
| | - Jin Gao
- Beijing Institute of Life Science Translational Medicine Research Center, Beijing, China.,Center for Tissue Engineering and Technology of Inner Mongolia, Hohhot, Inner Mongolia, China
| | - Kuijun Zhao
- Department of pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhijie Ma
- Department of pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
21
|
Zhang C, Li Q, Deng S, Fu W, Tang X, Chen G, Qin T, Li J. bFGF- and CaPP-Loaded Fibrin Clots Enhance the Bioactivity of the Tendon-Bone Interface to Augment Healing. Am J Sports Med 2016; 44:1972-82. [PMID: 27159301 DOI: 10.1177/0363546516637603] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Tendon-to-bone healing is a complex and slow process, and the rate of poor healing remains high. In recent years, several new strategies have been developed that enhance tendon-to-bone healing by increasing the bioactivity. Fibrin clots have been widely used to improve tissue healing and tissue engineering, HYPOTHESIS Modified fibrin clots can improve the bioactivity of the tendon-bone interface and histological appearance. STUDY DESIGN Controlled laboratory study. METHODS A total of 27 male New Zealand White rabbits were used. Of these, 3 were used for cell isolation, and the remaining 24 rabbits were divided into 2 groups (12 per group) for an in vivo partial patellectomy study. The setting time, degradation time, and basic fibroblast growth factor (bFGF) and ceramide-activated protein phosphatase (CaPP) release kinetics of bFGF- and CaPP-loaded fibrin clots were modified appropriately for early tendon-to-bone healing. In an in vitro experiment, the bFGF- and CaPP-loaded fibrin clots were assessed for cell migration and proliferation by microscopy, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, and DAPI (4',6-diamidino-2-phenylindole) assay. Quantitative real-time reverse transcription polymerase chain reaction and a Western blot assay were performed to test for an induction effect of the bFGF- and CaPP-loaded fibrin clots. Finally, for the in vivo experiment, the rabbits were divided into 2 treatment groups: one with bFGF- and CaPP-loaded fibrin clots and one without bFGF- and CaPP-loaded fibrin clots after partial patellectomy in patella-patellar tendon sutured sites. A histological evaluation was performed at 2, 4, and 6 weeks after surgery. RESULTS The sitting time and degradation time of the bFGF- and CaPP-loaded fibrin clots were set at 15 seconds and more than 2 weeks, respectively, and the porosity was minimized to achieve the highest levels of cell migration and growth. In the bFGF-CaPP group of the in vitro experiment, cell proliferation increased to a greater extent relative to the control group (P < .05); the mRNA expression of osteopontin, alkaline phosphatase, runt-related transcription factor 2, vascular endothelial growth factor, and collagen type I was upregulated (P < .05); and the relative protein expression of these factors was enhanced (P < .05). In vivo, hematoxylin and eosin staining showed that the tendon-to-bone connections were more mature and more arranged when treated with bFGF- and CaPP-loaded fibrin clots than when untreated, and the histological scores were higher. CONCLUSION bFGF- and CaPP-loaded fibrin clots enhanced cell migration and proliferation and the expression of related genes and proteins, which increased the bioactivity of the tendon-bone interface and resulted in the histological improvement of tendon-to-bone healing. CLINICAL RELEVANCE As fibrin clots have already been used in clinical practice, bFGF- and CaPP-loaded fibrin clots can be further used to augment healing in the early stages of tendon-to-bone healing.
Collapse
Affiliation(s)
- Chenghao Zhang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Li
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Senlin Deng
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Weili Fu
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Tang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Chen
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tingwu Qin
- Institute of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Li
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Zhang X, Ke X, Pu Q, Yuan Y, Yang W, Luo X, Jiang Q, Hu X, Gong Y, Tang K, Su X, Liu L, Zhu W, Wei Y. MicroRNA-410 acts as oncogene in NSCLC through downregulating SLC34A2 via activating Wnt/β-catenin pathway. Oncotarget 2016; 7:14569-85. [PMID: 26910912 PMCID: PMC4924736 DOI: 10.18632/oncotarget.7538] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/31/2015] [Indexed: 02/05/2023] Open
Abstract
SLC34A2 had been reported to be down-regulated in human NSCLC cells and patient tissues, and played a significant role in lung cancer. However, the mechanism of its unusual expressionin NSCLC has not been fully elucidated. In present study, we identified SLC34A2 was a direct target of miR-410 and could be inhibited by miR-410 transcriptionally and post-transcriptionally. MiR-410 promoted the growth, invasion and migration of NSCLC cells in vitro. An orthotopic xenograft nude mouse model further affirmed that miR-410 promoted NSCLC cell growth and metastasis in vivo. Moreover, restoring SLC34A2 expression effectively reversed the miR-410-mediated promotion of cell growth, invasion and migration in NSCLC cells. In addition, miR-410high /SLC34A2low expression signature frequently existed in NSCLC cells and tumor tissues. MiR-410 significantly increased the expression of DVL2 and β-catenin protein while decreased that of Gsk3β protein of Wnt/β-catenin signaling pathway, while SLC34A2 partly blocked the effects of miR-410 on those protein expressions. Hence, our data for the first time delineated that unusual expression of SLC34A2 was modulated by miR-410, and miR-410 might positivelycontribute to the tumorigenesis and development of NSCLC by down-regulating SLC34A2 and activating Wnt/β-catenin signaling pathway. MiR-410 might be a new potential therapeutic target for NSCLC.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/secondary
- Adult
- Aged
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Large Cell/genetics
- Carcinoma, Large Cell/metabolism
- Carcinoma, Large Cell/secondary
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/secondary
- Cell Cycle
- Cell Movement
- Cell Proliferation
- Female
- Follow-Up Studies
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Metastasis
- Neoplasm Staging
- Prognosis
- Sodium-Phosphate Cotransporter Proteins, Type IIb/antagonists & inhibitors
- Sodium-Phosphate Cotransporter Proteins, Type IIb/genetics
- Sodium-Phosphate Cotransporter Proteins, Type IIb/metabolism
- Survival Rate
- Tumor Cells, Cultured
- Wnt1 Protein/genetics
- Wnt1 Protein/metabolism
- Xenograft Model Antitumor Assays
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Xuechao Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Xixian Ke
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Qiang Pu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yue Yuan
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Weihan Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Xinmei Luo
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Qianqian Jiang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Xueting Hu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yi Gong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Kui Tang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Wen Zhu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
23
|
Wang X, Schröder HC, Müller WEG. Polyphosphate as a metabolic fuel in Metazoa: A foundational breakthrough invention for biomedical applications. Biotechnol J 2016; 11:11-30. [PMID: 26356505 DOI: 10.1002/biot.201500168] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/24/2015] [Accepted: 08/19/2015] [Indexed: 12/17/2022]
Abstract
In animals, energy-rich molecules like ATP are generated in the intracellular compartment from metabolites, e.g. glucose, taken up by the cells. Recent results revealed that inorganic polyphosphates (polyP) can provide an extracellular system for energy transport and delivery. These polymers of multiple phosphate units, linked by high-energy phosphoanhydride bonds, use blood platelets as transport vehicles to reach their target cells. In this review it is outlined how polyP affects cell metabolism. It is discussed that polyP influences cell activity in a dual way: (i) as a metabolic fuel transferring metabolic energy through the extracellular space; and (ii) as a signaling molecule that amplifies energy/ATP production in mitochondria. Several metabolic pathways are triggered by polyP, among them biomineralization/hydroxyapatite formation onto bone cells. The accumulation of polyP in the platelets allows long-distance transport of the polymer in the extracellular space. The discovery of polyP as metabolic fuel and signaling molecule initiated the development of novel techniques for encapsulation of polyP into nanoparticles. They facilitate cellular uptake of the polymer by receptor-mediated endocytosis and allow the development of novel strategies for therapy of metabolic diseases associated with deviations in energy metabolism or mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Rheinland-Pfalz, Germany.
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Rheinland-Pfalz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Rheinland-Pfalz, Germany.
| |
Collapse
|
24
|
Ariganello MB, Omelon S, Variola F, Wazen RM, Moffatt P, Nanci A. Osteogenic cell cultures cannot utilize exogenous sources of synthetic polyphosphate for mineralization. J Cell Biochem 2015; 115:2089-102. [PMID: 25043819 DOI: 10.1002/jcb.24886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 07/10/2014] [Indexed: 11/08/2022]
Abstract
Phosphate is critical for mineralization and deficiencies in the regulation of free phosphate lead to disease. Inorganic polyphosphates (polyPs) may represent a physiological source of phosphate because they can be hydrolyzed by biological phosphatases. To investigate whether exogenous polyP could be utilized for mineral formation, mineralization was evaluated in two osteogenic cell lines, Saos-2 and MC3T3, expressing different levels of tissue non-specific alkaline phosphatase (tnALP). The role of tnALP was further explored by lentiviral-mediated overexpression in MC3T3 cells. When cells were cultured in the presence of three different phosphate sources, there was a strong mineralization response with β-glycerophosphate (βGP) and orthophosphate (Pi) but none of the cultures sustained mineralization in the presence of polyP (neither chain length 17-Pi nor 42-Pi). Even in the presence of mineralizing levels of phosphate, low concentrations of polyP (50 μM) were sufficient to inhibit mineral formation. Energy-dispersive X-ray spectroscopy confirmed the presence of apatite-like mineral deposits in MC3T3 cultures supplemented with βGP, but not in those with polyP. While von Kossa staining was consistent with the presence or absence of mineral, an unusual Alizarin staining was obtained in polyP-treated MC3T3 cultures. This staining pattern combined with low Ca:P ratios suggests the persistence of Ca-polyP complexes, even with high residual ALP activity. In conclusion, under standard culture conditions, exogenous polyP does not promote mineral deposition. This is not due to a lack of active ALP, and unless conditions that favor significant processing of polyP are achieved, its mineral inhibitory capacity predominates.
Collapse
Affiliation(s)
- Marianne B Ariganello
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, P.O. Box 6128 Station Centre-Ville, Montréal Québec, Canada, H3C 3J7
| | | | | | | | | | | |
Collapse
|
25
|
Smith SA, Morrissey JH. 2013 scientific sessions Sol Sherry distinguished lecture in thrombosis: polyphosphate: a novel modulator of hemostasis and thrombosis. Arterioscler Thromb Vasc Biol 2015; 35:1298-305. [PMID: 25908762 PMCID: PMC4441552 DOI: 10.1161/atvbaha.115.301927] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/10/2015] [Indexed: 11/16/2022]
Abstract
Polyphosphate is a highly anionic, linear polymer of inorganic phosphates that is found throughout biology, including in many infectious microorganisms. Recently, polyphosphate was discovered to be stored in a subset of the secretory granules of human platelets and mast cells, and to be secreted on activation of these cells. Work from our laboratory and others has now shown that polyphosphate is a novel, potent modulator of the blood clotting and complement systems that likely plays roles in hemostasis, thrombosis, inflammation, and host responses to pathogens. Therapeutics targeting polyphosphate may have the potential to limit thrombosis with fewer hemorrhagic complications than conventional anticoagulant drugs that target essential proteases of the blood clotting cascade.
Collapse
Affiliation(s)
- Stephanie A Smith
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign
| | - James H Morrissey
- From the Department of Biochemistry, University of Illinois at Urbana-Champaign.
| |
Collapse
|
26
|
Bae WJ, Jue SS, Kim SY, Moon JH, Kim EC. Effects of Sodium Tri- and Hexametaphosphate on Proliferation, Differentiation, and Angiogenic Potential of Human Dental Pulp Cells. J Endod 2015; 41:896-902. [DOI: 10.1016/j.joen.2015.01.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 01/23/2023]
|
27
|
Abstract
PURPOSE OF REVIEW Polyphosphate (polyP) is an inorganic polymer that has recently been shown to be secreted by activated platelets. It is a potent modulator of the blood clotting and complement systems in hemostasis, thrombosis, and inflammation. RECENT FINDINGS This review focuses on what is currently known about which blood cells secrete polyP, and the roles that polyP plays in modulating the blood clotting and complement systems in health and disease. SUMMARY PolyP is a novel player in normal hemostasis and likely plays roles in thrombotic diseases and also in host responses to pathogens. It is also potentially a drug target, as its contributions to hemostasis appear to be to accelerate blood clotting but are not required for blood clotting to happen.
Collapse
|
28
|
Wu ATH, Aoki T, Sakoda M, Ohta S, Ichimura S, Ito T, Ushida T, Furukawa KS. Enhancing Osteogenic Differentiation of MC3T3-E1 Cells by Immobilizing Inorganic Polyphosphate onto Hyaluronic Acid Hydrogel. Biomacromolecules 2014; 16:166-73. [DOI: 10.1021/bm501356c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | | | - Megumu Sakoda
- Department
of Applied Bioscience, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | | | - Shigetoshi Ichimura
- Department
of Applied Bioscience, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | | | | | | |
Collapse
|
29
|
Abstract
Stem cell transplantation therapy has emerged as a promising regenerative medicine for ischemic stroke and other neurodegenerative disorders. However, many issues and problems remain to be resolved before successful clinical applications of the cell-based therapy. To this end, some recent investigations have sought to benefit from well-known mechanisms of ischemic/hypoxic preconditioning. Ischemic/hypoxic preconditioning activates endogenous defense mechanisms that show marked protective effects against multiple insults found in ischemic stroke and other acute attacks. As in many other cell types, a sub-lethal hypoxic exposure significantly increases the tolerance and regenerative properties of stem cells and progenitor cells. So far, a variety of preconditioning triggers have been tested on different stem cells and progenitor cells. Preconditioned stem cells and progenitors generally show much better cell survival, increased neuronal differentiation, enhanced paracrine effects leading to increased trophic support, and improved homing to the lesion site. Transplantation of preconditioned cells helps to suppress inflammatory factors and immune responses, and promote functional recovery. Although the preconditioning strategy in stem cell therapy is still an emerging research area, accumulating information from reports over the last few years already indicates it as an attractive, if not essential, prerequisite for transplanted cells. It is expected that stem cell preconditioning and its clinical applications will attract more attention in both the basic research field of preconditioning as well as in the field of stem cell translational research. This review summarizes the most important findings in this active research area, covering the preconditioning triggers, potential mechanisms, mediators, and functional benefits for stem cell transplant therapy.
Collapse
Affiliation(s)
- Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
30
|
Dedkova EN, Blatter LA. Role of β-hydroxybutyrate, its polymer poly-β-hydroxybutyrate and inorganic polyphosphate in mammalian health and disease. Front Physiol 2014; 5:260. [PMID: 25101001 PMCID: PMC4102118 DOI: 10.3389/fphys.2014.00260] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/19/2014] [Indexed: 12/14/2022] Open
Abstract
We provide a comprehensive review of the role of β-hydroxybutyrate (β-OHB), its linear polymer poly-β-hydroxybutyrate (PHB), and inorganic polyphosphate (polyP) in mammalian health and disease. β-OHB is a metabolic intermediate that constitutes 70% of ketone bodies produced during ketosis. Although ketosis has been generally considered as an unfavorable pathological state (e.g., diabetic ketoacidosis in type-1 diabetes mellitus), it has been suggested that induction of mild hyperketonemia may have certain therapeutic benefits. β-OHB is synthesized in the liver from acetyl-CoA by β-OHB dehydrogenase and can be used as alternative energy source. Elevated levels of PHB are associated with pathological states. In humans, short-chain, complexed PHB (cPHB) is found in a wide variety of tissues and in atherosclerotic plaques. Plasma cPHB concentrations correlate strongly with atherogenic lipid profiles, and PHB tissue levels are elevated in type-1 diabetic animals. However, little is known about mechanisms of PHB action especially in the heart. In contrast to β-OHB, PHB is a water-insoluble, amphiphilic polymer that has high intrinsic viscosity and salt-solvating properties. cPHB can form non-specific ion channels in planar lipid bilayers and liposomes. PHB can form complexes with polyP and Ca(2+) which increases membrane permeability. The biological roles played by polyP, a ubiquitous phosphate polymer with ATP-like bonds, have been most extensively studied in prokaryotes, however polyP has recently been linked to a variety of functions in mammalian cells, including blood coagulation, regulation of enzyme activity in cancer cells, cell proliferation, apoptosis and mitochondrial ion transport and energy metabolism. Recent evidence suggests that polyP is a potent activator of the mitochondrial permeability transition pore in cardiomyocytes and may represent a hitherto unrecognized key structural and functional component of the mitochondrial membrane system.
Collapse
Affiliation(s)
- Elena N Dedkova
- Department of Molecular Biophysics and Physiology, Rush University Medical Center Chicago, IL, USA
| | - Lothar A Blatter
- Department of Molecular Biophysics and Physiology, Rush University Medical Center Chicago, IL, USA
| |
Collapse
|
31
|
Stotz SC, Scott LO, Drummond-Main C, Avchalumov Y, Girotto F, Davidsen J, Gómez-Gárcia MR, Rho JM, Pavlov EV, Colicos MA. Inorganic polyphosphate regulates neuronal excitability through modulation of voltage-gated channels. Mol Brain 2014; 7:42. [PMID: 24886461 PMCID: PMC4061113 DOI: 10.1186/1756-6606-7-42] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/26/2014] [Indexed: 01/06/2023] Open
Abstract
Background Inorganic polyphosphate (polyP) is a highly charged polyanion capable of interacting with a number of molecular targets. This signaling molecule is released into the extracellular matrix by central astrocytes and by peripheral platelets during inflammation. While the release of polyP is associated with both induction of blood coagulation and astrocyte extracellular signaling, the role of secreted polyP in regulation of neuronal activity remains undefined. Here we test the hypothesis that polyP is an important participant in neuronal signaling. Specifically, we investigate the ability of neurons to release polyP and to induce neuronal firing, and clarify the underlying molecular mechanisms of this process by studying the action of polyP on voltage gated channels. Results Using patch clamp techniques, and primary hippocampal and dorsal root ganglion cell cultures, we demonstrate that polyP directly influences neuronal activity, inducing action potential generation in both PNS and CNS neurons. Mechanistically, this is accomplished by shifting the voltage sensitivity of NaV channel activation toward the neuronal resting membrane potential, the block KV channels, and the activation of CaV channels. Next, using calcium imaging we found that polyP stimulates an increase in neuronal network activity and induces calcium influx in glial cells. Using in situ DAPI localization and live imaging, we demonstrate that polyP is naturally present in synaptic regions and is released from the neurons upon depolarization. Finally, using a biochemical assay we demonstrate that polyP is present in synaptosomes and can be released upon their membrane depolarization by the addition of potassium chloride. Conclusions We conclude that polyP release leads to increased excitability of the neuronal membrane through the modulation of voltage gated ion channels. Together, our data establishes that polyP could function as excitatory neuromodulator in both the PNS and CNS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Michael A Colicos
- Department of Physiology & Pharmacology and the Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
32
|
Koyasu M, Shiba T, Kawazoe Y, Manabe A, Miyazaki T. Ultraphosphate, a potent stain control agent that is effective for both stain removal and prevention of stain deposition. Dent Mater J 2014; 33:252-60. [PMID: 24598236 DOI: 10.4012/dmj.2013-093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Polyphosphate is a phosphate polymer which is effective for stain removal and prevention of stain deposition. Ultraphosphate belongs to the polyphosphate group and has a highly branched mesh-like structure. To evaluate stain control ability of ultraphosphate, we used HAP powder, glass-ionomer cement and detached human teeth for models of in vitro stain control experiments. When using HAP powder, the stain removal ability of ultraphosphate was the highest among common chelating agents. In addition, ultraphosphate efficiently removed stain and prevented stain deposition on glass-ionomer cement at 20°C and 37°C. Finally, ultraphosphate removed coffee stain from human teeth surface efficiently and the color difference (ΔE*ab) before and after ultraphosphate treatment was changed dramatically from 59.4 to 8.3. Similarly, the ΔE*ab value of human teeth treated with ultraphosphate before coffee treatment was only 9.9, while the value without ultraphosphate pre-treatment was 21.2. These results indicate that ultraphosphate is a potent agent for stain control.
Collapse
Affiliation(s)
- Masahiro Koyasu
- Department of Conservative Dentistry, Division of Aesthetic Dentistry and Clinical Cariology, Showa University, School of Dentistry
| | | | | | | | | |
Collapse
|
33
|
Tsutsumi K, Saito N, Kawazoe Y, Ooi HK, Shiba T. Morphogenetic study on the maturation of osteoblastic cell as induced by inorganic polyphosphate. PLoS One 2014; 9:e86834. [PMID: 24498284 PMCID: PMC3911941 DOI: 10.1371/journal.pone.0086834] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/16/2013] [Indexed: 11/26/2022] Open
Abstract
Since inorganic polyphosphates [poly(P)] have an activity to induce bone differenciation in vitro and in vivo, we examined an effect of poly(P) on organelle by light microscopy and electron microscopy in Murine MC3T3-E1 osteoblastic cells. The MC3T3-E1 cells were ultrastructurally observed to possess morphological characteristics of osteoblasts. Cells cultured with poly(P) were strongly stained with an anti-collagen type I antibody but not in those cultured without poly(P). Ultrastructural analysis of cells cultured with poly(P) revealed a well-developed Golgi apparatus, swollen and elongated rough endoplasmic reticulum, large mitochondria and many coated pits. Since MC3T3-E1 cells can be transformed from a resting phase to an active blastic cell phase after supplementation with poly(P), it implies that poly(P) can be an effective material for bone regeneration.
Collapse
Affiliation(s)
- Kaori Tsutsumi
- Department of Biological Sciences and Engineering, Faculty of Health Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
- * E-mail:
| | - Nagahito Saito
- Department of Internal Medicine, Gastroenterology & Hematology Section, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| | | | - Hong-Kean Ooi
- Department of Veterinary Medicine, Azabu University, Chuo-ku, Sagamihara-Shi, Kanagawa, Japan
| | - Toshikazu Shiba
- Regenetiss Inc., Kunitachi, Tokyo, Japan
- Laboratory for Polyphosphate Research, The Kitasato Institute, Kitasato Institute for Life Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| |
Collapse
|
34
|
Gomes FM, Ramos IB, Wendt C, Girard-Dias W, De Souza W, Machado EA, Miranda K. New insights into the in situ microscopic visualization and quantification of inorganic polyphosphate stores by 4',6-diamidino-2-phenylindole (DAPI)-staining. Eur J Histochem 2013; 57:e34. [PMID: 24441187 PMCID: PMC3896036 DOI: 10.4081/ejh.2013.e34] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/22/2013] [Accepted: 09/24/2013] [Indexed: 01/10/2023] Open
Abstract
Inorganic polyphosphate (PolyP) is a biological polymer that plays important roles in the cell physiology of both prokaryotic and eukaryotic organisms. Among the available methods for PolyP localization and quantification, a 4',6-diamidino-2-phenylindole(DAPI)-based assay has been used for visualization of PolyP-rich organelles. Due to differences in DAPI permeability to different compartments and/or PolyP retention after fixation, a general protocol for DAPI-PolyP staining has not yet been established. Here, we tested different protocols for DAPI-PolyP detection in a range of samples with different levels of DAPI permeability, including subcellular fractions, free-living cells and cryosections of fixed tissues. Subcellular fractions of PolyP-rich organelles yielded DAPI-PolyP fluorescence, although those with a complex external layer usually required longer incubation times, previous aldehyde fixation and/or detergent permeabilization. DAPI-PolyP was also detected in cryosections of OCT-embedded tissues analyzed by multi-photon microscopy. In addition, a semi-quantitative fluorimetric analysis of DAPI-stained fractions showed PolyP mobilization in a similar fashion to what has been demonstrated with the use of enzyme-based quantitative protocols. Taken together, our results support the use of DAPI for both PolyP visualization and quantification, although specific steps are suggested as a general guideline for DAPI-PolyP staining in biological samples with different degrees of DAPI and PolyP permeability.
Collapse
Affiliation(s)
- F M Gomes
- Universidade Federal do Rio de Janeiro.
| | | | | | | | | | | | | |
Collapse
|
35
|
Polyphosphate-mediated inhibition of tartrate-resistant acid phosphatase and suppression of bone resorption of osteoclasts. PLoS One 2013; 8:e78612. [PMID: 24223830 PMCID: PMC3817253 DOI: 10.1371/journal.pone.0078612] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022] Open
Abstract
Inorganic polyphosphate (poly(P)) has recently been found to play an important role in bone formation. In this study, we found that tartrate-resistant acid phosphatase (TRAP), which is abundantly expressed in osteoclasts, has polyphosphatase activity that degrades poly(P) and yields Pi as well as shorter poly(P) chains. Since the TRAP protein that coprecipitated with anti-TRAP monoclonal antibodies exhibited both polyphosphatase and the original phosphatase activity, poly(P) degradation activity is dependent on TRAP and not on other contaminating enzymes. The ferrous chelator α, α’-bipyridyl, which inhibits the TRAP-mediated production of reactive oxygen species (ROS), had no effect on such poly(P) degradation, suggesting that the degradation is not dependent on ROS. In addition, shorter chain length poly(P) molecules were better substrates than longer chains for TRAP, and poly(P) inhibited the phosphatase activity of TRAP depending on its chain length. The IC50 of poly(P) against the original phosphatase activity of TRAP was 9.8 µM with an average chain length more than 300 phosphate residues, whereas the IC50 of poly(P) with a shorter average chain length of 15 phosphate residues was 8.3 mM. Finally, the pit formation activity of cultured rat osteoclasts differentiated by RANKL and M-CSF were markedly inhibited by poly(P), while no obvious decrease in cell number or differentiation efficiency was observed for poly(P). In particular, the inhibition of pit formation by long chain poly(P) with 300 phosphate residues was stronger than that of shorter chain poly(P). Thus, poly(P) may play an important regulatory role in osteoclastic bone resorption by inhibiting TRAP activity, which is dependent on its chain length.
Collapse
|
36
|
Sugitani S, Tsuruma K, Ohno Y, Kuse Y, Yamauchi M, Egashira Y, Yoshimura S, Shimazawa M, Iwama T, Hara H. The potential neuroprotective effect of human adipose stem cells conditioned medium against light-induced retinal damage. Exp Eye Res 2013; 116:254-64. [PMID: 24076412 DOI: 10.1016/j.exer.2013.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 12/16/2022]
Abstract
Human adipose-derived stem cells (hASCs) are present in adult adipose tissue and have been reported to secrete various factors that have neuroprotective effects. In the present study, we examined whether hASC-conditioned medium (hASC-CM) was effective against experimental degenerative retinal disease. Mature adipocytes (MAs) and hASCs were isolated from human subcutaneous adipose tissue. The isolated hASCs were identified based on their capacity for bone and neural differentiation. The effects of hASC-CM against tunicamycin-, H2O2-, and light-induced retinal photoreceptor damage were evaluated in vitro by measuring cell death. Moreover, we identified various factors present in hASC-CM using antibody arrays. Retinal damage induced in mice by exposure to white light was studied in vivo, and photoreceptor damage was evaluated according to the thickness of the outer nuclear layer and electroretinography results. In addition, the effect of hASC-CM on Akt phosphorylation at Ser473 was confirmed by western blotting. Finally, the effects of the secreted proteins identified in the hASC-CM on light-induced damage were evaluated in vivo. Isolated hASCs differentiated to osteocytes and neurons. hASC-CM protected against tunicamycin-, H2O2-, and light-induced cell death. In addition, hASC-CM inhibited photoreceptor degeneration and retinal dysfunction after exposure to light. Several proteins secreted by hASCs, such as the tissue inhibitor of metalloproteinase-1 (TIMP-1) and the secreted protein acidic and rich in cysteine (SPARC), protected against light-induced damage in vitro and in vivo. The results of the present study showed that hASC-CM has neuroprotective effects against light-induced retinal damage and suggest that hASCs have a therapeutic potential in retinal degenerative diseases via their secreted proteins, without requiring transplantation.
Collapse
Affiliation(s)
- Sou Sugitani
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Harada K, Shiba T, Doi K, Morita K, Kubo T, Makihara Y, Piattelli A, Akagawa Y. Inorganic polyphosphate suppresses lipopolysaccharide-induced inducible nitric oxide synthase (iNOS) expression in macrophages. PLoS One 2013; 8:e74650. [PMID: 24040305 PMCID: PMC3767636 DOI: 10.1371/journal.pone.0074650] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 08/08/2013] [Indexed: 01/17/2023] Open
Abstract
In response to infection, macrophages produce a series of inflammatory mediators, including nitric oxide (NO), to eliminate pathogens. The production of these molecules is tightly regulated via various mechanisms, as excessive responses are often detrimental to host tissues. Here, we report that inorganic polyphosphate [poly(P)], a linear polymer of orthophosphate ubiquitously found in mammalian cells, suppresses inducible nitric oxide synthase (iNOS) expression induced by lipopolysaccharide (LPS), a cell wall component of Gram-negative bacteria, in mouse peritoneal macrophages. Poly(P) with longer chains is more potent than those with shorter chains in suppressing LPS-induced iNOS expression. In addition, poly(P) decreased LPS-induced NO release. Moreover, poly(P) suppressed iNOS mRNA expression induced by LPS stimulation, thereby indicating that poly(P) reduces LPS-induced iNOS expression by down-regulation at the mRNA level. In contrast, poly(P) did not affect the LPS-induced release of TNF, another inflammatory mediator. Poly(P) may serve as a regulatory factor of innate immunity by modulating iNOS expression in macrophages.
Collapse
Affiliation(s)
- Kana Harada
- Department of Advanced Prosthodontics, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hoac B, Kiffer-Moreira T, Millán JL, McKee MD. Polyphosphates inhibit extracellular matrix mineralization in MC3T3-E1 osteoblast cultures. Bone 2013; 53:478-86. [PMID: 23337041 PMCID: PMC3712787 DOI: 10.1016/j.bone.2013.01.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 01/07/2013] [Accepted: 01/11/2013] [Indexed: 11/21/2022]
Abstract
Studies on various compounds of inorganic phosphate, as well as on organic phosphate added by post-translational phosphorylation of proteins, all demonstrate a central role for phosphate in biomineralization processes. Inorganic polyphosphates are chains of orthophosphates linked by phosphoanhydride bonds that can be up to hundreds of orthophosphates in length. The role of polyphosphates in mammalian systems, where they are ubiquitous in cells, tissues and bodily fluids, and are at particularly high levels in osteoblasts, is not well understood. In cell-free systems, polyphosphates inhibit hydroxyapatite nucleation, crystal formation and growth, and solubility. In animal studies, polyphosphate injections inhibit induced ectopic calcification. While recent work has proposed an integrated view of polyphosphate function in bone, little experimental data for bone are available. Here we demonstrate in osteoblast cultures producing an abundant collagenous matrix that normally show robust mineralization, that two polyphosphates (PolyP5 and PolyP65, polyphosphates of 5 and 65 phosphate residues in length) are potent mineralization inhibitors. Twelve-day MC3T3-E1 osteoblast cultures with added ascorbic acid (for collagen matrix assembly) and β-glycerophosphate (a source of phosphate for mineralization) were treated with either PolyP5 or PolyP65. Von Kossa staining and calcium quantification revealed that mineralization was inhibited in a dose-dependent manner by both polyphosphates, with complete mineralization inhibition at 10μM. Cell proliferation and collagen assembly were unaffected by polyphosphate treatment, indicating that polyphosphate inhibition of mineralization results not from cell and matrix effects but from direct inhibition of mineralization. This was confirmed by showing that PolyP5 and PolyP65 bound to synthetic hydroxyapatite in a concentration-dependent manner. Tissue-nonspecific alkaline phosphatase (TNAP, ALPL) efficiently hydrolyzed the two PolyPs as measured by Pi release. Importantly, at the concentrations of polyphosphates used in this study which inhibited bone cell culture mineralization, the polyphosphates competitively saturated TNAP, thus potentially interfering with its ability to hydrolyze mineralization-inhibiting pyrophosphate (PPi) and mineralizing-promoting β-glycerophosphate (in cell culture). In the biological setting, polyphosphates may regulate mineralization by shielding the essential inhibitory substrate pyrophosphate from TNAP degradation, and in the same process, delay the release of phosphate from this source. In conclusion, the inhibition of mineralization by polyphosphates is shown to occur via direct binding to apatitic mineral and by mixed inhibition of TNAP.
Collapse
Affiliation(s)
- Betty Hoac
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Tina Kiffer-Moreira
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Marc D. McKee
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
39
|
Kim JC, Park JC, Kim SH, Im GI, Kim BS, Lee JB, Choi EY, Song JS, Cho KS, Kim CS. Treatment of FGF-2 on stem cells from inflamed dental pulp tissue from human deciduous teeth. Oral Dis 2013; 20:191-204. [DOI: 10.1111/odi.12089] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 01/21/2013] [Accepted: 02/12/2013] [Indexed: 02/07/2023]
Affiliation(s)
- JC Kim
- Department of Periodontology; Research Institute for Periodontal Regeneration; College of Dentistry; Yonsei University; Seoul Korea
| | - J-C Park
- Department of Periodontology; Research Institute for Periodontal Regeneration; College of Dentistry; Yonsei University; Seoul Korea
| | - S-H Kim
- Department of Periodontology; Research Institute for Periodontal Regeneration; College of Dentistry; Yonsei University; Seoul Korea
| | - G-I Im
- Department of Orthopedic Surgery; Ilsan Hospital; Dongguk University; Seoul Korea
| | - B-S Kim
- School of Chemical and Biological Engineering; Bio-MAX Institute; Institute of Chemical Processes; Engineering Research Institute; Seoul National University; Seoul Korea
| | - J-B Lee
- Department of Periodontology; Research Institute for Periodontal Regeneration; College of Dentistry; Yonsei University; Seoul Korea
| | - E-Y Choi
- Department of Periodontology; Research Institute for Periodontal Regeneration; College of Dentistry; Yonsei University; Seoul Korea
| | - J-S Song
- Department of Pediatric Dentistry; Oral Science Research Center; College of Dentistry; Yonsei University; Seoul Korea
| | - K-S Cho
- Department of Periodontology; Research Institute for Periodontal Regeneration; College of Dentistry; Yonsei University; Seoul Korea
| | - C-S Kim
- Department of Periodontology; Research Institute for Periodontal Regeneration; College of Dentistry; Yonsei University; Seoul Korea
| |
Collapse
|
40
|
Cianciolo G, La Manna G, Della Bella E, Cappuccilli ML, Angelini ML, Dormi A, Capelli I, Laterza C, Costa R, Alviano F, Donati G, Ronco C, Stefoni S. Effect of vitamin D receptor activator therapy on vitamin D receptor and osteocalcin expression in circulating endothelial progenitor cells of hemodialysis patients. Blood Purif 2013; 35:187-95. [PMID: 23485859 DOI: 10.1159/000347102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/15/2013] [Indexed: 01/05/2023]
Abstract
BACKGROUND The effects of vitamin D receptor (VDR) and osteocalcin (OC) expression as well as VDR agonist (VDRA) therapy on circulating endothelial progenitor cells (EPCs) has not been elucidated yet. METHODS We therefore analyzed EPCs in 30 healthy controls and 82 patients undergoing dialysis (no VDRA therapy: 28; oral calcitriol: 30, and intravenous paricalcitol, PCTA: 24). The percentage of EPCs (CD34+/CD133-/KDR+/CD45-) expressing VDR or OC, and VDR and OC expression defined by mean fluorescence intensity (MFI) were analyzed using flow cytometry. The in vitro effect of VDRAs was evaluated in EPCs isolated from each patient group. RESULTS The percentage of VDR+ EPCs correlated positively with VDRA therapy and 25(OH)D, and negatively with diabetes, C-reactive protein, hemoglobin and osteopontin. VDR-MFI correlated positively with VDRA therapy, parathyroid hormone (PTH) and 25(OH)D, and negatively with diabetes and osteopontin. The percentage of OC+ EPCs correlated positively with the calcium score, PTH and phosphate, and negatively with 25(OH)D. OC-MFI correlated positively with calcium score, PTH, phosphate and hemoglobin, and negatively with albumin, 25(OH)D and osteopontin. Cell cultures from patients without VDRA therapy had the highest levels of calcium deposition and OC expression, which both significantly decreased following in vitro VDRA administration: in particular extracellular calcium deposition was only reduced by adding PCTA. CONCLUSIONS Our data suggest that 25(OH)D serum levels and VDRA therapy influence VDR and OC expression on circulating EPCs. Since OC expression may contribute to vascular calcification, we hypothesize a putative protective role of VDRA therapy.
Collapse
Affiliation(s)
- Giuseppe Cianciolo
- Section of Nephrology, Department of Internal Medicine, Aging and Renal Disease, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cuadrado E, Jansen MH, Anink J, De Filippis L, Vescovi AL, Watts C, Aronica E, Hol EM, Kuijpers TW. Chronic exposure of astrocytes to interferon-α reveals molecular changes related to Aicardi–Goutières syndrome. Brain 2013; 136:245-58. [DOI: 10.1093/brain/aws321] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
42
|
Inorganic polyphosphates: biologically active biopolymers for biomedical applications. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2013; 54:261-94. [PMID: 24420717 DOI: 10.1007/978-3-642-41004-8_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inorganic polyphosphate (polyP) is a widely occurring but only rarely investigated biopolymer which exists in both prokaryotic and eukaryotic organisms. Only in the last few years, this polymer has been identified to cause morphogenetic activity on cells involved in human bone formation. The calcium complex of polyP was found to display a dual effect on bone-forming osteoblasts and bone-resorbing osteoclasts. Exposure of these cells to polyP (Ca(2+) complex) elicits the expression of cytokines that promote the mineralization process by osteoblasts and suppress the differentiation of osteoclast precursor cells to the functionally active mature osteoclasts dissolving bone minerals. The effect of polyP on bone formation is associated with an increased release of the bone morphogenetic protein 2 (BMP-2), a key mediator that activates the anabolic processes leading to bone formation. In addition, polyP has been shown to act as a hemostatic regulator that displays various effects on blood coagulation and fibrinolysis and might play an important role in platelet-dependent proinflammatory and procoagulant disorders.
Collapse
|
43
|
Hata M, Naruse K, Ozawa S, Kobayashi Y, Nakamura N, Kojima N, Omi M, Katanosaka Y, Nishikawa T, Naruse K, Tanaka Y, Matsubara T. Mechanical stretch increases the proliferation while inhibiting the osteogenic differentiation in dental pulp stem cells. Tissue Eng Part A 2012; 19:625-33. [PMID: 23153222 DOI: 10.1089/ten.tea.2012.0099] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dental pulp stem cells (DPSCs), which can differentiate into several types of cells, are subjected to mechanical stress by jaw movement and occlusal forces. In this study, we evaluated how the uniaxial mechanical stretch influences proliferation and differentiation of DPSCs. DPSCs were isolated and cultured from male Sprague-Dawley rats. Cultured DPSCs were identified by surface markers and the differentiation capabilities as adipocytes or osteoblasts. To examine the response to mechanical stress, uniaxial stretch was exposed to cultured DPSCs. We evaluated the impact of stretch on the intracellular signaling, proliferation, osteogenic differentiation, and gene expressions of DPSCs. Stretch increased the phosphorylation of Akt, ERK1/2, and p38 MAP kinase as well as the proliferation of DPSCs. The stretch-induced proliferation of DPSCs was abolished by the inhibition of the ERK pathway. On the other hand, stretch significantly decreased the osteogenic differentiation of DPSCs, but did not affect the adipogenic differentiation. We also confirmed mRNA expressions of osteocalcin and osteopontin were significantly suppressed by stretch. In conclusion, uniaxial stretch increased the proliferation of DPSCs, while suppressing osteogenic differentiation. These results suggest a crucial role of mechanical stretch in the preservation of DPSCs in dentin. Furthermore, mechanical stretch may be a useful tool for increasing the quantity of DPSCs in vitro for regenerative medicine.
Collapse
Affiliation(s)
- Masaki Hata
- Department of Removable Prosthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sun N, Zou H, Yang L, Morita K, Gong P, Shiba T, Akagawa Y, Yuan Q. Inorganic polyphosphates stimulate FGF23 expression through the FGFR pathway. Biochem Biophys Res Commun 2012; 428:298-302. [PMID: 23085229 DOI: 10.1016/j.bbrc.2012.10.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 10/10/2012] [Indexed: 11/16/2022]
Abstract
Polyphosphate (polyP) is composed of linear polymers of orthophosphate residues linked by high-energy phosphoanhydride bonds. It has been reported to improve osteoblastic differentiation, stimulate periodontal tissue regeneration, and accelerate bone repair. The aim of this study was to evaluate the effect of polyP on the expression of FGF23, a hormone secreted mostly be mature osteoblasts and osteocytes. In this study, different types of polyP were synthesized and co-cultured with osteoblast-like UMR-106 cells. Real-time PCR and western blot were used to analyze the gene and protein expression of FGF23. We found that 1 mM polyP was able to increase FGF23 expression after 4 h, reaching a peak after 12-24 h, with expression decreasing by 48 h. We also found that polyP could activate the FGFR pathway, as evidenced by increased phosphorylation of FGFR, FRS2, and Erk1/2. When FGFR signaling was inhibited by the specific inhibitor SU5402, the effect of polyP on FGF23 expression was significantly reduced. Our results indicate that polyP is able to stimulate osteoblastic FGF23 expression and that this effect is associated with activation of the FGFR pathway. These findings provide support for the clinical use of polyP by indicating a mechanism for polyP in bone regeneration.
Collapse
Affiliation(s)
- Ningyuan Sun
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Belibasakis GN, Rechenberg DK, Zehnder M. The receptor activator of
NF
‐κ
B
ligand‐osteoprotegerin system in pulpal and periapical disease. Int Endod J 2012; 46:99-111. [DOI: 10.1111/j.1365-2591.2012.02105.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/03/2012] [Indexed: 01/15/2023]
Affiliation(s)
- G. N. Belibasakis
- Institute of Oral Biology University of Zürich Center of Dental Medicine ZürichSwitzerland
| | - D. K. Rechenberg
- Department of Preventive Dentistry, Periodontology, and Cariology University of Zürich Center of Dental Medicine Zürich Switzerland
| | - M. Zehnder
- Department of Preventive Dentistry, Periodontology, and Cariology University of Zürich Center of Dental Medicine Zürich Switzerland
| |
Collapse
|
46
|
Seidlmayer LK, Gomez-Garcia MR, Blatter LA, Pavlov E, Dedkova EN. Inorganic polyphosphate is a potent activator of the mitochondrial permeability transition pore in cardiac myocytes. ACTA ACUST UNITED AC 2012; 139:321-31. [PMID: 22547663 PMCID: PMC3343371 DOI: 10.1085/jgp.201210788] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mitochondrial dysfunction caused by excessive Ca2+ accumulation is a major contributor to cardiac cell and tissue damage during myocardial infarction and ischemia–reperfusion injury (IRI). At the molecular level, mitochondrial dysfunction is induced by Ca2+-dependent opening of the mitochondrial permeability transition pore (mPTP) in the inner mitochondrial membrane, which leads to the dissipation of mitochondrial membrane potential (ΔΨm), disruption of adenosine triphosphate production, and ultimately cell death. Although the role of Ca2+ for induction of mPTP opening is established, the exact molecular mechanism of this process is not understood. The aim of the present study was to test the hypothesis that the adverse effect of mitochondrial Ca2+ accumulation is mediated by its interaction with inorganic polyphosphate (polyP), a polymer of orthophosphates linked by phosphoanhydride bonds. We found that cardiac mitochondria contained significant amounts (280 ± 60 pmol/mg of protein) of short-chain polyP with an average length of 25 orthophosphates. To test the role of polyP for mPTP activity, we investigated kinetics of Ca2+ uptake and release, ΔΨm and Ca2+-induced mPTP opening in polyP-depleted mitochondria. polyP depletion was achieved by mitochondria-targeted expression of a polyP-hydrolyzing enzyme. Depletion of polyP in mitochondria of rabbit ventricular myocytes led to significant inhibition of mPTP opening without affecting mitochondrial Ca2+ concentration by itself. This effect was observed when mitochondrial Ca2+ uptake was stimulated by increasing cytosolic [Ca2+] in permeabilized myocytes mimicking mitochondrial Ca2+ overload observed during IRI. Our findings suggest that inorganic polyP is a previously unrecognized major activator of mPTP. We propose that the adverse effect of polyphosphate might be caused by its ability to form stable complexes with Ca2+ and directly contribute to inner mitochondrial membrane permeabilization.
Collapse
Affiliation(s)
- Lea K Seidlmayer
- Department of Molecular Physiology and Biophysics, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
47
|
Morrissey JH, Choi SH, Smith SA. Polyphosphate: an ancient molecule that links platelets, coagulation, and inflammation. Blood 2012; 119:5972-9. [PMID: 22517894 PMCID: PMC3383012 DOI: 10.1182/blood-2012-03-306605] [Citation(s) in RCA: 274] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inorganic polyphosphate is widespread in biology and exhibits striking prohemostatic, prothrombotic, and proinflammatory effects in vivo. Long-chain polyphosphate (of the size present in infectious microorganisms) is a potent, natural pathophysiologic activator of the contact pathway of blood clotting. Medium-chain polyphosphate (of the size secreted from activated human platelets) accelerates factor V activation, completely abrogates the anticoagulant function of tissue factor pathway inhibitor, enhances fibrin clot structure, and greatly accelerates factor XI activation by thrombin. Polyphosphate may have utility as a hemostatic agent, whereas antagonists of polyphosphate may function as novel antithrombotic/anti-inflammatory agents. The detailed molecular mechanisms by which polyphosphate modulates blood clotting reactions remain to be elucidated.
Collapse
Affiliation(s)
- James H Morrissey
- Biochemistry Department, University of Illinois, 506 S Mathews Ave, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
48
|
Bae JS, Lee W, Rezaie AR. Polyphosphate elicits pro-inflammatory responses that are counteracted by activated protein C in both cellular and animal models. J Thromb Haemost 2012; 10:1145-51. [PMID: 22372856 PMCID: PMC3366017 DOI: 10.1111/j.1538-7836.2012.04671.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Recent results have indicated that polyphosphate, released by activated platelets, can function as a procoagulant to modulate the proteolytic activity of serine proteases of the blood clotting cascade. OBJECTIVE To determine whether polyphosphate is involved in inducing signal transduction in cellular and animal models. METHODS The effect of polyphosphate on human umbilical vein endothelial cells was examined by monitoring cell permeability, apoptosis and activation of NF-κB after treating cells with different concentrations of polyphosphate. Moreover, the expression of cell surface adhesion molecules (VCAM-1, ICAM-1 and E-selectin) and the adhesion of THP-1 cells to polyphosphate-treated cells were monitored using established methods. In the in vivo model, the pro-inflammatory effect of polyphosphate was assessed by monitoring vascular permeability and migration of leukocytes to the peritoneal cavity of mice injected with polyphosphate. RESULTS Polyphosphate, comprised of 45, 65 and 70 phosphate units, enhanced the barrier permeability and apoptosis in cultured endothelial cells and up-regulated the expression of cell adhesion molecules, thereby mediating the adhesion of THP-1 cells to polyphosphate-treated endothelial cells. These effects of polyphosphate were mediated through the activation of NF-κB and could not be recapitulated by another anionic polymer, heparin. Polyphosphate also increased the extravasation of the bovine serum albumin (BSA)-bound Evans blue dye and the migration of leukocytes to the mouse peritoneal cavity, which was prevented when activated protein C (APC) was intravenously (i.v.) injected 2 h before the challenge. CONCLUSION Polyphosphate, in addition to up-regulation of coagulation, can elicit potent pro-inflammatory responses through the activation of NF-κB, possibly contributing to the pro-inflammatory effect of activated platelets.
Collapse
Affiliation(s)
- Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Wonhwa Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Alireza R. Rezaie
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, USA
| |
Collapse
|
49
|
St-Pierre JP, Wang Q, Li SQ, Pilliar RM, Kandel RA. Inorganic polyphosphate stimulates cartilage tissue formation. Tissue Eng Part A 2012; 18:1282-92. [PMID: 22429075 DOI: 10.1089/ten.tea.2011.0356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clinical utilization of tissue-engineered cartilage constructs has been limited by their inferior mechanical properties compared to native articular cartilage. A number of strategies have been investigated to increase the accumulation of major extracellular matrix components within in vitro-formed cartilage, including the administration of growth factors and mechanical stimulation. In this study, the anabolic effect of inorganic polyphosphates, a linear polymer of orthophosphate residues linked by phosphoanhydride bonds, was demonstrated in both chondrocyte cultures and native articular cartilage cultured ex vivo. Compared to untreated controls, polyphosphate treatment of three-dimensional primary chondrocyte cultures induced increased glycosaminoglycan and collagen accumulation in a concentration- and chain length-dependent manner. This effect was transient, because chondrocytes express exopolyphosphatases that hydrolyze polyphosphate. The anabolic effect of polyphosphates was accompanied by a lower rate of DNA increase within the chondrocyte cultures treated with inorganic polyphosphate. Inorganic polyphosphate enhances cartilage matrix accumulation and is a promising approach to improve the quality of tissue-engineered cartilage constructs.
Collapse
Affiliation(s)
- Jean-Philippe St-Pierre
- CIHR BioEngineering of Skeletal Tissues Team, Mount Sinai Hospital and University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
50
|
Gomes FM, Carvalho DB, Peron AC, Saito K, Miranda K, Machado EA. Inorganic polyphosphates are stored in spherites within the midgut of Anticarsia gemmatalis and play a role in copper detoxification. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:211-219. [PMID: 21946413 DOI: 10.1016/j.jinsphys.2011.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 05/31/2023]
Abstract
Inorganic polyphosphates (PolyP) are widespread molecules that have been shown to play a role in metal detoxification and heavy-metal tolerance. In the present report, we investigated the functional role of spherites as PolyP-metal binding stores in epithelial cells of the midgut of Anticarsia gemmatalis, a lepidopteran pest of soybean. PolyP stores were detected by DAPI staining and indirect immunohistochemistry as vesicles distributed in columnar cells and around goblet cell cavities. These PolyP vesicles were identified as spherites by their elemental profile in cell lysates that were partially modulated by P- or V-ATPases. PolyP levels along the midgut were detected using a recombinant exopolyphosphatase assay. When copper was added in the diet of larva, copper detection in spherites by X-ray microanalysis correlated with an increase in the relative phosphorous X-ray signal and with an increase in PolyP levels in epithelia cell lysate. Transmission electron microscopy of chemically fixed or cryofixed and freeze substituted tissues confirmed a preferential localization of spherites around the goblet cell cavity. Taken together, these results suggest that spherites store high levels of PolyP that are modulated during metal uptake and detoxification. The similarity between PolyP granules and spherites herein described also suggest that PolyP is one of the main phosphorous source of spherites found in different biological models. This suggests physiological roles played by spherites in the midgut of arthropods and mechanisms involved in heavy metal resistance among different insect genera.
Collapse
Affiliation(s)
- F M Gomes
- Laboratório de Entomologia Médica, Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|