1
|
Feng W, Yang K, Zou Y, Xiao Z, Qian R, Qian R. Progress of ursolic acid on the regulation of macrophage: summary and prospect. Front Immunol 2025; 16:1576771. [PMID: 40421013 PMCID: PMC12104263 DOI: 10.3389/fimmu.2025.1576771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/15/2025] [Indexed: 05/28/2025] Open
Abstract
Ursolic acid (UA), a prevalent pentacyclic triterpenoid found in numerous fruits and herbs, has garnered significant attention for its vital role in anti-inflammatory processes and immune regulation. The study of immune cells has consistently been a focal point, particularly regarding macrophages, which play crucial roles in antigen presentation, immunomodulation, the inflammatory response, and pathogen phagocytosis. This paper reveals the underlying regulatory effects of UA on the function of macrophages and the specific therapeutic effects of UA on a variety of diseases. Owing to the superior effect of UA on macrophages, different types of macrophages in different tissues have been described. Through the multifaceted regulation of macrophage function, UA may provide new ideas for the development of novel anti-inflammatory and immunomodulatory drugs. However, to facilitate its translation into actual medical means, the specific mechanism of UA in macrophages and its clinical application still need to be further studied.
Collapse
Affiliation(s)
- Wenjing Feng
- Key Laboratory of Vascular Biology and Translational Medicine of Hunan Province, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Kehong Yang
- Key Laboratory of Vascular Biology and Translational Medicine of Hunan Province, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Ying Zou
- Department of Anatomy, Anatomy Teaching Center of Hunan University of Chinese Medicine, Changsha, China
| | - Zhaohua Xiao
- Xiangya Hospital, Central South University, Changsha, China
| | - Rongkang Qian
- Department of Integrated Traditional Chinese and Western Medicine, Qian Rongkang Clinic, Loudi, China
| | - Ronghua Qian
- Key Laboratory of Vascular Biology and Translational Medicine of Hunan Province, Medical School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Ma C, Gao L, Song K, Gu B, Wang B, Pu W, Chen H. Exploring the therapeutic potential of diterpenes in gastric cancer: Mechanisms, efficacy, and clinical prospects. BIOMOLECULES & BIOMEDICINE 2024; 25:1-15. [PMID: 39151097 PMCID: PMC11647260 DOI: 10.17305/bb.2024.10887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/18/2024]
Abstract
Gastric cancer (GC) remains a significant global health challenge, particularly prevalent in East Asia. Despite advancements in various treatment modalities, the prognosis for patients, especially those in advanced stages, remains poor, highlighting the need for innovative therapeutic approaches. This review explores the promising potential of diterpenes, naturally occurring compounds with robust anticancer properties, derived from diverse sources such as plants, marine organisms, and fungi. Diterpenes have shown the ability to influence reactive oxygen species (ROS) generation, ferroptosis, and autophagy, positioning them as attractive candidates for novel cancer therapies. This review explores the mechanisms of action of diterpenes and their clinical implications for the treatment of GC. Additionally, it addresses the challenges in translating these compounds from preclinical studies to clinical applications, emphasizing the need for further research to enhance their therapeutic profiles and minimize potential side effects. The discussion underscores the importance of diterpenes in future anticancer strategies, particularly in the fight against gastric cancer.
Collapse
Affiliation(s)
- Chenhui Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Lei Gao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Kewei Song
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Baohong Gu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bofang Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Weigao Pu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hao Chen
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou, China
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
3
|
Zhao M, Cui Y, Wang F, Wu F, Li C, Liu S, Chen B. Ursolic Acid Regulates Immune Balance, Modulates Gut Microbial Metabolism, and Improves Liver Health in Mice. Int J Mol Sci 2024; 25:10623. [PMID: 39408951 PMCID: PMC11477038 DOI: 10.3390/ijms251910623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Ursolic acid (UA) has demonstrated significant immunomodulatory and hepatoprotective effects; however, the underlying mechanisms remain unclear. This study aims to analyze the impact of UA on the gut microbiome, metabolome, and liver transcriptome, investigate UA's role in maintaining gut immune homeostasis and liver health, and evaluate the potential contributions of gut microbes and their metabolites to these beneficial effects. Our findings indicate that UA enhances immune balance in the jejunum, fortifies intestinal barrier function, and promotes overall gut health. UA modulates the intestinal microbiota and its metabolic processes, notably increasing the abundance of beneficial bacteria such as Odoribacter and Parabacteroides, along with their metabolites, including ornithine and lactucin. Additionally, UA inhibits the expression of interleukin-1 receptor 1 (IL1R1) and calcium (Ca2+) voltage-gated channel auxiliary subunit beta 2 (CACNB2) while enhancing the synthesis pathways of retinol and ascorbic acid, thereby exerting a protective influence on liver function. In summary, UA enhances intestinal immune homeostasis and promotes liver health, with these advantageous effects potentially mediated by beneficial bacteria (Odoribacter and Parabacteroides) and their metabolites (ornithine and lactucin).
Collapse
Affiliation(s)
- Man Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Yali Cui
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071051, China
| | - Fengxia Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Fengyang Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Chong Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Shudong Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| |
Collapse
|
4
|
Cao M, Tang Y, Luo Y, Gu F, Zhu Y, Liu X, Yan C, Hu W, Wang S, Chao X, Xu H, Chen HB, Wang L. Natural compounds modulating mitophagy: Implications for cancer therapy. Cancer Lett 2024; 582:216590. [PMID: 38097131 DOI: 10.1016/j.canlet.2023.216590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024]
Abstract
Cancer is considered as the second leading cause of mortality, and cancer incidence is still growing rapidly worldwide, which poses an increasing global health burden. Although chemotherapy is the most widely used treatment for cancer, its effectiveness is limited by drug resistance and severe side effects. Mitophagy is the principal mechanism that degrades damaged mitochondria via the autophagy/lysosome pathway to maintain mitochondrial homeostasis. Emerging evidence indicates that mitophagy plays crucial roles in tumorigenesis, particularly in cancer therapy. Mitophagy can exhibit dual effects in cancer, with both cancer-inhibiting or cancer-promoting function in a context-dependent manner. A variety of natural compounds have been found to affect cancer cell death and display anticancer properties by modulating mitophagy. In this review, we provide a systematic overview of mitophagy signaling pathways, and examine recent advances in the utilization of natural compounds for cancer therapy through the modulation of mitophagy. Furthermore, we address the inquiries and challenges associated with ongoing investigations concerning the application of natural compounds in cancer therapy based on mitophagy. Overcoming these limitations will provide opportunities to develop novel interventional strategies for cancer treatment.
Collapse
Affiliation(s)
- Min Cao
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Yancheng Tang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yufei Luo
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Fen Gu
- Department of Infection, Hunan Children's Hospital, Changsha, 410007, China
| | - Yuyuan Zhu
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Xu Liu
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Chenghao Yan
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China
| | - Wei Hu
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Boai Rehabilitation Hospital, Changsha, 410082, China
| | - Shaogui Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaojuan Chao
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, Hunan Province, China; Shenzhen Research Institute, Hunan University, Shenzhen, 518000, China.
| |
Collapse
|
5
|
Liu G, Qin P, Cheng X, Wu L, Wang R, Gao W. Ursolic acid: biological functions and application in animal husbandry. Front Vet Sci 2023; 10:1251248. [PMID: 37964910 PMCID: PMC10642196 DOI: 10.3389/fvets.2023.1251248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Ursolic acid (UA) is a plant-derived pentacyclic triterpenoid with 30 carbon atoms. UA has anti-inflammatory, antioxidative, antimicrobial, hepato-protective, anticancer, and other biological activities. Most studies on the biological functions of UA have been performed in mammalian cell (in vitro) and rodent (in vivo) models. UA is used in animal husbandry as an anti-inflammatory and antiviral agent, as well as for enhancing the integrity of the intestinal barrier. Although UA has been shown to have significant in vitro bacteriostatic effects, it is rarely used in animal nutrition. The use of UA as a substitute for oral antibiotics or as a novel feed additive in animal husbandry should be considered. This review summarizes the available data on the biological functions of UA and its applications in animal husbandry.
Collapse
Affiliation(s)
- Guanhui Liu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Peng Qin
- Chenguang Biotechnology Group Handan Co., Ltd., Handan, China
| | - Xinying Cheng
- Chenguang Biotechnology Group Handan Co., Ltd., Handan, China
| | - Lifei Wu
- Hebei Plant Extraction Innovation Center Co., Ltd., Handan, China
- Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan, China
| | - Ruoning Wang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Wei Gao
- Hebei Plant Extraction Innovation Center Co., Ltd., Handan, China
- Hebei Province Plant Source Animal Health Products Technology Innovation Center, Handan, China
| |
Collapse
|
6
|
Zhang J, Zhao Q, Xue Z, Zhang S, Ren Z, Chen S, Zhou A, Chen H, Liu Y. Deoxynivalenol induces endoplasmic reticulum stress-associated apoptosis via the IRE1/JNK/CHOP pathway in porcine alveolar macrophage 3D4/21 cells. Food Chem Toxicol 2023; 180:114033. [PMID: 37739053 DOI: 10.1016/j.fct.2023.114033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
The interplay between cell apoptosis and endoplasmic reticulum (ER) stress has garnered increasing attention. Nevertheless, the precise involvement of the unfolded protein response (UPR) signaling in the apoptosis of porcine macrophage cells induced by Deoxynivalenol (DON) remains enigmatic. In this study, we revealed that exposure to 2 μM DON resulted in a substantial decline in cell viability, concomitant with the initiation of cell apoptosis and the halting of the G1 phase cell cycle in the porcine alveolar macrophage line 3D4/21. Transcriptomic analysis of DON-exposed cells showed distinct expression patterns in 3104 genes, with notable upregulation of ER stress-related genes, including IRE1, CHOP, XBP1 and JNK. Our subsequent validation via qPCR and Western blot analyses confirmed the attenuation of GRP78 and BCL-2, coupled with the upregulation of IRE1, CHOP, JNK, p-JNK, and Bax in DON-induced cells, indicating the instigation of ER stress-associated apoptosis by DON. The addition of 5 mM 4-phenylbutyric acid (4-PBA), an ER stress inhibitor, decreased levels of CHOP, IRE1, JNK, p-JNK, and Bax, while increasing levels of GRP78 and Bcl-2, suggesting that 4-PBA alleviated DON-induced ER stress and apoptosis. Overall, our findings provide new insights into DON-induced ER stress via the IRE1/JNK/CHOP pathway, leading to subsequent cellular apoptosis.
Collapse
Affiliation(s)
- Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qingbo Zhao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zhihui Xue
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Siyi Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zeyu Ren
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Ao Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hongbo Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
7
|
Michalak O, Cybulski M, Szymanowski W, Gornowicz A, Kubiszewski M, Ostrowska K, Krzeczyński P, Bielawski K, Trzaskowski B, Bielawska A. Synthesis, Biological Activity, ADME and Molecular Docking Studies of Novel Ursolic Acid Derivatives as Potent Anticancer Agents. Int J Mol Sci 2023; 24:ijms24108875. [PMID: 37240221 DOI: 10.3390/ijms24108875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
A series of new ursolic acid (UA) derivatives substituted with various amino acids (AAs) or dipeptides (DP) at the C-3 position of the steroid skeleton was designed and synthesized. The compounds were obtained by the esterification of UA with the corresponding AAs. The cytotoxic activity of the synthesized conjugates was determined using the hormone-dependent breast cancer cell line MCF-7 and the triple-negative breast cancer cell line MDA. Three derivatives (l-seryloxy-, l-prolyloxy- and l-alanyl-l-isoleucyloxy-) showed micromolar IC50 values and reduced the concentrations of matrix metalloproteinases 2 and 9. Further studies revealed that for two compounds (l-seryloxy- and l-alanyl-l-isoleucyloxy-), a possible mechanism of their antiproliferative action is the activation of caspase-7 and the proapoptotic Bax protein in the apoptotic pathway. The third compound (l-prolyloxy- derivative) showed a different mechanism of action as it induced autophagy as measured by an increase in the concentrations of three autophagy markers: LC3A, LC3B, and beclin-1. This derivative also showed statistically significant inhibition of the proinflammatory cytokines TNF-α and IL-6. Finally, for all synthesized compounds, we computationally predicted their ADME properties as well as performed molecular docking to the estrogen receptor to assess their potential for further development as anticancer agents.
Collapse
Affiliation(s)
- Olga Michalak
- Chemistry Section, Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Marcin Cybulski
- Chemistry Section, Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Wojciech Szymanowski
- Department of Biotechnology, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| | - Agnieszka Gornowicz
- Department of Biotechnology, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| | - Marek Kubiszewski
- Analytical Research Section, Pharmaceutical Analysis Laboratory, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Kinga Ostrowska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Piotr Krzeczyński
- Chemistry Section, Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| | - Bartosz Trzaskowski
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, 2C Banacha Str., 02-097 Warsaw, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| |
Collapse
|
8
|
Tao T, Zhang P, Zeng Z, Wang M. Advances in autophagy modulation of natural products in cervical cancer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116575. [PMID: 37142142 DOI: 10.1016/j.jep.2023.116575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural products play a critical role in drug development and is emerging as a potential source of biologically active metabolites for therapeutic intervention, especially in cancer therapy. In recent years, there is increasing evidence that many natural products may modulate autophagy through various signaling pathways in cervical cancer. Understanding the mechanisms of these natural products helps to develop medications for cervical cancer treatments. AIM OF THE STUDY In recent years, there is increasing evidence that many natural products may modulate autophagy through various signaling pathways in cervical cancer. In this review, we briefly introduce autophagy and systematically describe several classes of natural products implicated in autophagy modulation in cervical cancer, hoping to provide valuable information for the development of cervical cancer treatments based on autophagy. MATERIALS AND METHODS We searched for studies on natural products and autophagy in cervical cancer on the online database and summarized the relationship between natural products and autophagy modulation in cervical cancer. RESULTS Autophagy is a lysosome-mediated catabolic process in eukaryotic cells that plays an important role in a variety of physiological and pathological processes, including cervical cancer. Abnormal expression of cellular autophagy and autophagy-related proteins has been implicated in cervical carcinogenesis, and human papillomavirus infection can affect autophagic activity. Flavonoids, alkaloids, polyphenols, terpenoids, quinones, and other compounds are important sources of natural products that act as anticancer agents. In cervical cancer, natural products exert the anticancer function mainly through the induction of protective autophagy. CONCLUSIONS The regulation of cervical cancer autophagy by natural products has significant advantages in inducing apoptosis, inhibiting proliferation, and reducing drug resistance in cervical cancer.
Collapse
Affiliation(s)
- Tao Tao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, Shenyang Women's and Children's Hospital, Shenyang, Liaoning Province, China
| | - Zhi Zeng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
9
|
Deng H, Chen W, Zhang B, Zhang Y, Han L, Zhang Q, Yao S, Wang H, Shen XL. Excessive ER-phagy contributes to ochratoxin A-induced apoptosis. Food Chem Toxicol 2023; 176:113793. [PMID: 37080527 DOI: 10.1016/j.fct.2023.113793] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
The nephrotoxic secondary fungal metabolite ochratoxin A (OTA) is ubiquitously existed in foodstuffs and feeds. Although our earlier research provided preliminary evidence that endoplasmic reticulum (ER) was crucial in OTA-induced nephrotoxicity, more research is necessary to understand the fine-tune mechanisms involving ER stress (ERS), ER-phagy, and apoptosis. In the present study, the cell viability and protein expressions of human proximal tubule epithelial (HK-2) cells in response to OTA and/or chloroquine/rapamycin/sodium phenylbutyrate/tunicamycin were determined via cell viability assay, apoptosis analysis, and Western blot analysis. The findings showed that a 24 h-treatment of 0.25-4 μM OTA could significantly reduced the cell viability (P < 0.05), which notably increased with the addition of chloroquine and sodium phenylbutyrate, while decreased with the addition of rapamycin and tunicamycin as compared to group OTA (P < 0.05). A 24 h-treatment of 1-4 μM OTA could markedly induce apoptosis via increasing the protein expressions of GRP78, p-eIF2α, Chop, LC3B-II, Bak, and Bax, and inhibiting the protein expressions of DDRGK1, UBA5, Lonp1, Tex264, FAM134B, p-mTOR, p62, and Bcl-2 in HK-2 cells (P < 0.05). In conclusion, OTA activated ERS, unfolded protein response, and subsequent excessive ER-phagy, thus inducing apoptosis, and the vicious cycle between excessive ER-phagy and ERS could further promote apoptosis in vitro.
Collapse
Affiliation(s)
- Huiqiong Deng
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China
| | - Wenying Chen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China
| | - Boyang Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, PR China
| | - Yiwen Zhang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China
| | - Lingyun Han
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China
| | - Qipeng Zhang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China; Depatment of Hospital Infection Control, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, PR China
| | - Song Yao
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China
| | - Hongwei Wang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China
| | - Xiao Li Shen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, PR China.
| |
Collapse
|
10
|
Liu X, Song J, Liu H, Sun Z, Ren H, Luo J. Endoplasmic Reticulum Stress Could Predict the Prognosis of Cervical Cancer and Regulate the Occurrence of Radiation Mucositis. Dose Response 2023; 21:15593258231173199. [PMID: 37197387 PMCID: PMC10184221 DOI: 10.1177/15593258231173199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 05/19/2023] Open
Abstract
The endoplasmic reticulum (ER) is an important cellular organelle, and ER dysfunction has an important impact on a variety of biological processes. In this study, we explored the role of ER stress in cervical cancer by establishing a prognostic model related to ER stress. This study included 309 samples from the TCGA database and 15 pairs of RNA sequencing data before and after radiotherapy. ER stress characteristics were obtained by the LASSO regression model. The prognostic value of risk characteristics was analyzed by Cox regression, Kaplan‒Meier, and ROC curves. The effects of radiation and radiation mucositis on ER stress were evaluated. We found that ER stress-related genes were differentially expressed in cervical cancer and could predict its prognosis. The LASSO regression model suggested that risk genes had a strong ability to predict prognosis. In addition, the regression suggests that the low-risk group may benefit from immunotherapy. Cox regression analysis showed that FOXRED2 and N staging could be independent factors affecting prognosis. ERN1 was significantly affected by radiation and may be related to the occurrence of radiation mucositis. In conclusion, ER stress activation might have a high value in the treatment and prognosis of cervical cancer and has good clinical prospects.
Collapse
Affiliation(s)
- Xue Liu
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
- Department of Radiotherapy, Graduate School of Dalian Medical University, Dalian, China
| | - Jing Song
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hui Liu
- School of Computer Science and Technology, Nanjing Tech University, Nanjing, China
| | - Zhiqiang Sun
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Huiwen Ren
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
- Department of Radiotherapy, Graduate School of Dalian Medical University, Dalian, China
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
11
|
Synthesis of Oleanolic Acid-Dithiocarbamate Conjugates and Evaluation of Their Broad-Spectrum Antitumor Activities. Molecules 2023; 28:molecules28031414. [PMID: 36771080 PMCID: PMC9920998 DOI: 10.3390/molecules28031414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Efficient and mild synthetic routes for bioactive natural product derivatives are of current interest for drug discovery. Herein, on the basis of the pharmacophore hybrid strategy, we report a two-step protocol to obtain a series of structurally novel oleanolic acid (OA)-dithiocarbamate conjugates in mild conditions with high yields. Moreover, biological evaluations indicated that representative compound 3e exhibited the most potent and broad-spectrum antiproliferative effects against Panc1, A549, Hep3B, Huh-7, HT-29, and Hela cells with low cytotoxicity on normal cells. In terms of the IC50 values, these OA-dithiocarbamate conjugates were up to 30-fold more potent than the natural product OA. These compounds may be promising hit compounds for the development of novel anti-cancer drugs.
Collapse
|
12
|
Tian Y, Fan R, Yin Z, Huang Y, Huang D, Yuan F, Yin A, Tang G, Pu R, Yin S. Glochodpurnoid B from Glochidion puberum Induces Endoplasmic Reticulum Stress-Mediated Apoptosis in Colorectal Cancer Cells. Molecules 2023; 28:molecules28020511. [PMID: 36677570 PMCID: PMC9867043 DOI: 10.3390/molecules28020511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
Glochidpurnoids A and B (1 and 2), two new coumaroyl or feruloyl oleananes, along with 17 known triterpenoids (3-19) were obtained from the stems and twigs of Glochidion puberum. Their structures were elucidated by extensive spectroscopic data analyses, chemical methods, and single crystal X-ray diffraction. All compounds were screened for cytotoxicity against the colorectal cancer cell line HCT-116, and 2, 3, 5, 6, 11, and 17 showed remarkable inhibitory activities (IC50: 0.80-2.99 μM), being more active than the positive control 5-fluorouracil (5-FU). The mechanistic study of 2, the most potent compound, showed that it could induce endoplasmic reticulum (ER) stress-mediated apoptosis and improve the sensitivity of HCT-116 cells to 5-FU.
Collapse
Affiliation(s)
- Yang Tian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Runzhu Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhao Yin
- Department of Geratology, The Affiliated Hospital of Yunnan University, The Second People’s Hospital of Yunnan Province, Kunming 650021, China
| | - Yongping Huang
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Dong Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fangyu Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Aiping Yin
- Department of Clinical Laboratory, The Third People’s Hospital of Dongguan, Dongguan 523326, China
| | - Guihua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Rong Pu
- Department of Clinical Laboratory, The Third People’s Hospital of Dongguan, Dongguan 523326, China
- Correspondence: (R.P.); (S.Y.); Tel.: +86-18002900838 (R.P.); +86-20-39943090 (S.Y.)
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Correspondence: (R.P.); (S.Y.); Tel.: +86-18002900838 (R.P.); +86-20-39943090 (S.Y.)
| |
Collapse
|
13
|
Ursolic Acid Impairs Cellular Lipid Homeostasis and Lysosomal Membrane Integrity in Breast Carcinoma Cells. Cells 2022; 11:cells11244079. [PMID: 36552844 PMCID: PMC9776894 DOI: 10.3390/cells11244079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, thus the search for new cancer therapies is of utmost importance. Ursolic acid is a naturally occurring pentacyclic triterpene with a wide range of pharmacological activities including anti-inflammatory and anti-neoplastic effects. The latter has been assigned to its ability to promote apoptosis and inhibit cancer cell proliferation by poorly defined mechanisms. In this report, we identify lysosomes as the essential targets of the anti-cancer activity of ursolic acid. The treatment of MCF7 breast cancer cells with ursolic acid elevates lysosomal pH, alters the cellular lipid profile, and causes lysosomal membrane permeabilization and leakage of lysosomal enzymes into the cytosol. Lysosomal membrane permeabilization precedes the essential hallmarks of apoptosis placing it as an initial event in the cascade of effects induced by ursolic acid. The disruption of the lysosomal function impairs the autophagic pathway and likely partakes in the mechanism by which ursolic acid kills cancer cells. Furthermore, we find that combining treatment with ursolic acid and cationic amphiphilic drugs can significantly enhance the degree of lysosomal membrane permeabilization and cell death in breast cancer cells.
Collapse
|
14
|
Zafar S, Khan K, Hafeez A, Irfan M, Armaghan M, Rahman AU, Gürer ES, Sharifi-Rad J, Butnariu M, Bagiu IC, Bagiu RV. Ursolic acid: a natural modulator of signaling networks in different cancers. Cancer Cell Int 2022; 22:399. [PMID: 36496432 PMCID: PMC9741527 DOI: 10.1186/s12935-022-02804-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Incidence rate of cancer is estimated to increase by 40% in 2030. Furthermore, the development of resistance against currently available treatment strategies has contributed to the cancer-associated mortality. Scientists are now looking for the solutions that could help prevent the disease occurrence and could provide a pain-free treatment alternative for cancers. Therefore, efforts are now put to find a potent natural compound that could sever this purpose. Ursolic acid (UA), a triterpene acid, has potential to inhibit the tumor progression and induce sensitization to conventional treatment drugs has been documented. Though, UA is a hydrophobic compound therefore it is usually chemically modified to increase its bioavailability prior to administration. However, a thorough literature indicating its mechanism of action and limitations for its use at clinical level was not reviewed. Therefore, the current study was designed to highlight the potential mechanism of UA, its anti-cancer properties, and potential applications as therapeutic compound. This endeavour is a valuable contribution in understanding the hurdles preventing the translation of its potential at clinical level and provides foundations to design new studies that could help enhance its bioavailability and anti-cancer potential for various cancers.
Collapse
Affiliation(s)
- Sameen Zafar
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Khushbukhat Khan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Amna Hafeez
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Muhammad Irfan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Muhammad Armaghan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Anees ur Rahman
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Eda Sönmez Gürer
- grid.411689.30000 0001 2259 4311Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Javad Sharifi-Rad
- grid.442126.70000 0001 1945 2902Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Monica Butnariu
- University of Life Sciences “King Mihai I” from Timisoara, 300645 Calea Aradului 119, Timis, Romania
| | - Iulia-Cristina Bagiu
- grid.22248.3e0000 0001 0504 4027Department of Microbiology, Victor Babes University of Medicine and Pharmacy of Timisoara, Timisoara, Romania ,Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- grid.22248.3e0000 0001 0504 4027Department of Microbiology, Victor Babes University of Medicine and Pharmacy of Timisoara, Timisoara, Romania ,Preventive Medicine Study Center, Timisoara, Romania
| |
Collapse
|
15
|
Deng Q, Ding K, Li Y, Jiao Y, Hu R, Zhang T, Wang Z, Tang BZ. Referential modification strategy based on phenolic hydroxyl-containing KSA luminogens for ER-targeting probe construction. Biomaterials 2022; 289:121767. [PMID: 36099711 DOI: 10.1016/j.biomaterials.2022.121767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022]
Abstract
The endoplasmic reticulum (ER) plays essential roles in various physiological processes and is intimately connected to kinds of diseases. The development of ER-targeting theranostic agents is highly demanded for precise treatments, however, the effective and referential strategies for the construction of ER-targeting probes are limited. Herein, we developed series of ER-targeting luminogens based on keto-salicylaldehyde azine (KSA) framework by introducing phenolic hydroxyl group, which present good theranostic performance with selective enrichment in ER. Under systematical structure modulation, the key role of phenolic hydroxyl group at K-terminal in ER-targeting was experimentally confirmed. Besides, the cyanobenzyl moiety at S-terminal can enhance the luminous efficiency and improve cellular uptake ability. Moreover, the generated reactive oxygen species (ROS) of these KSA derivatives can efficiently trigger ER stress to induce the apoptosis of cancer cells, resulting in the effective inhibition of tumor cells both in vitro and in vivo. Therefore, this feasible modification strategy of inserting phenolic hydroxyl group to common multi-aryl-based luminogens provides a reliable and referential approach for ER-targeting probe establishment.
Collapse
Affiliation(s)
- Qiyun Deng
- Center for Aggregation-Induced Emission, AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, PR China
| | - Keke Ding
- Department of Urology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), No. 2 Zheshan Road, Wuhu, 241001, PR China; Department of Urology, The First Affiliated Hospital of Soochow University, NO. 188 Shizi Road, Suzhou, 215006, PR China
| | - Yin Li
- Center for Aggregation-Induced Emission, AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, PR China
| | - Yawen Jiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Rong Hu
- Center for Aggregation-Induced Emission, AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, PR China; School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, PR China.
| | - Tian Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China.
| | - Zhiming Wang
- Center for Aggregation-Induced Emission, AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, PR China.
| | - Ben Zhong Tang
- Center for Aggregation-Induced Emission, AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, PR China; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| |
Collapse
|
16
|
Novel Triterpenic Acid—Benzotriazole Esters Act as Pro-Apoptotic Antimelanoma Agents. Int J Mol Sci 2022; 23:ijms23179992. [PMID: 36077389 PMCID: PMC9456456 DOI: 10.3390/ijms23179992] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 12/15/2022] Open
Abstract
Pentacyclic triterpenes, such as betulinic, ursolic, and oleanolic acids are efficient and selective anticancer agents whose underlying mechanisms of action have been widely investigated. The introduction of N-bearing heterocycles (e.g., triazoles) into the structures of natural compounds (particularly pentacyclic triterpenes) has yielded semisynthetic derivatives with increased antiproliferative potential as opposed to unmodified starting compounds. In this work, we report the synthesis and biological assessment of benzotriazole esters of betulinic acid (BA), oleanolic acid (OA), and ursolic acid (UA) (compounds 1–3). The esters were obtained in moderate yields (28–42%). All three compounds showed dose-dependent reductions in cell viability against A375 melanoma cells and no cytotoxic effects against healthy human keratinocytes. The morphology analysis of treated cells showed characteristic apoptotic changes consisting of nuclear shrinkage, condensation, fragmentation, and cellular membrane disruption. rtPCR analysis reinforced the proapoptotic evidence, showing a reduction in anti-apoptotic Bcl-2 expression and upregulation of the pro-apoptotic Bax. High-resolution respirometry studies showed that all three compounds were able to significantly inhibit mitochondrial function. Molecular docking showed that compounds 1–3 showed an increase in binding affinity against Bcl-2 as opposed to BA, OA, and UA and similar binding patterns compared to known Bcl-2 inhibitors.
Collapse
|