1
|
Yun HM, Kim B, Kim E, Park KR. Rhusflavone Modulates Osteoclastogenesis Through RANKL-Induced AKT Signaling in Bone Marrow-Derived Macrophages. Int J Mol Sci 2025; 26:3025. [PMID: 40243668 PMCID: PMC11988637 DOI: 10.3390/ijms26073025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Osteoclast differentiation inhibition is a viable treatment strategy for osteoporosis because osteoclasts play a vital role in disease progression. Rhusflavone (Rhus), a biflavonoid, exhibits a sedative-hypnotic effect via the positive allosteric modulation of GABA(A) receptors. Although several biflavonoids possess activities that help prevent bone loss, the potential effects of Rhus on osteoclastogenesis have not been reported yet. In this study, we investigated the effects and underlying biological mechanisms of Rhus isolated from the dried roots of Rhus succedanea on osteoclastogenesis in primary cultured bone marrow-derived macrophages. No cytotoxicity was observed in bone marrow macrophages (BMMs) or during osteoclast differentiation. However, Rhus reduced the number of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear osteoclasts during receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastogenesis. The results of F-actin ring formation demonstrated that Rhus suppresses the bone resorption activity of osteoclasts. Additionally, Rhus inhibits the expression of osteoclast differentiation marker proteins, specifically c-Fos and NF-ATc1. Western blot analysis revealed that Rhus primarily attenuated RANKL-mediated key signaling pathways, particularly the AKT signaling pathway. Furthermore, we found that the AKT activator and inhibitor pharmacologically abolished and enhanced the inhibitory effects of Rhus on osteoclast differentiation, respectively. Taken together, our findings provide evidence that Rhus is a promising biologically active compound that regulates osteoclast differentiation by inhibiting the AKT signaling pathway, which may contribute to future drug development.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bomi Kim
- National Institute for Korean Medicine Development, Gyeongsan 38540, Republic of Korea; (B.K.); (E.K.)
| | - Eonmi Kim
- National Institute for Korean Medicine Development, Gyeongsan 38540, Republic of Korea; (B.K.); (E.K.)
| | - Kyung-Ran Park
- Honam Regional Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| |
Collapse
|
2
|
Bagger SM, Schihada H, Walser ALS, Drzazga AK, Grätz L, Palmisano T, Kuhn CK, Mavri M, Mølleskov-Jensen AS, Tall GG, Schöneberg T, Mathiasen SJ, Javitch JA, Schulte G, Spiess K, Rosenkilde MM. Complex G-protein signaling of the adhesion GPCR, ADGRA3. J Biol Chem 2025:108441. [PMID: 40127866 DOI: 10.1016/j.jbc.2025.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025] Open
Abstract
ADGRA3 (GPR125) is an orphan adhesion G protein-coupled receptor (aGPCR) that plays a role in planar cell polarity (PCP), primarily through recruitment of the signaling components Dishevelled (DVL) during vertebrate gastrulation, and Discs large homolog 1 (Dlg1), which is implicated in cancer. Limited knowledge exists of the signaling capacity in the canonical GPCR pathways of ADGRA3. Here, we employed a series of human cell line-based signaling assays to gain insight into the heterotrimeric G protein-mediated signaling of ADGRA3. We based the design of ADGRA3 constructs on analyses of transcript variants in publicly available human liver and brain RNA-seq datasets. As cleavage in the GPCR autoproteolysis site (GPS) is a hallmark for many aGPCRs, we generated a truncated ADGRA3 (C-terminal fragment, CTF) corresponding to a potential cleavage at the GPS. We found low-level activation of Gi and Gs by ADGRA3 and slightly more by its CTF. As the N terminus of the CTF constitutes a class-defined tethered agonist known as the stachel peptide, we removed the initial three amino acids of the CTF. This resulted in abrogated G protein-mediated signaling, as observed for other aGPCRs. Due to the central role of ADGRA3 in PCP signaling through DVL recruitment, we investigated the G-protein signaling in absence of DVL1-3 and found it sustained. No transcriptional activation was observed downstream of β-catenin in an assay reporting T-cell factor/lymphoid enhancer factor (TCF/LEF)-mediated transcriptional activity. Collectively, this establishes a classical G protein-mediated signaling for ADGRA3 in addition to its association with components of non-canonical Wnt-signaling pathways.
Collapse
Affiliation(s)
- Sofie M Bagger
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen; Copenhagen, Denmark
| | - Hannes Schihada
- Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Karolinska Institutet; Stockholm, Sweden
| | - Anna L S Walser
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen; Copenhagen, Denmark
| | - Anna Katarzyna Drzazga
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen; Copenhagen, Denmark
| | - Lukas Grätz
- Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Karolinska Institutet; Stockholm, Sweden
| | - Tiago Palmisano
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons; New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute; New York, NY, USA
| | - Christina K Kuhn
- Molecular Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry; Leipzig, Germany
| | - Maša Mavri
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen; Copenhagen, Denmark
| | - Ann-Sophie Mølleskov-Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen; Copenhagen, Denmark
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan School of Medicine; Ann Arbor, MI, USA
| | - Torsten Schöneberg
- Molecular Biochemistry, Medical Faculty, Rudolf Schönheimer Institute of Biochemistry; Leipzig, Germany
| | - Signe J Mathiasen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen; Copenhagen, Denmark; Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons; New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute; New York, NY, USA
| | - Jonathan A Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Columbia University Vagelos College of Physicians and Surgeons; New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute; New York, NY, USA
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Section of Receptor Biology and Signaling, Karolinska Institutet; Stockholm, Sweden
| | - Katja Spiess
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen; Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen; Copenhagen, Denmark.
| |
Collapse
|
3
|
Wu H, Zuo J, Dai Y, Li H, Wang S. NEDD4 family E3 ligases in osteoporosis: mechanisms and emerging potential therapeutic targets. J Orthop Surg Res 2025; 20:92. [PMID: 39849530 PMCID: PMC11761774 DOI: 10.1186/s13018-025-05517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/17/2025] [Indexed: 01/25/2025] Open
Abstract
Osteoporosis is a systemic skeletal disorder characterized by reduced bone density and an increased risk of fractures, particularly prevalent in the aging population. Osteoporotic complications, including vertebral compression fractures, hip fractures, and distal forearm fractures, affect over 8.9 million individuals globally, placing a significant economic strain on healthcare systems. Recent advances have expanded our understanding of the mechanisms underlying osteoporosis, particularly the intricate regulatory networks involved in bone metabolism. A central player in these processes is ubiquitin-mediated proteasomal degradation, a crucial post-translational modification system that involves ubiquitin, the ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), ubiquitin ligase (E3), deubiquitinating enzymes, and the proteasome. Among the various E3 ligases, the NEDD4 family has emerged as a key regulator of both bone development and osteoporotic pathology. This review delineates the role of NEDD4 family in osteoporosis and identifies potential drug targets within these pathways, offering insights into novel therapeutic approaches for osteoporosis through targeted intervention.
Collapse
Affiliation(s)
- Heng Wu
- Department of Orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Junhui Zuo
- Department of Orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yu Dai
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Hairui Li
- Department of Urology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Song Wang
- Department of Orthopedics, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
4
|
Lee S, Lee H, Jang YJ, Lee K, Kim HJ, Lee JY, Kim JM, Park S, Song JS, Lee JH, Hyun TK, Park JI, Yi SJ, Kim K. Denatonium inhibits RANKL-induced osteoclast differentiation and rescues the osteoporotic phenotype by blocking p65 signaling pathway. Mol Med 2024; 30:248. [PMID: 39701944 DOI: 10.1186/s10020-024-01031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Bone remodeling is a critical process that maintains skeletal integrity, orchestrated by the balanced activities of osteoclasts, which resorb bone, and osteoblasts, which form bone. Osteoclastogenesis, the formation of osteoclasts, is primarily driven by NFATc1, a process activated through c-Fos and NF-κB signaling pathways in response to receptor activator of nuclear factor κB ligand (RANKL). Dysregulation of RANKL signaling is a key contributor to pathological bone loss, as seen in conditions such as osteoporosis. METHODS We investigated the effects of denatonium, a known bitter compound, on RANKL-induced osteoclast differentiation. We used RNA sequencing (RNA-seq) to analyze gene expression profiles in osteoclast precursors treated with denatonium. Transcription factor prediction analysis was conducted to identify key targets of denatonium action. Additionally, we performed Western blotting to examine the phosphorylation status of AKT and p65, crucial components of the NF-κB pathway. Chromatin immunoprecipitation (ChIP) assays were employed to assess the binding of p65 to promoter regions of osteoclast-related genes. Finally, we tested the therapeutic potential of denatonium in a mouse model of osteoporosis. RESULTS Our findings demonstrated that denatonium significantly inhibited RANKL-induced osteoclastogenesis by targeting the p65 pathway. RNA-seq analysis revealed a downregulation of osteoclast-related genes following denatonium treatment, corroborated by transcription factor prediction analysis, which highlighted p65 as a key target. Denatonium effectively blocked the phosphorylation of AKT and p65, key steps in NF-κB activation. ChIP assays further confirmed that denatonium reduced the enrichment of p65 at promoter regions critical for osteoclast differentiation. In vivo, denatonium treatment in an osteoporosis animal model led to a significant restoration of bone health, demonstrating its potential as a therapeutic agent. CONCLUSIONS This study identifies denatonium as an inhibitor of RANKL-induced osteoclast differentiation, potentially acting through suppression of the p65 signaling pathway. The ability of denatonium to downregulate osteoclast-related genes and inhibit key signaling events highlights its potential as a candidate for further investigation in the context of bone loss and osteoporosis.
Collapse
Affiliation(s)
- Sheunghun Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hyerim Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - You-Jee Jang
- Department of Biomedical Laboratory Science, Honam University, Gwangju, Republic of Korea
| | - Kyubin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hye-Jung Kim
- New Drug Development Center, KBIO Osong Medical Innovation Foundation, Chungbuk, Republic of Korea
| | - Jung Yeol Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Jin-Man Kim
- Asan Medical Center, Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Sunyou Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Jin Sook Song
- Data Convergence Drug Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Ji Hoon Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Tae Kyung Hyun
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jae-Il Park
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju, Republic of Korea.
| | - Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
5
|
Wang W, Yang H, Fan Z, Shi R. NQO1 promotes osteogenesis and suppresses angiogenesis in DPSCs via MAPK pathway modulation. Stem Cell Res Ther 2024; 15:306. [PMID: 39285500 PMCID: PMC11406740 DOI: 10.1186/s13287-024-03929-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Influence on stem cells' angiogenesis and osteogenesis of NAD(P)H Quinone Dehydrogenase 1(NQO1) has been established, but its impact on dental pulp stem cells (DPSCs) is unexplored. An important strategy for the treatment of arteriosclerosis is to inhibit calcium deposition and to promote vascular repair and angiogenesis. This study investigated the function and mechanism of NQO1 on angiogenesis and osteogenesis of DPSCs, so as to provide a new ideal for the treatment of arteriosclerosis. METHODS Co-culture of human DPSCs and human umbilical vein endothelial cells (HUVECs) was used to detect the angiogenesis ability. Alkaline phosphatase (ALP) activity, alizarin red staining (ARS), and transplantation of HA/tricalcium phosphate with DPSCs were used to detect osteogenesis. RESULTS NQO1 suppressed in vitro tubule formation, migration, chemotaxis, and in vivo angiogenesis, as evidenced by reduced CD31 expression. It also enhanced ALP activity, ARS, DSPP expression and osteogenesis and boosted mitochondrial function in DPSCs. CoQ10, an electron transport chain activator, counteracted the effects of NQO1 knockdown on these processes. Additionally, NQO1 downregulated MAPK signaling, which was reversed by CoQ10 supplementation in DPSCs-NQO1sh. CONCLUSIONS NQO1 inhibited angiogenesis and promoted the osteogenesis of DPSCs by suppressing MAPK signaling pathways and enhancing mitochondrial respiration.
Collapse
Affiliation(s)
- Wanqing Wang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Haoqing Yang
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.
| | - Ruitang Shi
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
6
|
Šimon M, Kaić A, Potočnik K. Unveiling Genetic Potential for Equine Meat Production: A Bioinformatics Approach. Animals (Basel) 2024; 14:2441. [PMID: 39199974 PMCID: PMC11350750 DOI: 10.3390/ani14162441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/27/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
In view of the predicted significant increase in global meat production, alternative sources such as horsemeat are becoming increasingly important due to their lower environmental impact and high nutritional value. This study aimed to identify SNP markers on the GeneSeek® Genomic Profiler™ Equine (Neogen, Lansing, MI, USA) that are important for horsemeat production traits. First, orthologous genes related to meat yield in cattle and common genes between horses and cattle within QTLs for body size and weight were identified. Markers for these genes were then evaluated based on predicted variant consequences, GERP scores, and positions within constrained elements and orthologous regulatory regions in pigs. A total of 268 markers in 57 genes related to meat production were analyzed. This resulted in 27 prioritized SNP markers in 22 genes, including notable markers in LCORL, LASP1, IGF1R, and MSTN. These results will benefit smallholder farmers by providing genetic insights for selective breeding that could improve meat yield. This study also supports future large-scale genetic analyses such as GWAS and Genomic Best Linear Unbiased Prediction (GBLUP). The results of this study may be helpful in improving the accuracy of genomic breeding values. However, limitations include reliance on bioinformatics without experimental validation. Future research can validate these markers and consider a wider range of traits to ensure accuracy in equine breeding.
Collapse
Affiliation(s)
- Martin Šimon
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia; (M.Š.); (K.P.)
| | - Ana Kaić
- Department of Animal Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia
| | - Klemen Potočnik
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domžale, Slovenia; (M.Š.); (K.P.)
| |
Collapse
|
7
|
Li X, Lu C, Du W, Zou Q, Wang R, Hu C, Li Y, Zhang Y, Mao Z. Development of new dehydrocostuslactone derivatives for treatment of atopic dermatitis via inhibition of the NF-κB signaling pathway. RSC Med Chem 2024; 15:2773-2784. [PMID: 39149113 PMCID: PMC11324064 DOI: 10.1039/d4md00301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/24/2024] [Indexed: 08/17/2024] Open
Abstract
Atopic dermatitis (AD), a recurrent inflammatory systemic skin disease, is difficult to cure. In the present study, several ethylenediamine-derived dehydrocostuslactone (DHCL) derivatives were prepared to assess their in vitro and in vivo anti-inflammatory activities. The results indicated that DHCL derivatives inhibited NO generation with low cytotoxicity. In particular, compound 5d exhibited the best anti-inflammatory activity. Subsequent experiments revealed that 5d not only inhibited the LPS-induced inflammatory response in RAW264.7 cells via the MAPK-NF-κB signaling pathway inhibition but also significantly decreased Th2-type cytokine levels and inhibited the NF-κB signaling pathway activation in mice with MC903-induced AD. Therefore, DHCL derivatives may be considered as new agents for the treatment of AD.
Collapse
Affiliation(s)
- Xiaoyi Li
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Cheng Lu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Wenxia Du
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Qiuping Zou
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Ruirui Wang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Chunyan Hu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Yanping Li
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Yi Zhang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| | - Zewei Mao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650500 PR China
| |
Collapse
|
8
|
Kvam JM, Nybo ML, Torz L, Sustarsic RK, Jensen KHR, Nielsen JE, Frederiksen H, Gadgaard S, Spiess K, Poulsen SS, Thomsen JS, Cowin P, Blomberg Jensen M, Kurita T, Rosenkilde MM. High incidence of imperforate vagina in ADGRA3-deficient mice. BMC Biol 2024; 22:77. [PMID: 38589878 PMCID: PMC11003089 DOI: 10.1186/s12915-024-01873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Ten percent of the female population suffers from congenital abnormalities of the vagina, uterus, or oviducts, with severe consequences for reproductive and psychological health. Yet, the underlying causes of most of these malformations remain largely unknown. ADGRA3 (GPR125) is involved in WNT signaling and planar cell polarity, mechanisms vital to female reproductive tract development. Although ADGRA3 is a well-established spermatogonial stem cell marker, its role within the female urogenital system remains unclear. RESULTS In this study, we found Adgra3 to be expressed throughout the murine female urogenital system, with higher expression pre-puberty than after sexual maturation. We generated a global Adgra3-/- mouse line and observed imperforate vagina in 44% of Adgra3-/- females, resulting in distension of the reproductive tract and infertility. Ovarian morphology, plasma estradiol, ovarian Cyp19a1, and vaginal estrogen receptor α (Esr1) expression were unaffected. However, compared to controls, a significantly lower bone mineral density was found in Adgra3-/- mice. Whereas vaginal opening in mice is an estrogen-dependent process, 17β-estradiol treatment failed to induce vaginal canalization in Adgra3-/- mice. Furthermore, a marked reduction in vaginal and ovarian progesterone receptor expression was observed concomitant with an upregulation of apoptotic regulators Bcl2, Bid, and Bmf in adult Adgra3-/- females with a closed vagina. CONCLUSIONS Our collective results shed new insights into the complex mechanisms by which the adhesion receptor ADGRA3 regulates distal vaginal tissue remodeling during vaginal canalization via altered sex hormone responsiveness and balance in apoptotic regulators. This highlights the potential of ADGRA3 as a target in diagnostic screening and/or therapy for obstructive vaginal malformations in humans.
Collapse
Affiliation(s)
- Jone Marita Kvam
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maja Lind Nybo
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lola Torz
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Riia Karolina Sustarsic
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Høj Reveles Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - John Erik Nielsen
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sarina Gadgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Bainan Biotech, Copenhagen, Denmark
| | - Katja Spiess
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen Seier Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Pamela Cowin
- Departments of Cell Biology and Dermatology, New York University School of Medicine, New York, NY, USA
| | - Martin Blomberg Jensen
- Group of Skeletal, Mineral and Gonadal Endocrinology, Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Division of Translational Endocrinology, Department of Endocrinology and Internal Medicine, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Takeshi Kurita
- Department of Cancer Biology and Genetics, Ohio State University, Columbus, OH, USA
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Xian Y, Gao Y, Su Y, Su Y, Lian H, Feng X, Liu Z, Zhao J, Xu J, Liu Q, Song F. Cichoric acid targets RANKL to inhibit osteoclastogenesis and prevent ovariectomy-induced bone loss. Phytother Res 2024; 38:1971-1989. [PMID: 38358727 DOI: 10.1002/ptr.8141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND AND AIM Osteoporosis, a systemic metabolic bone disease, is characterized by the decline of bone mass and quality due to excessive osteoclast activity. Currently, drug-targeting osteoclasts show promising therapy for osteoporosis. In this study, we investigated the effect of cichoric acid (CA) on receptor activator of nuclear kappa-B ligand (RANKL)-induced osteoclastogenesis and the bone loss induced by ovariectomy in mice. EXPERIMENTAL PROCEDURE Molecular docking technologies were employed to examine the interaction between CA and RANKL. CCK8 assay was used to evaluate the cell viability under CA treatment. TRAcP staining, podosome belt staining, and bone resorption assays were used to test the effect of CA on osteoclastogenesis and osteoclast function. Further, an OVX-induced osteoporosis mice model was employed to identify the effect of CA on bone loss using micro-CT scanning and histological examination. To investigate underlying mechanisms, network pharmacology was applied to predict the downstream signaling pathways, which were verified by Western blot and immunofluorescence staining. KEY RESULTS The molecular docking analysis revealed that CA exhibited a specific binding affinity to RANKL, engaging multiple binding sites. CA inhibited RANKL-induced osteoclastogenesis and bone resorption without cytotoxic effects. Mechanistically, CA suppressed RANKL-induced intracellular reactive oxygen species, nuclear factor-kappa B, and mitogen-activated protein kinase pathways, followed by abrogated nuclear factor activated T-cells 1 activity. Consistent with this finding, CA attenuated post-ovariectomy-induced osteoporosis by ameliorating osteoclastogenesis. CONCLUSIONS AND IMPLICATIONS CA inhibited osteoclast activity and bone loss by targeting RANKL. CA might represent a promising candidate for treating osteoclast-related diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Yansi Xian
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yijie Gao
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Yiji Su
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuangang Su
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haoyu Lian
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoliang Feng
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Zhijuan Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Jiake Xu
- School of Biomedical Sciences, the University of Western Australia, Perth, Australia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fangming Song
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Wang SZ, Wang MD, Wang JY, Yuan M, Li YD, Luo PT, Xiao F, Li H. Genome-wide association study of growth curve parameters reveals novel genomic regions and candidate genes associated with metatarsal bone traits in chickens. Animal 2024; 18:101129. [PMID: 38574453 DOI: 10.1016/j.animal.2024.101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
The growth and development of chicken bones have an enormous impact on the health and production performance of chickens. However, the development pattern and genetic regulation of the chicken skeleton are poorly understood. This study aimed to evaluate metatarsal bone growth and development patterns in chickens via non-linear models, and to identify the genetic determinants of metatarsal bone traits using a genome-wide association study (GWAS) based on growth curve parameters. Data on metatarsal length (MeL) and metatarsal circumference (MeC) were obtained from 471 F2 chickens (generated by crossing broiler sires, derived from a line selected for high abdominal fat, with Baier layer dams) at 4, 6, 8, 10, and 12 weeks of age. Four non-linear models (Gompertz, Logistic, von Bertalanffy, and Brody) were used to fit the MeL and MeC growth curves. Subsequently, the estimated growth curve parameters of the mature MeL or MeC (A), time-scale parameter (b), and maturity rate (K) from the non-linear models were utilized as substitutes for the original bone data in GWAS. The Logistic and Brody models displayed the best goodness-of-fit for MeL and MeC, respectively. Single-trait and multi-trait GWASs based on the growth curve parameters of the Logistic and Brody models revealed 4 618 significant single nucleotide polymorphisms (SNPs), annotated to 332 genes, associated with metatarsal bone traits. The majority of these significant SNPs were located on Gallus gallus chromosome (GGA) 1 (167.433-176.318 Mb), GGA2 (96.791-103.543 Mb), GGA4 (65.003-83.104 Mb) and GGA6 (64.685-95.285 Mb). Notably, we identified 12 novel GWAS loci associated with chicken metatarsal bone traits, encompassing 35 candidate genes. In summary, the combination of single-trait and multi-trait GWASs based on growth curve parameters uncovered numerous genomic regions and candidate genes associated with chicken bone traits. The findings benefit an in-depth understanding of the genetic architecture underlying metatarsal growth and development in chickens.
Collapse
Affiliation(s)
- S Z Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - M D Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - J Y Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - M Yuan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Y D Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - P T Luo
- Fujian Sunnzer Biotechnology Development Co. Ltd, Guangze, Fujian Province 354100, PR China
| | - F Xiao
- Fujian Sunnzer Biotechnology Development Co. Ltd, Guangze, Fujian Province 354100, PR China
| | - H Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
11
|
Wang W, Wang Q, Sun S, Zhang P, Li Y, Lin W, Li Q, Zhang X, Ma Z, Lu H. CD97 inhibits osteoclast differentiation via Rap1a/ERK pathway under compression. Int J Oral Sci 2024; 16:12. [PMID: 38311610 PMCID: PMC10838930 DOI: 10.1038/s41368-023-00272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/24/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024] Open
Abstract
Acceleration of tooth movement during orthodontic treatment is challenging, with osteoclast-mediated bone resorption on the compressive side being the rate-limiting step. Recent studies have demonstrated that mechanoreceptors on the surface of monocytes/macrophages, especially adhesion G protein-coupled receptors (aGPCRs), play important roles in force sensing. However, its role in the regulation of osteoclast differentiation remains unclear. Herein, through single-cell analysis, we revealed that CD97, a novel mechanosensitive aGPCR, was expressed in macrophages. Compression upregulated CD97 expression and inhibited osteoclast differentiation; while knockdown of CD97 partially rescued osteoclast differentiation. It suggests that CD97 may be an important mechanosensitive receptor during osteoclast differentiation. RNA sequencing analysis showed that the Rap1a/ERK signalling pathway mediates the effects of CD97 on osteoclast differentiation under compression. Consistently, we clarified that administration of the Rap1a inhibitor GGTI298 increased osteoclast activity, thereby accelerating tooth movement. In conclusion, our results indicate that CD97 suppresses osteoclast differentiation through the Rap1a/ERK signalling pathway under orthodontic compressive force.
Collapse
Affiliation(s)
- Wen Wang
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, Hebei Medical University, Shijiazhuang, China
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Qian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiying Sun
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, Hebei Medical University, Shijiazhuang, China
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Pengfei Zhang
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, Hebei Medical University, Shijiazhuang, China
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Yuyu Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiwen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhe Ma
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, Hebei Medical University, Shijiazhuang, China.
- Department of Preventive Dentistry, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Haiyan Lu
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, Hebei Medical University, Shijiazhuang, China.
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
12
|
Su Y, Yu G, Li D, Lu Y, Ren C, Xu Y, Yang Y, Zhang K, Ma T, Li Z. Identification of mitophagy-related biomarkers in human osteoporosis based on a machine learning model. Front Physiol 2024; 14:1289976. [PMID: 38260098 PMCID: PMC10800828 DOI: 10.3389/fphys.2023.1289976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Osteoporosis (OP) is a chronic bone metabolic disease and a serious global public health problem. Several studies have shown that mitophagy plays an important role in bone metabolism disorders; however, its role in osteoporosis remains unclear. Methods: The Gene Expression Omnibus (GEO) database was used to download GSE56815, a dataset containing low and high BMD, and differentially expressed genes (DEGs) were analyzed. Mitochondrial autophagy-related genes (MRG) were downloaded from the existing literature, and highly correlated MRG were screened by bioinformatics methods. The results from both were taken as differentially expressed (DE)-MRG, and Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed. Protein-protein interaction network (PPI) analysis, support vector machine recursive feature elimination (SVM-RFE), and Boruta method were used to identify DE-MRG. A receiver operating characteristic curve (ROC) was drawn, a nomogram model was constructed to determine its diagnostic value, and a variety of bioinformatics methods were used to verify the relationship between these related genes and OP, including GO and KEGG analysis, IP pathway analysis, and single-sample Gene Set Enrichment Analysis (ssGSEA). In addition, a hub gene-related network was constructed and potential drugs for the treatment of OP were predicted. Finally, the specific genes were verified by real-time quantitative polymerase chain reaction (RT-qPCR). Results: In total, 548 DEGs were identified in the GSE56815 dataset. The weighted gene co-expression network analysis(WGCNA) identified 2291 key module genes, and 91 DE-MRG were obtained by combining the two. The PPI network revealed that the target gene for AKT1 interacted with most proteins. Three MRG (NELFB, SFSWAP, and MAP3K3) were identified as hub genes, with areas under the curve (AUC) 0.75, 0.71, and 0.70, respectively. The nomogram model has high diagnostic value. GO and KEGG analysis showed that ribosome pathway and cellular ribosome pathway may be the pathways regulating the progression of OP. IPA showed that MAP3K3 was associated with six pathways, including GNRH Signaling. The ssGSEA indicated that NELFB was highly correlated with iDCs (cor = -0.390, p < 0.001). The regulatory network showed a complex relationship between miRNA, transcription factor(TF) and hub genes. In addition, 4 drugs such as vinclozolin were predicted to be potential therapeutic drugs for OP. In RT-qPCR verification, the hub gene NELFB was consistent with the results of bioinformatics analysis. Conclusion: Mitophagy plays an important role in the development of osteoporosis. The identification of three mitophagy-related genes may contribute to the early diagnosis, mechanism research and treatment of OP.
Collapse
Affiliation(s)
- Yu Su
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Gangying Yu
- Department of International Ward (Orthopedic), Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongchen Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yao Lu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Cheng Ren
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yibo Xu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yanling Yang
- Basic Medical College of Yan’an University, Yan’an, China
| | - Kun Zhang
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Teng Ma
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhong Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
13
|
Tian B, Bai J, Sheng L, Chen H, Chang W, Zhang Y, Yao C, Zhou C, Wang X, Shan H, Dong Q, Wang C, Zhou X. P7C3 Ameliorates Bone Loss by Inhibiting Osteoclast Differentiation and Promoting Osteogenesis. JBMR Plus 2023; 7:e10811. [PMID: 38130773 PMCID: PMC10731119 DOI: 10.1002/jbm4.10811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 12/23/2023] Open
Abstract
Bone homeostasis, the equilibrium between bone resorption and formation, is essential for maintaining healthy bone tissue in adult humans. Disruptions of this process can lead to pathological conditions such as osteoporosis. Dual-targeted agents, capable of inhibiting excessive bone resorption and stimulating bone formation, are being explored as a promising strategy for developing new treatments to address osteoporosis. In this study, we investigated the effects of P7C3 on bone remodeling and its potential therapeutic role in osteoporosis treatment in mice. Specifically, P7C3 can remarkably suppress receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation in bone marrow macrophages via the Akt-NF-κB-NFATc1 signaling pathway. Additionally, RNA sequencing (RNAseq) analysis revealed that P7C3 promoted osteoblast differentiation and function through the Wnt/β-catenin signaling pathway, thereby enhancing bone formation. Furthermore, μCT analysis and histological examination of bone tissues from P7C3-treated mice showed attenuation of both Ti-induced bone erosion and ovariectomy (OVX)-induced bone loss. These findings suggest that P7C3 may have a novel function in bone remodeling and may be a promising therapeutic agent for the treatment of osteoporosis. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Bo Tian
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & SoftMaterials (FUNSOM)Soochow UniversitySuzhouChina
| | - Jinyu Bai
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Lei Sheng
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hao Chen
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wenju Chang
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yue Zhang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & SoftMaterials (FUNSOM)Soochow UniversitySuzhouChina
| | - Chenlu Yao
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & SoftMaterials (FUNSOM)Soochow UniversitySuzhouChina
| | - Chenmeng Zhou
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & SoftMaterials (FUNSOM)Soochow UniversitySuzhouChina
| | - Xiaoyu Wang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & SoftMaterials (FUNSOM)Soochow UniversitySuzhouChina
| | - Huajian Shan
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qirong Dong
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Chao Wang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & SoftMaterials (FUNSOM)Soochow UniversitySuzhouChina
| | - Xiaozhong Zhou
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
14
|
Shen J, Lin X, Dai F, Chen G, Lin H, Fang B, Liu H. Ubiquitin-specific peptidases: Players in bone metabolism. Cell Prolif 2023:e13444. [PMID: 36883930 PMCID: PMC10392067 DOI: 10.1111/cpr.13444] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Osteoporosis is an ageing-related disease, that has become a major public health problem and its pathogenesis has not yet been fully elucidated. Substantial evidence suggests a strong link between overall age-related disease progression and epigenetic modifications throughout the life cycle. As an important epigenetic modification, ubiquitination is extensively involved in various physiological processes, and its role in bone metabolism has attracted increasing attention. Ubiquitination can be reversed by deubiquitinases, which counteract protein ubiquitination degradation. As the largest and most structurally diverse cysteinase family of deubiquitinating enzymes, ubiquitin-specific proteases (USPs), comprising the largest and most structurally diverse cysteine kinase family of deubiquitinating enzymes, have been found to be important players in maintaining the balance between bone formation and resorption. The aim of this review is to explore recent findings highlighting the regulatory functions of USPs in bone metabolism and provide insight into the molecular mechanisms governing their actions during bone loss. An in-deep understanding of USPs-mediated regulation of bone formation and bone resorption will provide a scientific rationale for the discovery and development of novel USP-targeted therapeutic strategies for osteoporosis.
Collapse
Affiliation(s)
- Jianlin Shen
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
| | - Xiaoning Lin
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
| | - Feifei Dai
- School of Medicine, Putian Universtiy, Putian, China
| | - Guoli Chen
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
| | - Haibin Lin
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
| | - Bangjiang Fang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Emergency and Critical Care Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huan Liu
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
| |
Collapse
|
15
|
Wu Y, Liu M, Zhou H, He X, Shi W, Yuan Q, Zuo Y, Li B, Hu Q, Xie Y. COX-2/PGE 2/VEGF signaling promotes ERK-mediated BMSCs osteogenic differentiation under hypoxia by the paracrine action of ECs. Cytokine 2023; 161:156058. [PMID: 36209650 DOI: 10.1016/j.cyto.2022.156058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 11/07/2022]
Abstract
Understanding the crosstalk between endothelial cells (ECs) and bone-marrow mesenchymal stem cells (BMSCs) in response to hypoxic environments and deciphering of the underlying mechanisms are of great relevance for better application of BMSCs in tissue engineering. Here, we demonstrated that hypoxia promoted BMSCs proliferation, colony formation, osteogenic markers expression, mineralization, and extracellular signal-regulated protein kinase (ERK) phosphorylation, and that PD98059 (ERK inhibitor) blocked hypoxia-induced osteogenic differentiation. Hypoxia enhanced ECs migration, cyclooxygenase 2 (COX-2) and integrin αvβ3 expression, and prostaglandin E2 (PGE2), vascular endothelial growth factor (VEGF) secretion. NS398 (selective COX-2 inhibitor) and LM609 (integrin αvβ3 specific inhibitor) impaired the ECs response to hypoxia, and exogenous PGE2 partially reversed the effects of NS398. BMSCs: ECs co-culture under hypoxia upregulated BMSCs osteogenesis and ERK phosphorylation, as well as ECs migration, integrin αvβ3 expression, and PGE2 and VEGF secretion. NS398 (pretreated ECs) lessened PGE2, VEGF concentrations of the co-culture system. NS398-treated ECs and AH6809 (combined EP1/2 antagonist)/L-798106 (selective EP3 antagonist)/L-161982 (selective EP4 antagonist)/SU5416 [VEGF receptor (VEGFR) inhibitor]-treated BMSCs impaired the co-cultured ECs-induced enhancement of BMSCs osteogenic differentiation. In conclusion, hypoxia enhances BMSCs proliferation and ERK-mediated osteogenic differentiation, and augments the COX-2-dependent PGE2 and VEGF release, integrin αvβ3 expression, and migration of ECs. COX-2/PGE2/VEGF signaling is involved in intercellular BMSCs: ECs communication under hypoxia.
Collapse
Affiliation(s)
- Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Min Liu
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Hongling Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Xiang He
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wei Shi
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qianghua Yuan
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yuling Zuo
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Bin Li
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Yunfei Xie
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.
| |
Collapse
|