1
|
Li X, Xiang Z, Wang X, He H, Xu M, Tan C, Wu X, Zhang J, Dong W. Metformin attenuates colitis via blocking STAT3 acetylation by reducing acetyl-CoA production. J Adv Res 2025:S2090-1232(25)00218-8. [PMID: 40174640 DOI: 10.1016/j.jare.2025.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND AND AIMS While metformin has been shown to alleviate dextran sulfate sodium (DSS)-induced colitis in murine models, the mechanisms underlying its anti-inflammatory and barrier-restorative effects remain poorly defined. This study investigates the role of acetyl coenzyme A (acetyl-CoA)-dependent STAT3 acetylation in mediating metformin's therapeutic actions, with the goal of identifying novel molecular targets for ulcerative colitis (UC) treatment. METHODS Acute colitis was induced in wild-type C57BL/6J mice via oral DSS administration, followed by daily intraperitoneal metformin treatment. Intestinal inflammation, barrier integrity, and STAT3 signaling were assessed using histopathology, western blotting, and transmission electron microscopy. To validate STAT3's critical role in colitis pathogenesis, intestinal epithelium-specific STAT3 knockout mice were employed, enabling targeted investigation of STAT3 acetylation and its regulation by metformin. RESULTS Metformin attenuated DSS-induced colitis by suppressing pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), reducing epithelial apoptosis, and restoring tight junction proteins (ZO-1, E-cadherin, Occludin). Mechanistically, metformin reduced acetyl-CoA levels, thereby inhibiting STAT3 acetylation and downstream pathway activation. The pivotal role of STAT3 in colitis progression was confirmed using STAT3 knockout mice, as the therapeutic effects of metformin were significantly diminished in the absence of STAT3-mediated inflammatory signaling. CONCLUSION This study identifies acetyl-CoA-dependent STAT3 acetylation as a novel mechanism through which metformin ameliorates intestinal inflammation and barrier dysfunction. These findings not only advance our understanding of metformin's immunomodulatory properties but also highlight the therapeutic potential of targeting acetyl-CoA metabolism in UC.
Collapse
Affiliation(s)
- Xiangyun Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zixuan Xiang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoli Wang
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Haodong He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Miao Xu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Cheng Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaohan Wu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
2
|
Chen S, Qin Z, Zhou S, Xu Y, Zhu Y. The emerging role of intestinal stem cells in ulcerative colitis. Front Med (Lausanne) 2025; 12:1569328. [PMID: 40201327 PMCID: PMC11975877 DOI: 10.3389/fmed.2025.1569328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic idiopathic inflammatory disease affecting the colon and rectum. Characterized by recurrent attacks, UC is often resistant to traditional anti-inflammatory therapies, imposing significant physiological, psychological, and economic burdens on patients. In light of these challenges, innovative targeted therapies have become a new expectation for patients with UC. A crucial pathological feature of UC is the impairment of the intestinal mucosal barrier, which underlies aberrant immune responses and inflammation. Intestinal stem cells (ISCs), which differentiate into intestinal epithelial cells, play a central role in maintaining this barrier. Growing studies have proved that regulating the regeneration and differentiation of ISC is a promising approach to treating UC. Despite this progress, there is a dearth of comprehensive articles describing the role of ISCs in UC. This review focuses on the importance of ISCs in maintaining the intestinal mucosal barrier in UC and discusses the latest findings on ISC functions, markers, and their regulatory mechanisms. Key pathways involved in ISC regulation, including the Wnt, Notch, Hedgehog (HH), Hippo/Yap, and autophagy pathways, are explored in detail. Additionally, this review examines recent advances in ISC-targeted therapies for UC, such as natural or synthetic compounds, microbial preparations, traditional Chinese medicine (TCM) extracts and compounds, and transplantation therapy. This review aims to offer novel therapeutic insights and strategies for patients who have long struggled with UC.
Collapse
Affiliation(s)
- Siqing Chen
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhang Qin
- The Fourth Hospital of Changsha (Changsha Hospital Affiliated with Hunan Normal University), Changsha, Hunan, China
| | - Sainan Zhou
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
3
|
Ma J, Chen C, Wang N, Fang T, Liu Y, He P, Dong W. Identification of Senescence-Related Genes for the Prediction of Ulcerative Colitis Based on Interpretable Machine Learning Models. J Inflamm Res 2025; 18:3431-3447. [PMID: 40093957 PMCID: PMC11908404 DOI: 10.2147/jir.s508396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
Background Cellular senescence, a hallmark of aging, significantly contributes to the pathology of ulcerative colitis (UC). Despite this, the role of senescence-related genes in UC remains largely undefined. This study seeks to clarify the impact of cellular senescence on UC by identifying key senescence-related genes and developing diagnostic models with potential clinical utility. Methods Clinical data and gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. Senescence-related differentially expressed genes (sene-DEGs) between patients with UC and healthy controls were identified using various bioinformatics techniques. Functional enrichment and immune infiltration analyses were performed to understand subtype characteristics derived from sene-DEGs through consensus clustering. Machine learning algorithms were employed to select feature genes from sene-DEGs, and their expression was validated across multiple independent datasets and human specimens. A nomogram incorporating these feature genes was created and assessed, with its diagnostic performance evaluated using receiver operating characteristic (ROC) analysis on independent datasets. Results Fourteen senescence-related differential genes were identified between patients with UC and healthy controls. These genes enabled the classification of patients with UC into molecular subtypes via unsupervised clustering. ABCB1 and LCN2 emerged as central hub genes through machine learning and feature importance analysis. ROC analysis verified their diagnostic value across various datasets. Validation in independent datasets and human specimens supported the bioinformatics findings. Furthermore, the expression levels of ABCB1 and LCN2 showed significant associations with immune cell profiles. The logistic regression (LR) model based on these genes demonstrated accurate UC prediction, as confirmed by ROC curve analysis. The nomogram model, constructed with feature genes, exhibited outstanding prediction capabilities, supported by DCA, C index, and calibration curve assessments. Conclusion This integrated bioinformatics approach identified ABCB1 and LCN2 as significant biomarkers associated with cellular senescence. These findings enhance the understanding of cellular senescence in UC pathogenesis and propose its potential as a valuable diagnostic biomarker.
Collapse
Affiliation(s)
- Jingjing Ma
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
- General Surgery Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Nian Wang
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Ting Fang
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Yinghui Liu
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Pengzhan He
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, People's Republic of China
| |
Collapse
|
4
|
Nie X, Li Q, Ji H, Zhang S, Wang Y, Xie J, Nie S. Bifidobacterium longum NSP001-derived extracellular vesicles ameliorate ulcerative colitis by modulating T cell responses in gut microbiota-(in)dependent manners. NPJ Biofilms Microbiomes 2025; 11:27. [PMID: 39929833 PMCID: PMC11811157 DOI: 10.1038/s41522-025-00663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Recent studies have shown that intestinal commensal bacteria-derived vesicles may have potential effects in alleviating ulcerative colitis (UC). Although Bifidobacterium longum is widely used to prevent colitis, the potential role of B. longum-derived extracellular vesicles has yet to be explored. Here, we extracted B. longum NSP001-derived extracellular vesicles (NEVs) and investigated the regulatory roles of NEVs in colitis. Our results demonstrated that NEVs alleviate UC by improving intestinal barrier, modulating immune cell differentiation, and promoting the production of SCFAs. NEVs' improvement of inflammation in pseudo-germ-free mice implies that the anti-inflammatory effect of NEVs does not exclusively depend on the regulation of gut microbiota. In conclusion, we suggest that B. longum NSP001 improves UC through the secretion of NEVs. In addition, the study emphasizes the critical role of NEVs in maintaining host immune homeostasis via suppressing STAT3 pathway, thereby highlighting their potential as a novel postbiotic to alleviate UC.
Collapse
Affiliation(s)
- Xinke Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Haihua Ji
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Shanshan Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Yuchen Wang
- College of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Junhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
5
|
Wang X, Lai J, Xu F, Liu M. Network Pharmacology and Molecular Docking: Exploring the Mechanism of Peppermint in Mastitis Prevention and Treatment in Dairy Cows. Vet Sci 2025; 12:129. [PMID: 40005889 PMCID: PMC11861999 DOI: 10.3390/vetsci12020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
In order to elucidate the active ingredients, potential targets, and mechanisms of action of peppermint in treating bovine mastitis, this study utilized network pharmacology analysis and molecular docking to conduct an exploratory, prospective investigation. Using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, all compounds and targets of peppermint were retrieved. After removing duplicates, a total of 133 compounds and 272 targets were obtained. Targets were then standardized to gene names using the UniProt database to construct a drug-component-target network. A total of 183 disease targets related to bovine mastitis were retrieved from the GeneCards database. We obtained 28 cross targets of peppermint targets and bovine mastitis targets, and constructed a protein-protein interaction (PPI) network using the STRING database. A visual network was built using Cytoscape 3.10.0 software, and seven core targets were analyzed and obtained. GO and KEGG pathway enrichment analysis was performed using the Metascape database. Molecular docking was conducted using AutoDockTools-1.5.6 software on some small-molecule compounds and the seven targets to evaluate the stability of binding between peppermint and core targets. Apigenin, luteolin, and ursolic acid are the three main components in peppermint. Core targets (TNF, IL-6, STAT-3, IL-1β, FGF-2, IFNG, and ESR-1) were selected based on the PPI network. The enrichment analysis suggested that the major signaling pathways in network pharmacology may include AGEs-RAGE, IL-17, NF-κB, TLRs, HIF-1, TGF-β, PI3K-Akt, and MAPK. The molecular docking results showed that one of the main components of mint, ursolic acid, exhibited good binding activity with all core targets of bovine mastitis. Other constituents also produced favorable binding with some core targets. This study elucidates the mechanisms of mint in treating bovine mastitis, providing data to support the potential development of new therapies for bovine mastitis using mint and its constituents.
Collapse
Affiliation(s)
- Xinyu Wang
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China;
| | - Jiaxin Lai
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China;
| | - Fei Xu
- National Feed Drug Reference Laboratories, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Mingchun Liu
- College of Animal Science and Medicine, Shenyang Agricultural University, Shenyang 110866, China;
| |
Collapse
|
6
|
Ma J, Yue S, Liu Y, Gong L, He P, Yang Y, Fu Z, Han D, Hu Q, Liao F, Xu L. Fucoxanthin ameliorates ulcerative colitis by maintaining the epithelial barrier via blocking JAK2/STAT3 signaling pathway. Toxicol Appl Pharmacol 2025; 495:117213. [PMID: 39719254 DOI: 10.1016/j.taap.2024.117213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND The clinical efficacies of Ulcerative colitis (UC) are far from satisfactory. Fucoxanthin (FUC) is a marine carotenoid that is abundant in seaweed and microalgae. It has been reported that FUC can possess anti-inflammatory and antioxidant. However, its mechanism and role in UC is yet to be clarified. This study aimed to investigate the protective effect and potential mechanism of FUC extracted from the diatom Phaeodactylum tricornutm on dextran sodium sulfate (DSS) -induced colitis. METHODS Animal UC model was induced by DSS and cellular model was established by TNF-α. Immunohistochemical staining, Western blot, RT-qPCR, and immunofluorescence were used to assess the inflammatory responses and epithelial barrier in vivo and in vitro models. RESULTS The results showed that FUC attenuates DSS-induced colitis by ameliorating the epithelial mucosal barrier. Moreover, FUC possessed antioxidant and anti-inflammatory effects on NCM460 cells. JAK/STAT activator RO8191 could reverse these changes. CONCLUSION FUC exerted anti-inflammatory and antioxidant effects via the JAK2/STAT3 signaling pathway, and served as a potential therapeutic agent for the treatment of UC.
Collapse
Affiliation(s)
- Jingjing Ma
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Simei Yue
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yinghui Liu
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lingjiao Gong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yingjie Yang
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhengxin Fu
- Demeter Biotech (Zhuhai) Co. Ltd., Zhuhai, China
| | - Danxiang Han
- Demeter Biotech (Zhuhai) Co. Ltd., Zhuhai, China
| | - Qiang Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong, China.
| | - Lin Xu
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Yu LE, Yang WC, Liang YC. Crosstalk Within the Intestinal Epithelium: Aspects of Intestinal Absorption, Homeostasis, and Immunity. Biomedicines 2024; 12:2771. [PMID: 39767678 PMCID: PMC11673925 DOI: 10.3390/biomedicines12122771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Gut health is crucial in many ways, such as in improving human health in general and enhancing production in agricultural animals. To maximize the effect of a healthy gastrointestinal tract (GIT), an understanding of the regulation of intestinal functions is needed. Proper intestinal functions depend on the activity, composition, and behavior of intestinal epithelial cells (IECs). There are various types of IECs, including enterocytes, Paneth cells, enteroendocrine cells (EECs), goblet cells, tuft cells, M cells, and intestinal epithelial stem cells (IESCs), each with unique 3D structures and IEC distributions. Although the communication between IECs and other cell types, such as immune cells and neurons, has been intensively reviewed, communication between different IECs has rarely been addressed. The present paper overviews the networks among IECs that influence intestinal functions. Intestinal absorption is regulated by incretins derived from EECs that induce nutrient transporter activity in enterocytes. EECs, Paneth cells, tuft cells, and enterocytes release signals to activate Notch signaling, which modulates IESC activity and intestinal homeostasis, including proliferation and differentiation. Intestinal immunity can be altered via EECs, goblet cells, tuft cells, and cytokines derived from IECs. Finally, tools for investigating IEC communication have been discussed, including the novel 3D intestinal cell model utilizing enteroids that can be considered a powerful tool for IEC communication research. Overall, the importance of IEC communication, especially EECs and Paneth cells, which cover most intestinal functional regulating pathways, are overviewed in this paper. Such a compilation will be helpful in developing strategies for maintaining gut health.
Collapse
Affiliation(s)
| | | | - Yu-Chaun Liang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan; (L.-E.Y.); (W.-C.Y.)
| |
Collapse
|
8
|
Zhang W, Wu Y, Yuan Y, Wang L, Yu B, Li X, Yao Z, Liang B. Identification of key biomarkers for predicting atherosclerosis progression in polycystic ovary syndrome via bioinformatics analysis and machine learning. Comput Biol Med 2024; 183:109239. [PMID: 39396400 DOI: 10.1016/j.compbiomed.2024.109239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is one of the most significant cardiovascular risk factors, playing vital roles in various cardiovascular diseases such as atherosclerosis (AS). This study attempted to explore key biomarkers for predicting AS in patients with PCOS and to investigate the role of immune cell infiltration in this process. METHODS We downloaded the expression matrix of AS (GSE100927, GSE28829) and PCOS (GSE54248) from the Gene Expression Omnibus (GEO) database. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were used to identify PCOS-related genes in AS. Functional enrichment analysis was employed to reveal underlying mechanisms. Then, Protein-protein interaction (PPI) and three machine learning algorithms were used to screen the hub genes, including the Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Random Forest (RF). Moreover, the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were applied to evaluate the diagnostic value of the nomogram model. Finally, we performed immune cell infiltration and single-gene GSEA. RESULTS A total of 41 genes were identified as PCOS-related genes in AS, with functional analysis indicating that the potential pathogenesis lies in inflammatory and immune responses. Furthermore, we identified two hub genes (MMP9 and P2RY13) by three machine learning algorithms. The nomogram model based on MMP9 and P2RY13 can be used as a new diagnostic model to differentiate AS in PCOS women (AUC>0.9). The calibration curves and DCA curves demonstrated the excellent discriminative ability and clinical practicality of this nomogram. Finally, immune infiltration analysis revealed the disorder of immunocytes in AS. The two gene expressions were negatively correlated with Monocyte and Macrophages M1, while positively correlated with Macrophages M0. Single gene GSEA analysis suggested that the MMP9 and P2RY13 might be involved in the metabolism and inflammation responses. CONCLUSION We identified MMP9 and P2RY13 as the biomarkers and developed a new nomogram for early diagnosing AS based on them in PCOS patients. Our findings may provide new insights into the diagnosis, prevention, and treatment targets of PCOS-associated AS.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Yalin Wu
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Yalin Yuan
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Leigang Wang
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Bing Yu
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Xin Li
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Zhong Yao
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Bin Liang
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China.
| |
Collapse
|
9
|
Xie Q, Gong S, Cao J, Li A, Kulyar MF, Wang B, Li J. Mesenchymal stem cells: a novel therapeutic approach for feline inflammatory bowel disease. Stem Cell Res Ther 2024; 15:409. [PMID: 39522034 PMCID: PMC11550560 DOI: 10.1186/s13287-024-04038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) poses a significant and growing global health challenge, affecting both humans and domestic cats. Research on feline IBD has not kept pace with its widespread prevalence in human populations. This study aimed to develop a model of feline IBD by incorporating dextran sulfate sodium (DSS) to evaluate the therapeutic potential of MSCs and to elucidate the mechanisms that enhance their action. METHODS We conducted a comprehensive clinical assessment, including magnetic resonance imaging (MRI), endoscopy, and histopathological examination. Additionally, alterations in intestinal microbiota were characterized by 16 S rDNA sequencing, and the influence of MSCs on IBD-related gene expression was investigated through transcriptome analysis. RESULTS According to our findings, MSC treatment significantly mitigated DSS-induced clinical manifestations, reduced inflammatory cell infiltration, decreased the production of inflammatory mediators, and promoted mucosal repair. Regarding the intestinal microbiota, MSC intervention effectively corrected the DSS-induced dysbiosis, increasing the presence of beneficial bacteria and suppressing the proliferation of harmful bacteria. Transcriptome analysis revealed the ability of MSCs to modulate various inflammatory and immune-related signaling pathways, including cytokine-cytokine receptor interactions, TLR signaling pathways, and NF-κB pathways. CONCLUSION The collective findings indicate that MSCs exert multifaceted therapeutic effects on IBD, including the regulation of intestinal microbiota balance, suppression of inflammatory responses, enhancement of intestinal barrier repair, and modulation of immune responses. These insights provide a solid scientific foundation for employing MSCs as an innovative therapeutic strategy for IBD and pave the way for future clinical explorations.
Collapse
Affiliation(s)
- Qiyun Xie
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Saisai Gong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Jintao Cao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, P.R. China
| | - Md F Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Bingyun Wang
- School of Life Science and Engineering, Foshan University, Foshan, P.R. China.
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P.R. China.
| |
Collapse
|
10
|
Qiang X, Liang S, Lv Y, Wang X, Zhang H, Zhan J. Advanced glycation end products (AGEs) impair the intestinal epithelial barrier via STAT3 activation mediated by macrophages. Food Chem Toxicol 2024; 192:114966. [PMID: 39197527 DOI: 10.1016/j.fct.2024.114966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Advanced glycation end products (AGEs) are a spectrum of complex compounds widely found in processed foods and frequently consumed by humans. AGEs are implicated in impairing the intestinal barrier, but the underlying mechanisms remain unclear. This study investigated the effects of three types of AGEs on gene expression of tight junctions (TJs) in colorectal epithelial HT-29 cells, and observed minimal alterations in TJs expression. Given the important role of subepithelial macrophages in regulating the intestinal barrier, we explored whether AGEs affect the intestinal barrier via the involvement of macrophages. Notably, a significant downregulation of TJs expression was observed when supernatants from AGEs-treated RAW264.7 macrophage cells were transferred to HT-29 cells. Further investigations indicated that AGEs increased IL-6 levels in RAW264.7 cells, subsequently triggering STAT3 activation and suppressing TJs expression in HT-29 cells. The role of STAT3 activation was confirmed by observing enhanced TJs expression in HT-29 cells following pretreatment with an inhibitor of STAT3 activation prior to the transfer of the conditioned medium. These findings demonstrated that AGEs impaired the intestinal barrier via macrophage-mediated STAT3 activation, shedding light on the mechanisms underlying AGEs-induced intestinal barrier injury and related food safety risks.
Collapse
Affiliation(s)
- Xin Qiang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Shumin Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yinchuan Lv
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaoyuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Lam IH, Chan CI, Han M, Li L, Yu HH. ACSL4 mediates inflammatory bowel disease and contributes to LPS-induced intestinal epithelial cell dysfunction by activating ferroptosis and inflammation. Open Med (Wars) 2024; 19:20240993. [PMID: 39247444 PMCID: PMC11377980 DOI: 10.1515/med-2024-0993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 09/10/2024] Open
Abstract
Background The pathogenesis of inflammatory bowel disease (IBD) is closely associated with the dysfunction of the intestinal epithelial barrier, leading to increased bacterial translocation, leukocyte infiltration, and mucosal injury, which may act as a pivotal or incipient event in the pathophysiology of the disorder. The primary objective of this study is to examine the key genes implicated in IBD and the perturbation of intestinal epithelial cell function. Methods The genes associated with ferroptosis were identified through the utilization of the Gene Expression Omnibus (GEO) database and the GeneCard database. Additionally, an in vitro model of IBD was established by stimulating Caco-2 cells with lipopolysaccharides (LPSs) to investigate the molecular mechanisms underlying intestinal epithelial cell dysfunction. Results We discovered evidence that establishes a connection between ferroptosis and the inflammatory responses associated with the development of IBD. This evidence suggests that IBD patients who exhibit an inflammatory response have higher expression of the acyl-CoA synthetase long-chain family member 4 (ACSL4) gene compared to IBD patients without an inflammatory response or healthy individuals. Exposure to LPS at concentrations of 1 or 10 μg/mL resulted in a significant upregulation of ferroptosis-related genes ACSL4, GPX4, and SLC7A11, as well as an increase in ferroptosis biomarkers MDA and a decrease in CAT and GSH-Px levels compared to the control group. Inhibition of ACSL4 using si-ACSL4 or rosiglitazone demonstrated protective effects against LPS-induced ferroptosis and NF-κB-mediated inflammatory response. Conclusion ACSL4 shows potential as a promising target for ferroptosis in the prevention and treatment of IBD and dysfunction of intestinal epithelial cells.
Collapse
Affiliation(s)
- Ieng-Hou Lam
- Department of Gastroenterology, Kiang Wu Hospital, Macau, SAR 999078, China
| | - Chon-In Chan
- Department of Gastroenterology, Kiang Wu Hospital, Macau, SAR 999078, China
| | - Meixia Han
- Department of Gastroenterology, Guangdong Second Provincial General Hospital, Guangzhou, 510000, Guangdong Province, China
| | - Lixuan Li
- Department of Gastroenterology, Guangdong Second Provincial General Hospital, Guangzhou, 510000, Guangdong Province, China
| | - Hon-Ho Yu
- Department of Gastroenterology, Kiang Wu Hospital, Macau, SAR 999078, China
| |
Collapse
|
12
|
Zhang Z, Huang H, Peng L, Zhou B, Yang H, Tang Z, Yan W, Chen W, Liu Z, Zheng D, Shen P, Fang W. SIX4 Activation in Inflammatory Response Drives the Transformation of Colorectal Epithelium into Inflammation and Tumor via Feedback-Enhancing Inflammatory Signaling to Induce Tumor Stemness Signaling. Int J Biol Sci 2024; 20:4618-4634. [PMID: 39309424 PMCID: PMC11414381 DOI: 10.7150/ijbs.93411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Some colorectal cancer patients have experienced normal epithelial transformation into inflammatory and tumor states, but the molecular basis still needs to be further determined. The expression levels of SIX4 are gradually increased in dextran sodium sulfate (DSS) and azoxymethane (AOM)/DSS-induced colonic epithelial inflammation and tumors, respectively, in mice. Targeting SIX4 alleviates intestinal inflammation occurrence and reduces adenoma formation in mice. Clinical sample assays indicated that SIX4 is upregulated in inflammatory bowel disease (IBD) and colorectal cancer (CRC) tissues compared to normal colorectal tissues. In a subsequent study, we found that SIX4, transcriptionally activated by the proinflammatory IL-6/STAT3 signal, binds to c-Jun to transcribe IL-6, thus forming a positive IL-6/STAT3/SIX4/c-Jun feedback loop, which further induces intestinal inflammation occurrence. In addition, elevated SIX4 also induces the expression of DeltaNp63, rather than wild-type p63, by binding to its promoter and thus facilitates the activation of tumor stemness signals, which ultimately leads to the formation of colorectal cancer. Our study first observes that activated SIX4 in inflammation induction drives the transformation of colorectal epithelium into inflammation and tumor, which demonstrates SIX4 as a significant therapeutic target in IBD and colitis-associated colorectal cancer (CAC) and CRC pathogenesis.
Collapse
Affiliation(s)
- Ziyan Zhang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 528406, Guangzhou, China
- Department of gynecology and obstetrics, The Third Affiliated Hospital, Southern Medical University, 510630, Guangzhou, China
| | - Huang Huang
- Nursing Department of Nanfang Hospital, Southern Medical University, 510516, Guangzhou, China
| | - Lanzhu Peng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Beixian Zhou
- The People's Hospital of Gaozhou, Gaozhou, 525200, China
| | - Huiling Yang
- School of Pharmacy, Guangdong Medical University, 523808, Dongguan, China
| | - Zibo Tang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Weifeng Chen
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Zhen Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510095, China
| | - Dayong Zheng
- Shunde Hospital of South Medical University, Foshan City, Guangdong, China
- Kashi first people's Hospital, 844099, Kashi, China
| | - Peng Shen
- Department of Oncology, Nanfang Hospital of Southern Medical University, 510515, Guangzhou, China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
- Department of gynecology and obstetrics, The Third Affiliated Hospital, Southern Medical University, 510630, Guangzhou, China
| |
Collapse
|
13
|
Chen M, Wei S, Wu X, Xiang Z, Li X, He H, Liao F, Wang X, Zhang J, Yu B, Dong W. 2'-Hydroxycinnamaldehyde Alleviates Intestinal Inflammation by Attenuating Intestinal Mucosal Barrier Damage Via Directly Inhibiting STAT3. Inflamm Bowel Dis 2024; 30:992-1008. [PMID: 38422244 PMCID: PMC11144992 DOI: 10.1093/ibd/izad283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND The currently available clinical therapeutic drugs for ulcerative colitis (UC) are considered inadequate owing to certain limitations. There have been reports on the anti-inflammatory effects of 2'-hydroxycinnamaldehyde (HCA). However, whether HCA can improve UC is still unclear. Here, we aimed to investigate the pharmacological effects of HCA on UC and its underlying molecular mechanisms. METHODS The pharmacological effects of HCA were comprehensively investigated in 2 experimental setups: mice with dextran sulfate sodium (DSS)-induced colitis and lipopolysaccharide (LPS)-treated fetal human colon (FHC) cells. Furthermore, the interaction between HCA and signal transducer and activator of transcription 3 (STAT3) was investigated using molecular docking. The FHC cells with STAT3 knockdown or overexpression and mice with intestinal epithelium-specific STAT3 deletion (STAT3ΔIEC) were used to evaluate whether STAT3 mediated the pharmacological effects of HCA. RESULTS 2'-Hydroxycinnamaldehyde attenuated dysregulated expression of inflammatory cytokines in a dose-dependent manner while increasing the expression of tight junction proteins, reducing the apoptosis of intestinal epithelial cells, and effectively alleviating inflammation both in vivo and in vitro. 2'-Hydroxycinnamaldehyde bound directly to STAT3 and inhibited its activation. The modulation of STAT3 activation levels due to STAT3 knockdown or overexpression influenced the mitigating effects of HCA on colitis. Further analysis indicated that the remission effect of HCA was not observed in STAT3ΔIEC mice, indicating that STAT3 mediated the anti-inflammatory effects of HCA. CONCLUSIONS We present a novel finding that HCA reduces colitis severity by attenuating intestinal mucosal barrier damage via STAT3. This discovery holds promise as a potential new strategy to alleviate UC.
Collapse
Affiliation(s)
- Meilin Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuchun Wei
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaohan Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zixuan Xiang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangyun Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haodong He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fei Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Wang
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Wyss MT, Heuer C, Herwerth M. The bumpy road of purinergic inhibitors to clinical application in immune-mediated diseases. Neural Regen Res 2024; 19:1206-1211. [PMID: 37905866 PMCID: PMC11467927 DOI: 10.4103/1673-5374.386405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/16/2023] [Accepted: 09/05/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Purinergic signaling plays important roles throughout the body in the regulation of organ functions during and following the disruption of homeostasis. This is also reflected by the widespread expression of two families of purinergic receptors (P1 and P2) with numerous subtypes. In the last few decades, there has been increasing evidence that purinergic signaling plays an important role in the regulation of immune functions. Mainly, signals mediated by P2 receptors have been shown to contribute to immune system-mediated pathologies. Thus, interference with P2 receptors may be a promising strategy for the modulation of immune responses. Although only a few clinical studies have been conducted in isolated entities with limited success, preclinical work suggests that the use of P2 receptor inhibitors may bear some promise in various autoimmune diseases. Despite the association of P2 receptors with several disorders from this field, the use of P2 receptor antagonists in clinical therapy is still very scarce. In this narrative review, we briefly review the involvement of the purinergic system in immunological responses and clinical studies on the effect of purinergic inhibition on autoimmune processes. We then open the aperture a bit and show some preclinical studies demonstrating a potential effect of purinergic blockade on autoimmune events. Using suramin, a non-specific purinergic inhibitor, as an example, we further show that off-target effects could be responsible for observed effects in immunological settings, which may have interesting implications. Overall, we believe that it is worthwhile to further investigate this hitherto underexplored area.
Collapse
Affiliation(s)
- Matthias T. Wyss
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zürich, Switzerland
| | - Christine Heuer
- Neurology Department, University Hospital of Zurich, Zürich, Switzerland
| | - Marina Herwerth
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zürich, Switzerland
- Neurology Department, University Hospital of Zurich, Zürich, Switzerland
| |
Collapse
|
15
|
Ge R, Song J, Cao Z, Ban S, Tang L, Li QS. Discovery of 6-Acylamino/Sulfonamido Benzoxazolone with IL-6 Inhibitory Activity as Promising Therapeutic Agents for Ulcerative Colitis. Chem Biodivers 2024; 21:e202400031. [PMID: 38448389 DOI: 10.1002/cbdv.202400031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
Ulcerative colitis has been widely concerned for its persistent upward trend, and the sustained overproduction of pro-inflammatory cytokines such as IL-6 remains a crucial factor in the development of UC. Therefore, the identification of new effective drugs to block inflammatory responses is an urgent and viable therapeutic strategy for UC. In our research, twenty-three 6-acylamino/sulfonamido benzoxazolone derivatives were synthesized, characterized, and evaluated for anti-inflammatory activity against NO and IL-6 production in LPS-induced RAW264.7 cells. The results demonstrated that most of the target compounds were capable of reducing the overexpression of NO and IL-6 to a certain degree. For the most active compounds 3i, 3j and 3 l, the inhibitory activities were superior or equivalent to those of the positive drug celecoxib with a dose-dependent relationship. Furthermore, animal experiments revealed that active derivatives 3i, 3j and 3 l exhibited definitive therapeutical effect on DSS induced ulcerative colitis in mice by mitigating weight loss and DAI score while decreasing levels of pro-inflammatory cytokines such as IL-6 and IFN-γ, simultaneously increasing production of anti-inflammatory cytokines IL-10. In addition, compounds 3i, 3j and 3 l could also inhibit the oxidative stress to alleviate ulcerative colitis by decreasing MDA and MPO levels. These finding demonstrated that compounds 3i, 3j and 3 l hold significant potential as novel therapeutic agents for ulcerative colitis.
Collapse
Affiliation(s)
- Rui Ge
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
| | - Jiaqi Song
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhen Cao
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Shurong Ban
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Li Tang
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, China
| | - Qing-Shan Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Traditional Chinese Medicine, Shanxi, 030619, PR China
| |
Collapse
|
16
|
Xu CL, Wang C, Li GB, Zhao T, Zhou RL, Chen J. Antibiotic administration aggravates asthma by disrupting gut microbiota and the intestinal mucosal barrier in an asthma mouse model. Exp Ther Med 2024; 27:157. [PMID: 38476896 PMCID: PMC10928978 DOI: 10.3892/etm.2024.12445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
In humans, gut microbiota can determine the health status. The regulatory mechanisms of the gut microbiota in asthma must be elucidated. Although antibiotics (ABXs) can clear infections, they markedly alter the composition and abundance of gut microbiota. The present study used ABX-treated mice to examine the time-dependent effects of ABX administration on the gut microbiota and intestinal mucosal barrier. The mouse asthma model was established using ovalbumin (OVA) and gavaged with an ABX cocktail for different durations (1 or 2 weeks) and stacked sequences. The pathology of the model, model 2, OVA-ABX, OVA-ABX 2, ABX-OVA and ABX-OVA was severe when compared with the control group as evidenced by the following results: i) significantly increased pulmonary and colonic inflammatory cell infiltration; ii) enhanced pause values and iii) OVA-induced immunoglobulin E (IgE) and TGF-β expression levels, and significantly downregulated Tight Junction Protein 1 (TJP1), claudin 1 and Occludin expression levels. Furthermore, the intestinal bacterial load in the OVA-ABX and OVA-ABX 2 groups was significantly lower than that in the ABX-OVA and ABX-OVA 2 groups, respectively. The predominant taxa were as follows: phyla, Firmicutes and Proteobacteria, genera, Escherichia-Shigella, Lactobacillus and Lachnospira. The abundances of Lachnospira and Escherichia-Shigella were correlated with the expression of OVA-induced IgE and TJPs. These findings indicated that ABX administration, which modifies microbiome diversity and bacterial abundance, can disrupt colonic integrity, downregulate TJ proteins, damage the intestinal barrier, enhance enterocyte permeability, and promote the release of inflammatory factors, adversely affecting asthma alleviation and long-term repair.
Collapse
Affiliation(s)
- Cheng-Ling Xu
- College of Basic Medical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Cui Wang
- College of Basic Medical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Gao-Bin Li
- College of Basic Medical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Tong Zhao
- College of Basic Medical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Rui-Ling Zhou
- Department of Dermatology, First Affiliated Hospital, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650504, P.R. China
| | - Jing Chen
- College of Basic Medical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
17
|
Zhu F, Zhi Y, Li Y, Niu H, Ren S. The Mechanism of Polygonum Hydropiper L-Coptis Chinensis in the Treatment of Ulcerative Colitis Based on Network Pharmacology and Experimental Validation. FRONT BIOSCI-LANDMRK 2024; 29:93. [PMID: 38538280 DOI: 10.31083/j.fbl2903093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 01/05/2025]
Abstract
BACKGROUND Polygonum hydropiper L (PH) was widely used to treat dysentery, gastroenteritis, diarrhea and other diseases. Coptis chinensis (CC) had the effects of clearing dampness-heat, purging fire, and detoxifying. Study confirmed that flavonoids in PH and alkaloids in CC alleviated inflammation to inhibit the development of intestinal inflammation. However, how PH-CC affects UC was unclear. Therefore, the aim of this study is to analyze the mechanism of PH-CC on ulcerative colitis (UC) through network pharmacology and in vivo experiments. METHODS The active ingredients and targets of PH-CC and targets of UC were screened based on related databases. The core targets of PH-CC on UC was predicted by protein-protein interaction network (PPI), and then the Gene Ontology-biological processes (GO-BP) function enrichment analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID) database. The binding activity between pyroptosis proteins, core targets and effective ingredients were verified based on molecular docking technology. Finally, combined with the results of network pharmacology and literature research, the mechanism of PH-CC against UC was verified by in vivo experiments. RESULTS There were 23 active components and 191 potential targets in PH-CC, 5275 targets in UC, and 141 co-targets. GO-BP functional analysis of 141 co-targets showed that the first 20 biological processes were closely related to inflammation and lipopolysaccharide (LPS) stimulation. Furthermore, core targets had good binding activity with the corresponding compounds. Animal experiment indicated that PH-CC effectively prevented weight loss in UC mice, reduced the disease activity index (DAI) score, maintained colon length, suppressed myeloperoxidase (MPO) activity, inhibited pyroptosis protein expression, and downregulated the levels of IL-18 and IL-1β to alleviate intestinal inflammation. CONCLUSIONS The results of network pharmacology and animal experiments showed that PH-CC suppressed the inflammatory response, restored colon morphology, and inhibited pyroptosis in UC mice. Thus, PH-CC may improve UC by regulating the NOD-like receptor protein domain 3 (NLRP3)/Caspase-1 signaling pathway.
Collapse
Affiliation(s)
- Feifei Zhu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, China
| | - Yunyun Zhi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, China
| | - Yonghui Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, China
| | - Haiyan Niu
- Department of Pathology, The First Affiliated Hospital of Hainan Medical University, 570102 Haikou, Hainan, China
| | - Shouzhong Ren
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, China
| |
Collapse
|
18
|
Li J, Wei Y, Liu C, Guo X, Liu Z, Zhang L, Bao S, Wu X, Wang X, Zhang J, Dong W. 2'-Fucosyllactose restores the intestinal mucosal barrier in ulcerative colitis by inhibiting STAT3 palmitoylation and phosphorylation. Clin Nutr 2024; 43:380-394. [PMID: 38150914 DOI: 10.1016/j.clnu.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND & AIMS 2'-Fucosyllactose (2'-FL), the primary constituent of human milk oligosaccharides, has been identified as a potential regulator of inflammation in inflammatory bowel disease. Despite this recognition, the specific mechanisms through which 2'-FL alleviates ulcerative colitis (UC) remain ambiguous. This study seeks to investigate the potential anti-inflammatory properties of 2'-FL concerning intestinal inflammation and uncover the associated mechanisms. METHODS C57BL/6J mice were orally administered a daily dose of 500 mg/kg 2'-FL for 11 consecutive days, followed by the induction of colitis using 3 % (wt/vol) dextran sulfate sodium (DSS) for the final 6 days. Subsequently, a comprehensive range of techniques, including an Acyl-biotin exchange assay, fluorescein-isothiocyanate-labeled dextran assay, histopathology, ELISA, quantitative real-time PCR, Western blot, immunofluorescence staining, immunohistochemistry staining, Alcian blue-periodic acid schiff staining, TdT-mediated dUTP nick end labeling, transmission electron microscopy, iTRAQ quantitative proteomics, bioinformatics analysis, and the generation of signal transducer and activator of transcription 3 (STAT3) knockout mice, were employed to explore the relevant molecular mechanisms. RESULTS Administration of 2'-FL significantly ameliorated DSS-induced colitis in mice and enhanced the integrity of the intestinal mucosal barrier. 2'-FL downregulated the phosphorylation of STAT3 and inhibited STAT3-related signaling pathways in colon tissues, which, in turn, reduced inflammatory responses. Interestingly, knockdown of STAT3 attenuated the protective effects of 2'-FL, highlighting that 2'-FL-mediated inflammatory attenuation is dependent on STAT3 expression. Additionally, 2'-FL could influence STAT3 activation by modulating the palmitoylation and depalmitoylation of STAT3. CONCLUSIONS 2'-FL promotes the recovery of the intestinal mucosal barrier and suppresses inflammation in ulcerative colitis by inhibiting the palmitoylation and phosphorylation of STAT3.
Collapse
Affiliation(s)
- Jinting Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yuping Wei
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Chuan Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xingzhou Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhengru Liu
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Luyun Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Shenglan Bao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaohan Wu
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China; Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoli Wang
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
19
|
Qiang J, Yang R, Li X, Xu X, Zhou M, Ji X, Lu Y, Dong Z. Monotropein induces autophagy through activation of the NRF2/PINK axis, thereby alleviating sepsis-induced colonic injury. Int Immunopharmacol 2024; 127:111432. [PMID: 38142644 DOI: 10.1016/j.intimp.2023.111432] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Sepsis is a systemic inflammatory disease that is caused by a dysregulated host response to infection and is a life-threatening organ dysfunction that affects many organs, which includes the colon. Mounting evidence suggests that sepsis-induced colonic damage is a major contributor to organ failure and cellular dysfunction. Monotropein (MON) is the major natural compound in the iris glycoside that is extracted from Morendae officinalis radix, which possesses the potent pharmacological activities of anti-inflammatory and antioxidant properties. This research evaluated whether MON is able to alleviate septic colonic injury in mice by cecal ligation and puncture. Colonic tissues were analyzed using histopathology, immunofluorescence, quantitative real-time polymerase chain reaction, and Western blot methods. It was initially discovered that MON reduced colonic damage in infected mice, in addition to inflammation, apoptosis, and oxidative stress in colonic tissues, while it activated autophagy, with the NRF2/keap1 and PINK1/Parkin pathways also being activated. Through the stimulation of NCM460 cells with lipopolysaccharides, an in vitro model of sepsis was created as a means of further elucidating the potential mechanisms of MON. In the in vitro model, it was found that MON could still activate the NRF2/keap1, PINK1/Parkin, and autophagy pathways. However, when MON was paired with the NRF2 inhibitor ML385, it counteracted MON-induced activation of PINK1/Parkin and autophagy, while also promoting inflammatory response and apoptosis in NCM460 cells. Therefore, the data implies that MON could play a therapeutic role through the activation of the NFR2/PINK pathway as a means of inducing autophagy to alleviate the oxidative stress in colonic tissues that is induced by sepsis, which will improve inflammation and apoptosis in colonic tissues.
Collapse
Affiliation(s)
- Jingchao Qiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Rongrong Yang
- Department of Oncology, The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Lianyungang 222000, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xuhui Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mengyuan Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaomeng Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yingzhi Lu
- Department of Oncology, The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Lianyungang 222000, China.
| | - Zibo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
20
|
Wei Y, Li J, Li J, Liu C, Guo X, Liu Z, Zhang L, Bao S, Wu X, Su W, Wang X, Zhang J, Dong W. Dietary long-chain fatty acids promote colitis by regulating palmitoylation of STAT3 through CD36-mediated endocytosis. Cell Death Dis 2024; 15:60. [PMID: 38233383 PMCID: PMC10794235 DOI: 10.1038/s41419-024-06456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
The Western diet, characterized by its high content of long-chain fatty acids (LCFAs), is widely recognized as a significant triggering factor for inflammatory bowel disease (IBD). While the link between a high-fat diet and colitis has been observed, the specific effects and mechanisms remain incompletely understood. Our study provides evidence that the diet rich in LCFAs can disrupt the integrity of the intestinal barrier and exacerbate experimental colitis in mice. Mechanistically, LCFAs upregulate the signal transducer and activator of transcription-3 (STAT3) pathway in the inflammatory model, and STAT3 knockout effectively counters the pro-inflammatory effects of LCFAs on colitis. Specifically, palmitic acid (PA), a representative LCFA, enters intestinal epithelial cells via the cluster of differentiation 36 (CD36) pathway and participates in the palmitoylation cycle of STAT3. Inhibiting this cycle using pharmacological inhibitors like 2-Bromopalmitate (2-BP) and ML349, as well as DHHC7 knockdown, has the ability to alleviate inflammation induced by PA. These findings highlight the significant role of dietary LCFAs, especially PA, in the development and progression of IBD. Diet adjustments and targeted modulation offer potential therapeutic strategies for managing this condition. Model of LCFAs involvement in the palmitoylation cycle of STAT3 upon internalization into cells. Following cellular uptake through CD36, LCFAs are converted to palmitoyl-CoA. In the presence of DHHC7, palmitoyl-CoA binds to STAT3 at the C108 site, forming palmitoylated STAT3. Palmitoylation further promotes phosphorylation at the Y705 site of STAT3. Subsequently, palmitoylated STAT3 undergoes depalmitoylation by APT2 and translocates to the nucleus to exert its biological functions.
Collapse
Affiliation(s)
- Yuping Wei
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jinting Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jiao Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Chuan Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China
| | - Xingzhou Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhengru Liu
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Luyun Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Shenglan Bao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaohan Wu
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wenhao Su
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoli Wang
- Department of Plastic Surgery, Renmin hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
21
|
Liu S, Li Z, Lan S, Hao H, Baz AA, Yan X, Gao P, Chen S, Chu Y. The Dual Roles of Activating Transcription Factor 3 (ATF3) in Inflammation, Apoptosis, Ferroptosis, and Pathogen Infection Responses. Int J Mol Sci 2024; 25:824. [PMID: 38255898 PMCID: PMC10815024 DOI: 10.3390/ijms25020824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Transcription factors are pivotal regulators in the cellular life process. Activating transcription factor 3 (ATF3), a member of the ATF/CREB (cAMP response element-binding protein) family, plays a crucial role as cells respond to various stresses and damage. As a transcription factor, ATF3 significantly influences signal transduction regulation, orchestrating a variety of signaling pathways, including apoptosis, ferroptosis, and cellular differentiation. In addition, ATF3 serves as an essential link between inflammation, oxidative stress, and immune responses. This review summarizes the recent advances in research on ATF3 activation and its role in regulating inflammatory responses, cell apoptosis, and ferroptosis while exploring the dual functions of ATF3 in these processes. Additionally, this article discusses the role of ATF3 in diseases related to pathogenic microbial infections. Our review may be helpful to better understand the role of ATF3 in cellular responses and disease progression, thus promoting advancements in clinical treatments for inflammation and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Zhangcheng Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Shimei Lan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Huafang Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Ahmed Adel Baz
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Xinmin Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Pengcheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Shengli Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou 730046, China
| |
Collapse
|
22
|
Liu B, Zhang J, Wang X, Ye W, Yao J. Exploration of the Mechanisms Underlying Yu's Enema Formula in Treating Ulcerative Colitis by Blocking the RhoA/ROCK Pathway based on Network Pharmacology, High-performance Liquid Chromatography Analysis, and Experimental Verification. Curr Pharm Des 2024; 30:1085-1102. [PMID: 38523541 DOI: 10.2174/0113816128290586240315071044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND The traditional Chinese medicine formula, Yu's Enema Formula (YEF), has demonstrated potential in the treatment of Ulcerative Colitis (UC). OBJECTIVE This study aimed to unveil the anti-UC mechanisms of YEF. METHODS Utilizing public databases, we obtained YEF and UC-related targets. GO and KEGG analyses were conducted via clusterProfiler and Reactome. The STRING database facilitated the construction of the PPI network, and hub targets were selected using cytoHubba. We used R software for differential expression and correlation analyses, and molecular docking was performed with PyMOL and AutoDock. HPLC analysis identified the compounds in YEF. For in vivo validation, a UC rat model was employed. RESULTS AND DISCUSSION 495 YEF-UC overlapping targets were identified. GO and KEGG analyses indicated enrichment in exogenous stimuli response, peptide response, positive MAPK cascade regulation, interleukin- related signaling, and the TLR4 cascade. Hub targets included CTNNB1, JUN, MAPK1, MAPK3, SRC, STAT3, TLR4, TP53, and RELA, which were often interconnected. Molecular docking revealed quercetin's strong binding affinity with CTNNB1, MAPK1, MAPK3, SRC, STAT3, TLR4, and TP53, consistent with HPLC analysis. In vivo experiments suggested that YEF has the potential to alleviate UC symptoms and protect the intestinal mucosal barrier by inhibiting the RhoA/ROCK pathway. CONCLUSION YEF may safeguard the intestinal mucosal barrier in UC by targeting CTNNB1, MAPK1, MAPK3, SRC, STAT3, TLR4, and TP53, while blocking the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Binbin Liu
- Department of Digestion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jie Zhang
- Department of Digestion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaoqi Wang
- Department of Digestion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wei Ye
- Department of Digestion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiaming Yao
- Department of Digestion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Yang J, Wang X, Hu T, Huang H, Chen G, Jin B, Zeng G, Liu J. Entero-toxigenic Bacteroides fragilis contributes to intestinal barrier injury and colorectal cancer progression by mediating the BFT/STAT3/ZEB2 pathway. Cell Cycle 2024; 23:70-82. [PMID: 38273425 PMCID: PMC11005799 DOI: 10.1080/15384101.2024.2309005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Our previous findings confirmed the high enrichment of Bacteroides fragilis (BF) in fecal samples from patients with colorectal cancer (CRC). The intestinal mucosal barrier is the first defense of the organism against commensal flora and intestinal pathogens and is closely associated with the occurrence and development of CRC. Therefore, this study aimed to investigate the molecular mechanisms through which BF mediates intestinal barrier injury and CRC progression. SW480 cells and a Caco2 intestinal barrier model were treated with entero-toxigenic BF (ETBF), its enterotoxin (B. fragilis toxin, BFT), and non-toxigenic BF (NTBF). Cell counting kit-8, flow cytometry, wound healing and transwell assays were performed to analyze the proliferation, apoptosis, migration, and invasion of SW480 cells. Transmission electron microscopy, FITC-dextran, and transepithelial electrical resistance (TEER) were used to analyze damage in the Caco2 intestinal barrier model. The Azoxymethane/Dextran Sulfate Sodium (AOM/DSS) animal model was established to evaluate the effect of ETBF on intestinal barrier injury and CRC progression in vivo. ETBF and BFT enhanced the viability, wound healing ratio, invasion, and EMT of SW480 cells. In addition, ETBF and BFT disrupted the tight junctions and villus structure in the intestinal barrier model, resulting in increased permeability and reduced TEER. Similarly, the expression of intestinal barrier-related proteins (MUC2, Occludin and Zo-1) was restricted by ETBF and BFT. Interestingly, the STAT3/ZEB2 axis was activated by ETBF and BFT, and treatment with Brevilin A (a STAT3 inhibitor) or knockdown of ZEB2 limited the promotional effect of ETBF and BFT on the SW480 malignant phenotype. In vivo experiments also confirmed that ETBF colonization accelerated tumor load, carcinogenesis, and intestinal mucosal barrier damage in the colorectum of the AOM/DSS animal model, and that treatment with Brevilin A alleviated these processes. ETBF-secreted BFT accelerated intestinal barrier damage and CRC by activating the STAT3/ZEB2 axis. Our findings provide new insights and perspectives for the application of ETBF in CRC treatment.
Collapse
Affiliation(s)
- Jian Yang
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
- The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Chengdu Fifth People’s Hospital, Cancer Prevention and Treatment Institute of Chengdu, Chengdu, Sichuan, China
| | - Xue Wang
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
- The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Chengdu Fifth People’s Hospital, Cancer Prevention and Treatment Institute of Chengdu, Chengdu, Sichuan, China
| | - Tao Hu
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
- The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Chengdu Fifth People’s Hospital, Cancer Prevention and Treatment Institute of Chengdu, Chengdu, Sichuan, China
| | - He Huang
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
- The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Chengdu Fifth People’s Hospital, Cancer Prevention and Treatment Institute of Chengdu, Chengdu, Sichuan, China
| | - Gang Chen
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
- The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Chengdu Fifth People’s Hospital, Cancer Prevention and Treatment Institute of Chengdu, Chengdu, Sichuan, China
| | - Bo Jin
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
- The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Chengdu Fifth People’s Hospital, Cancer Prevention and Treatment Institute of Chengdu, Chengdu, Sichuan, China
| | - Guilin Zeng
- The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Chengdu Fifth People’s Hospital, Cancer Prevention and Treatment Institute of Chengdu, Chengdu, Sichuan, China
- Department of Medical Oncology, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Jian Liu
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
- The Second Clinical Medical College, Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Chengdu Fifth People’s Hospital, Cancer Prevention and Treatment Institute of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Liu X, Han CH, Mao T, Wu J, Ke LY, Guo YJ, Han RS, Tian ZB. Commensal Enterococcus faecalis W5 ameliorates hyperuricemia and maintains the epithelial barrier in a hyperuricemia mouse model. J Dig Dis 2024; 25:44-60. [PMID: 38126957 DOI: 10.1111/1751-2980.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/03/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE The intestine is responsible for approximately one-third of uric acid (UA) excretion. The effect of commensal Enterococcus faecalis (E. faecalis), one of the most colonized bacteria in the gut, on UA excretion in the intestine remains to be investigated. The aim of this study was to evaluate the effect of commensal E. faecalis on UA metabolism and gut microbiota. METHODS The 16S rRNA gene sequencing was used to examine the species of Enterococcus in mouse fecal content. E. faecalis strain was isolated from mouse feces and identified to be E. faecalis W5. The hyperuricemia (HUA) animal model was established with yeast-rich forage and 250 mg·kg-1 ·day-1 potassium oxonate. Oral administration of E. faecalis W5 was given for 20 days, serving as the Efa group. RESULTS Disrupted intestinal barrier, activated proinflammatory response and low UA excretion in the intestine were found in HUA mice. After E. faecalis W5 treatment, the gut barrier was restored and serum UA level was decreased. Additionally, fecal and intestinal UA levels were elevated, intestinal urate transporter ABCG2 and purine metabolism were upregulated. Moreover, short-chain fatty acid levels were increased, and intestinal inflammation was ameliorated. CONCLUSIONS Commensal E. faecalis W5 ameliorated HUA through reversing the impaired gut barrier, promoting intestinal UA secretion by regulating ABCG2 expression, and decreasing intestinal UA synthesis by regulating purine metabolism. The results may provide the potential for developing treatments for HUA through the intestine.
Collapse
Affiliation(s)
- Xin Liu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Chun Hua Han
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Tao Mao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jie Wu
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Le Yong Ke
- Department of Plastic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Ying Jie Guo
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Rong Shuang Han
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Zi Bin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
25
|
王 少, 崔 立, 李 辉, 刘 新, 李 晓, 王 晓. [UBE2W overexpression promotes proliferation of intestinal mucosal cells in mice with chemically induced colitis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:2023-2028. [PMID: 38189387 PMCID: PMC10774105 DOI: 10.12122/j.issn.1673-4254.2023.12.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE To explore the effect of UBE2W overexpression on proliferation of intestinal mucosal cells in a mouse model of dextran sulfate sodium (DSS)-induced colitis. METHODS In a mouse model of colitis induced by exposure to DSS in drinking water, UBE2W expression in the colon tissue was detected by RT-PCR and Western blotting. Ten mouse models of colitis were randomized for injection of adenovirus AAV2/9 myc-UBE2W or control AAV2/9 via the tail vein (n=5), and the changes in body weight were recorded and the histological score of the colon were graded using HE staining. Ki67 and BrdU expressions in the colon mucosal cells were detected with immunohistochemistry. The effect of UBE2W overexpression on proliferation of 293T and HCT116 cells was observed using CCK-8 kit. RESULTS Compared with normal mice, the mouse models with DSS-induced colitis showed significantly lowered expressions of UBE2W mRNA and protein in the colon tissues. The mouse models with AAV2/9 myc-UBE2W injection had a lower body weight loss than those with control AAV2/9 injection, and the difference was the most distinct on days 9 and 10 (P < 0.05). AAV2/9 myc-UBE2W injection significantly decreased the histological score (P < 0.05) and increased Ki67 and BrdU expressions in the colon mucosal cells in the mouse models (P < 0.05). In both 293T and HCT116 cells, UBE2W overexpression significantly promoted cell proliferation at 72 h and 96 h after plasmid transfection (P < 0.05). CONCLUSION UBE2W overexpression provide protection of the colon mucosal cells and promotes recovery of colitis in mice possibly by promoting proliferation of the colon mucosal cells.
Collapse
Affiliation(s)
- 少鑫 王
- />解放军总医院第六医学中心消化内科,北京 100048Department of Gastroenterology, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - 立红 崔
- />解放军总医院第六医学中心消化内科,北京 100048Department of Gastroenterology, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - 辉 李
- />解放军总医院第六医学中心消化内科,北京 100048Department of Gastroenterology, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - 新尧 刘
- />解放军总医院第六医学中心消化内科,北京 100048Department of Gastroenterology, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - 晓伟 李
- />解放军总医院第六医学中心消化内科,北京 100048Department of Gastroenterology, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - 晓辉 王
- />解放军总医院第六医学中心消化内科,北京 100048Department of Gastroenterology, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| |
Collapse
|
26
|
Li Y, Li W, Zeng Z, Han Y, Chen Q, Dong X, Wang Z, Feng S, Cao W. Lasso peptide MccY alleviates non-typhoidal salmonellae-induced mouse gut inflammation via regulation of intestinal barrier function and gut microbiota. Microbiol Spectr 2023; 11:e0178423. [PMID: 37819128 PMCID: PMC10714986 DOI: 10.1128/spectrum.01784-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/28/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Diseases caused by Enterobacteriaceae multidrug-resistant strains have become increasingly difficult to manage. It is necessary to verify the new antibacterial drug MccY effect on non-typhoid Salmonella infection in mice since it is regarded as a promising microcin. The results demonstrated that MccY has a potential therapeutic application value in the protection against Salmonella-induced intestinal damage and alleviating related intestinal dysbiosis and metabolic disorders. MccY could be a promising candidate as an antimicrobial or anti-inflammatory agent for treating infectious diseases.
Collapse
Affiliation(s)
- Yu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenjing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhiwei Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qinxi Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinyi Dong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zepeng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
| |
Collapse
|
27
|
Chu J, Liu W, Hu X, Zhang H, Jiang J. P2RY13 is a prognostic biomarker and associated with immune infiltrates in renal clear cell carcinoma: A comprehensive bioinformatic study. Health Sci Rep 2023; 6:e1646. [PMID: 38045624 PMCID: PMC10691167 DOI: 10.1002/hsr2.1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/03/2023] [Accepted: 10/10/2023] [Indexed: 12/05/2023] Open
Abstract
Background and Aims Clear cell renal cell carcinoma (ccRCC) is a common and aggressive form of cancer with a high incidence globally. This study aimed to investigate the role of P2RY13 in the progression of ccRCC and elucidate its mechanism of action. Methods Gene Expression Omnibus and The Cancer Genome Atlas databases were used to extract gene expression profiles of ccRCC. These profiles were annotated and visualized by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses, as well as Gene Set Enrichment Analysis (GSEA). The STRING database was used to establish a protein-protein interaction network and to analyze the functional similarity. The GEPIA2 database was used to predict survival associated with hub genes. Meanwhile, the TIMER2.0 database was used to assess immune cell infiltration and its link with the hub genes. Immunohistochemistry (IHC) was used to determine the difference between ccRCC and adjacent normal tissue. Results We identified 272 differentially expressed genes (DEGs). GO and KEGG analyses suggested that DEGs were primarily involved in lymphocyte activation, inflammatory response, immunological effector mechanism pathways. By cytohubba, the 20 highest-scoring hub genes were screened to identify critical genes in the protein-protein interaction network linked with ccRCC. Resting dendritic cells, CD8 T cells, and activated mast cells all showed a significant positive correlation with these hub genes. Moreover, a higher immune score was associated with increased prognostic risk scores, which in turn correlated with a poorer prognosis. IHC revealed that P2RY13 was expressed at higher levels in ccRCC compared to para-cancer tissues. Conclusion Identifying the DEGs will aid in the understanding of the causes and molecular mechanisms involved in ccRCC. P2RY13 may play a pivotal role in the progression and prognosis of ccRCC, potentially driving carcinogenesis though immune system mechanisms.
Collapse
Affiliation(s)
- Jie Chu
- Department of OncologyThe First People's Hospital of ZiyangZiyangChina
| | - Wei Liu
- Department of General Family MedicineThe First People's Hospital of NeiJiangNeiJiangChina
| | - Xinyue Hu
- Department of Clinical Laboratory, Kunming First People's HospitalKunming Medical UniversityKunmingChina
| | - Huiling Zhang
- Department of OncologyThe First People's Hospital of ZiyangZiyangChina
| | - Jiudong Jiang
- Department of SurgeryThe First People's Hospital of ZiYangZiyangChina
| |
Collapse
|
28
|
Wei X, Shen Z, Zhu M, Fang M, Wang S, Zhang T, Zhang B, Yang X, Lv Z, Duan Y, Jiang M, Ma C, Li Q, Chen Y. The pterostilbene-dihydropyrazole derivative Ptd-1 ameliorates vascular calcification by regulating inflammation. Int Immunopharmacol 2023; 125:111198. [PMID: 37952482 DOI: 10.1016/j.intimp.2023.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Vascular calcification is an independent risk factor for cardiovascular disease. However, there is still a lack of adequate treatment. This study aimed to examine the potential of (E)-1-(5-(2-(4-fluorobenzyloxy)Styryl)-4,6-dimethoxyphenyl)-3-methyl-4,5-dihydro-1H-pyrazole-1-yl) ethyl ketone (Ptd-1) to alleviate vascular calcification. ApoE-deficient mice were fed a high-fat diet for 12/16 weeks to induce intimal calcification, and wild-type mice were induced with a combination of nicotine and vitamin D3 to induce medial calcification. Human aortic smooth muscle cells (HASMCs) and aortic osteogenic differentiation were induced in vitro with phosphate. In the mouse model of atherosclerosis, Ptd-1 significantly ameliorated the progression of atherosclerosis and intimal calcification, and there were significant reductions in lipid deposition and calcium salt deposition in the aorta and aortic root. In addition, Ptd-1 significantly improved medial calcification in vivo and osteogenic differentiation in vitro. Mechanistically, Ptd-1 reduced the levels of the inflammatory factors IL-1β, TNFα and IL-6 in vivo and in vitro. Furthermore, we demonstrated that Ptd-1 could attenuate the expression of p-ERK1/2 and β-catenin, and that the levels of inflammatory factors were elevated in the presence of ERK1/2 and β-catenin agonists. Interestingly, we determined that activation of the ERK1/2 pathway promoted β-catenin expression, which further regulated the IL-6/STAT3 signaling pathway. Ptd-1 blocked ERK1/2 signaling, leading to decreased expression of inflammatory factors, which in turn improved vascular calcification. Taken together, our study reveals that Ptd-1 ameliorates vascular calcification by regulating the production of inflammatory factors, providing new ideas for the treatment of vascular calcification.
Collapse
Affiliation(s)
- Xiaoning Wei
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhenbao Shen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mengmeng Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mengyuan Fang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shengnan Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tingting Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Baotong Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhilin Lv
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, the National Engineering Research Center for Bioengineering Drugs and the Technologies, Nanchang University, Nanchang, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Qingshan Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
29
|
Chen L, Luo T, Cui W, Zhu M, Xu Z, Huang H. Kalirin is involved in epileptogenesis by modulating the activity of the Rac1 signaling pathway. J Chem Neuroanat 2023; 131:102289. [PMID: 37196826 DOI: 10.1016/j.jchemneu.2023.102289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND OBJECTIVE Epilepsy is a common chronic brain disease. Despite the availability of various anti-seizure drugs, approximately 30 % of patients do not respond to treatment. Recent research suggests that Kalirin plays a role in regulating neurological function. However, the pathogenesis of Kalirin in epileptic seizures remains unclear. This study aims to investigate the role and mechanism of Kalirin in epileptogenesis. MATERIALS AND METHODS An epileptic model was induced by intraperitoneal injection of pentylenetetrazole (PTZ). Endogenous Kalirin was inhibited using shRNA. The expression of Kalirin, Rac1, and Cdc42 in the hippocampal CA1 region was measured using Western blotting. Spine and synaptic structures were examined using Golgi staining and electron microscopy. Moreover, the necrotic neurons in CA1 were examined using HE staining. RESULTS The results indicated that the epileptic score increased in epileptic animals, while inhibition of Kalirin decreased the epileptic scores and increased the latent period of the first seizure attack. Inhibition of Kalirin attenuated the increases in Rac1 expression, dendritic spine density, and synaptic vesicle number in the CA1 region induced by PTZ. However, the increase in Cdc42 expression was not affected by the inhibition of Kalirin. CONCLUSION This study suggests that Kalirin is involved in the development of seizures by modulating the activity of Rac1, providing a novel anti-epileptic target.
Collapse
Affiliation(s)
- Ling Chen
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou province 563003, China
| | - Ting Luo
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou province 563003, China
| | - Wenxiu Cui
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou province 563003, China
| | - ManMing Zhu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou province 563003, China
| | - Zucai Xu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou province 563003, China
| | - Hao Huang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou province 563003, China.
| |
Collapse
|
30
|
Grigalevičiūtė R, Matusevičius P, Plančiūnienė R, Stankevičius R, Radzevičiūtė-Valčiukė E, Balevičiūtė A, Želvys A, Zinkevičienė A, Zigmantaitė V, Kučinskas A, Kavaliauskas P. Understanding the Immunomodulatory Effects of Bovine Colostrum: Insights into IL-6/IL-10 Axis-Mediated Inflammatory Control. Vet Sci 2023; 10:519. [PMID: 37624306 PMCID: PMC10458264 DOI: 10.3390/vetsci10080519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Bovine colostrum (COL), the first milk secreted by lactating cows postpartum, is a rich source of bioactive compounds that exert a significant role in the survival, growth, and immune development of neonatal calves. This study investigated the immunomodulatory effects of COL on cytokine production in vitro using a Caco-2/THP-1 macrophage co-culture model stimulated with Phorbol 12-myristate 13-acetate (PMA). COL pretreatment significantly reduced IL-6 (241.3 pg/mL) production induced by PMA (p < 0.05), while increasing IL-10 production (45.3 pg/mL), in comparison to PMA control (441.1 and 12.5 pg/mL, respectively). Further investigations revealed that the IL-6 suppressive effect of colostrum was heat-sensitive and associated with components of higher molecular mass (100 kDa). Moreover, colostrum primarily influenced THP-1 macrophages rather than Caco-2 epithelial cells. The effects of colostrum on IL-6 production were associated with reduced NF-κB activation in THP-1 macrophages. In calf-FMT transplanted C57BL/6 murine model, colostrum decreased intestinal permeability, reduced immune cell infiltration and intestinal score, and suppressed IL-6 (142.0 pg/mL) production during S. typhimurium infection, in comparison to control animals (215.2 pg/mL). These results suggest the immunomodulatory activity of bovine colostrum and its potential applications in inflammatory disorders. Further studies are needed to elucidate the underlying mechanisms and validate the findings in bovine models.
Collapse
Affiliation(s)
- Ramunė Grigalevičiūtė
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Str. 18/7, LT-47181 Kaunas, Lithuania; (V.Z.); (A.K.)
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (P.M.); (R.S.)
| | - Paulius Matusevičius
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (P.M.); (R.S.)
| | - Rita Plančiūnienė
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Eiveniu Str. 4, LT-50161 Kaunas, Lithuania;
| | - Rolandas Stankevičius
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (P.M.); (R.S.)
| | - Eivina Radzevičiūtė-Valčiukė
- Centre for Innovative Medicine, Department of Immunology, Santariskiu Str. 5, LT-08410 Vilnius, Lithuania; (E.R.-V.); (A.Ž.); (A.Z.)
| | - Austėja Balevičiūtė
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Solnavägen 1, 17177 Solna, Sweden;
| | - Augustinas Želvys
- Centre for Innovative Medicine, Department of Immunology, Santariskiu Str. 5, LT-08410 Vilnius, Lithuania; (E.R.-V.); (A.Ž.); (A.Z.)
| | - Auksė Zinkevičienė
- Centre for Innovative Medicine, Department of Immunology, Santariskiu Str. 5, LT-08410 Vilnius, Lithuania; (E.R.-V.); (A.Ž.); (A.Z.)
| | - Vilma Zigmantaitė
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Str. 18/7, LT-47181 Kaunas, Lithuania; (V.Z.); (A.K.)
| | - Audrius Kučinskas
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Str. 18/7, LT-47181 Kaunas, Lithuania; (V.Z.); (A.K.)
| | - Povilas Kavaliauskas
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Str. 18/7, LT-47181 Kaunas, Lithuania; (V.Z.); (A.K.)
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD 21201, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Str. 38A, LT-59116 Prienai, Lithuania
| |
Collapse
|
31
|
Shang L, Li J, Zhou F, Zhang M, Wang S, Yang S. MiR-874-5p targets VDR/NLRP3 to reduce intestinal pyroptosis and improve intestinal barrier damage in sepsis. Int Immunopharmacol 2023; 121:110424. [PMID: 37315369 DOI: 10.1016/j.intimp.2023.110424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Vitamin D receptor (VDR) is associated with intestinal barrier damage in sepsis. However, the mechanism of action of miR-874-5p/VDR/NLRP3 axis in disease has not been clearly explained. Therefore, the main content of this study is to explore the mechanism of this axis in intestinal barrier damage in sepsis. METHODS In order to confirm the progress of miR-874-5p regulation of VDR/NLRP3 pathway and its involvement in intestinal barrier damage in sepsis, a series of molecular biology and cell biology methods were carried out in this study. These include the establishment of cecal ligation puncture model, Western blot, RT-qPCR, hematoxylin and eosin staining, double luciferase reporting method, Fluorescence in situ hybridization, immunohistochemistry, and enzyme-linked immunosorption assay. RESULTS The expression level of miR-874-5p was higher and that of VDR was lower in sepsis. miR-874-5p was negatively correlated with VDR. Inhibition of miR-874-5p expression increased the expression of VDR, decreased the expression of NLRP3, reduced caspase-1 activation and IL-1β secretion, reduced pyroptosis and inflammatory response, and thus protected the intestinal barrier damage in sepsis, all of which were reversed by the downregulation of VDR. CONCLUSIONS This study suggested that down-regulation of miR-874-5p or up-regulation of VDR could reduce intestinal barrier damage in sepsis, which may provide potential biomarkers and therapeutic targets for intestinal barrier damage in sepsis.
Collapse
Affiliation(s)
- Luorui Shang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxiao Li
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangyuan Zhou
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengqi Zhang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuhan Wang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenglan Yang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
32
|
Zhao Y, Huang S, Xie R, Liu J. Extracellular ATP accelerates cell death and decreases tight junction protein ZO-1 in hypoxic cochlear strial marginal cells in neonatal rats. Cell Signal 2023:110732. [PMID: 37245680 DOI: 10.1016/j.cellsig.2023.110732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Abstract
In the cochlear, extracellular ATP (eATP) plays an important role in both physiological and pathological processes, but its role in the hypoxic cochlear remains unclear. The present study aims to investigate the relationship between eATP and hypoxic marginal cells (MCs) in the stria vascularis in cochlear. Combining various methodologies, we found that eATP accelerates cell death and decreases tight junction protein zonula occludens-1 (ZO-1) in hypoxic MCs. Flow cytometry and western blot analyses revealed an increase in apoptosis levels and suppression of autophagy, indicating that eATP causes additional cell death by increasing the apoptosis of hypoxic MCs. Given that autophagy inhibits apoptosis to protect MCs under hypoxia, apoptosis is probably enchanced by suppressing autophagy. Interleukin-33(IL-33)/suppression of tumorigenicity-2(ST-2)/matrix metalloprotein 9(MMP9) pathway activation was also observed during the process. Further experiments involving the use of additional IL-33 protein and an MMP9 inhibitor indicated that this pathway is responsible for the damage to the ZO-1 protein in hypoxic MCs. Our study revealed the adverse effect of eATP on the survival and ZO-1 protein expression of hypoxic MCs, as well as the underlying mechanism.
Collapse
Affiliation(s)
- Yanyun Zhao
- Department of Otorhinolaryngology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sihan Huang
- Department of Otorhinolaryngology, Zhangzhou Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Renwei Xie
- Department of Otorhinolaryngology, Renhe Hospital, Baoshan District, Shanghai, China
| | - Jun Liu
- Department of Otorhinolaryngology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
33
|
Cai Y, Zuo X, Zuo Y, Wu S, Pang W, Ma K, Yi Q, Tan L, Deng H, Qu X, Chen X. Transcriptomic analysis reveals shared gene signatures and molecular mechanisms between obesity and periodontitis. Front Immunol 2023; 14:1101854. [PMID: 37063877 PMCID: PMC10090675 DOI: 10.3389/fimmu.2023.1101854] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/24/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundBoth obesity (OB) and periodontitis (PD) are chronic non-communicable diseases, and numerous epidemiological studies have demonstrated the association between these two diseases. However, the molecular mechanisms that could explain the association between OB and PD are largely unclear. This study aims to investigate the common gene signatures and biological pathways in OB and PD through bioinformatics analysis of publicly available transcriptome datasets.MethodsThe RNA expression profile datasets of OB (GSE104815) and PD (GSE106090) were used as training data, and GSE152991 and GSE16134 as validation data. After screening for differentially expressed genes (DEGs) shared by OB and PD, gene enrichment analysis, protein-protein interaction (PPI) network construction, GeneMANIA analysis, immune infiltration analysis and gene set enrichment analysis (GSEA) were performed. In addition, receiver operating characteristic (ROC) curves were used to assess the predictive accuracy of the hub gene. Finally, we constructed the hub gene-associated TF-miRNA-mRNA regulatory network.ResultsWe identified a total of 147 DEGs shared by OB and PD (38 down-regulated and 109 up-regulated). Functional analysis showed that these genes were mainly enriched in immune-related pathways such as B cell receptor signalling, leukocyte migration and cellular defence responses. 14 hub genes (FGR, MNDA, NCF2, FYB1, EVI2B, LY86, IGSF6, CTSS, CXCR4, LCK, FCN1, CXCL2, P2RY13, MMP7) showed high sensitivity and specificity in the ROC curve analysis. The results of immune infiltration analysis showed that immune cells such as macrophages, activated CD4 T cells and immune B cells were present at high infiltration levels in both OB and PD samples.The results of GeneMANIA analysis and GSEA analysis suggested that five key genes (FGR, LCK, FYB1, LY86 and P2RY13) may be strongly associated with macrophages. Finally, we constructed a TF-miRNA-mRNA regulatory network consisting of 233 transcription factors (TFs), 8 miRNAs and 14 mRNAs based on the validated information obtained from the database.ConclusionsFive key genes (FGR, LCK, FYB1, LY86, P2RY13) may be important biomarkers of OB and PD. These genes may play an important role in the pathogenesis of OB and PD by affecting macrophage activity and participating in immune regulation and inflammatory responses.
Collapse
Affiliation(s)
- Yisheng Cai
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xuemei Zuo
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yuyang Zuo
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shuang Wu
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Weiwei Pang
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Keqiang Ma
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiaorong Yi
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lijun Tan
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hongwen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Xiaochao Qu
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
- *Correspondence: Xiaochao Qu, ; Xiangding Chen,
| | - Xiangding Chen
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
- *Correspondence: Xiaochao Qu, ; Xiangding Chen,
| |
Collapse
|