1
|
Chang J, Lin L, Zhang W, Yang J, Zhang M, Yin H, Zhang X, Zhou C, Zou Y, He J. Genetic variants of m 1A modification genes and the risk of neuroblastoma: novel insights from a Chinese case-control study. Hum Genomics 2025; 19:50. [PMID: 40340897 PMCID: PMC12063421 DOI: 10.1186/s40246-025-00767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND The N1-adenosine methylation (m1A) modification plays a significant role in various cancers. However, the functions of m1A modification genes and their variants in neuroblastoma remain to be elucidated. METHODS We conducted a case-control study involving 402 neuroblastoma patients and 473 cancer-free controls from China via the TaqMan genotyping method to evaluate m1A modification gene polymorphisms. Multivariate logistic regression analysis was conducted to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Additionally, expression quantitative trait locus (eQTL) analysis utilizing the Genotype-Tissue Expression database was performed to investigate the impacts of significant polymorphisms on gene expression. The relationships between gene expression and the risk and prognosis of neuroblastoma patients were further examined via publicly available datasets by using the R2 platform. RESULTS We found that TRMT10C rs4618204 C > T significantly decreased neuroblastoma risk (CT/TT vs. CC: adjusted OR = 0.74, 95% CI = 0.56-0.97, P = 0.030). Moreover, polymorphisms of the TRMT10C (rs3762735), TRMT6 (rs451571 and rs236110), and ALKBH3 (rs10768993 and rs2292889) genes were associated with neuroblastoma risk in specific subgroups. Complete linkage disequilibrium and eQTL analysis revealed a significant association between rs4618204 C > T and reduced expression of the TRMT10C gene. Additionally, higher expression levels of the TRMT10C gene were observed to be linked to increased risk, malignancy, and poorer prognosis in neuroblastoma patients. CONCLUSIONS TRMT10C rs4618204 C > T was demonstrated to be significantly associated with an increased risk of neuroblastoma and may serve as a potential molecular marker for early diagnosis. Further studies are warranted to fully elucidate the specific molecular mechanisms involved in this effect. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Jiaming Chang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Lei Lin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Wenli Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Jiliang Yang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Mengzhen Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huimin Yin
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Xinxin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Chunlei Zhou
- Department of Pathology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Yan Zou
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
2
|
Chen S, Xu D, Huang R, Lin Y, Li L. Correlation of BARD1 gene polymorphisms with risk of neuroblastoma: a meta-analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1196-1214. [PMID: 38619196 DOI: 10.1080/15257770.2024.2336215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
BRCA1-associated RING domain protein 1 (BARD1) gene polymorphisms may be associated with neuroblastoma (NB) susceptibility. However, the results remain controversial. Relevant studies were identified by searching PubMed, Web of Science, Embase, China National Knowledge Infrastructure databases up to March 5, 2023. The strength of the association between BARD1 polymorphisms and susceptibility of NB was assessed by calculating odds ratios (ORs) and 95% confidence intervals (95% CIs) through the fixed- or random-effects model. Eight articles involving 12 studies were finally included. We found that rs6435862 T > G, rs3768716 A > G, rs17487792 C > T and rs7587476 C > T variant increase the risk of NB in allelic, dominant, recessive, homozygous and heterozygous genetic models, while rs7585356 G > A variant appeared protective against NB. When stratified by ethnicity, subgroup analysis indicated that the above association remained significant in Caucasian populations in all genetic models, except for rs7585356G > A polymorphism in Asians. In Asian populations, we found the similar results in the allelic and dominant model of rs6435862 T > G, rs3768716 A > G, rs17487792 C > T and rs7587476 C > T as in Caucasians, while there lacked a significant association in the other three model. In addition, rs7585356 G > A was not associated with an increased risk of NB in the Asian population. After Bonferroni correction, significant associations for rs7585356 G > A disappeared in both Asian and Caucasian populations, with no significant association found for rs7587476 in the allelic and dominant models among Asians. BARD1 polymorphisms might be significantly associated with NB susceptibility. It is crucial that these finding should be further confirmed through extensive and well-planned studies.
Collapse
Affiliation(s)
- Shan Chen
- Department of Laboratory, Fuzhou Second General Hospital, Fuzhou, Fujian, China
| | - Di Xu
- Department of Pediatric Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Rongdong Huang
- Fujian Center for Disease Control and Prevention, Fuzhou, Fujian, China
| | - Yang Lin
- Department of Pediatric Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Lizhi Li
- Department of Pediatric Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Han Y, Chang J, Lin L, Zhou C, Zhu J, Wu H, He J, Fu W. miR-100 rs1834306 a > G polymorphism decreases neuroblastoma risk in Chinese children. Cancer Rep (Hoboken) 2023; 6:e1875. [PMID: 37503828 PMCID: PMC10598254 DOI: 10.1002/cnr2.1875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Neuroblastoma is a common malignant tumor stemming from the sympathetic nervous system in children, which is often life-threatening. The genetics of neuroblastoma remains unclear. Studies have shown that miRNAs participate in the regulation of a broad spectrum of biological pathways. The abnormity in the miRNA is associated with the risk of various cancers, including neuroblastoma. However, research on the relationship of miRNA polymorphisms with neuroblastoma susceptibility is still in the initial stage. METHODS In this research, a retrospective case-control study was conducted to explore whether miR-100 rs1834306 A > G polymorphism is associated with neuroblastoma susceptibility. We enrolled 402 cases and 473 controls for the study. The logistic regression analysis was adopted to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between miR-100 rs1834306 A > G and neuroblastoma risk. RESULTS Our results elucidated that the miR-100 rs1834306 A > G polymorphism was associated with the decreased risk of neuroblastoma (AG versus AA: adjusted OR = 0.72, 95% CI = 0.53-0.98, and P = 0.038). The subsequent stratified analysis further found that rs1834306 AG/GG genotype reduced the risk of neuroblastoma in the subgroup with tumors of the mediastinum origin (adjusted OR = 0.63, 95% CI = 0.41-0.95, and P = 0.029). CONCLUSIONS In summary, miR-100 rs1834306 A > G polymorphism was shown to associate with decreased neuroblastoma risk in Chinese children, especially for neuroblastoma of mediastinum origin. This conclusion needs to be verified in additional large-size case-control studies.
Collapse
Affiliation(s)
- Yufeng Han
- Department of Pediatric SurgeryGuangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child HealthGuangzhouGuangdongChina
| | - Jiaming Chang
- Department of Pediatric SurgeryGuangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child HealthGuangzhouGuangdongChina
| | - Lei Lin
- Department of Pediatric SurgeryGuangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child HealthGuangzhouGuangdongChina
| | - Chunlei Zhou
- Department of PathologyChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Jinhong Zhu
- Department of Clinical Laboratory, BiobankHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Haiyan Wu
- Department of PathologyChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Jing He
- Department of Pediatric SurgeryGuangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child HealthGuangzhouGuangdongChina
| | - Wen Fu
- Department of Pediatric SurgeryGuangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child HealthGuangzhouGuangdongChina
| |
Collapse
|
4
|
Cupit-Link M, Hagiwara K, Zhang J, Federico SM. Clinical Response to a PARP Inhibitor and Chemotherapy in a Child with BARD1-Mutated Refractory Neuroblastoma: A Case Report. RESEARCH SQUARE 2023:rs.3.rs-3250117. [PMID: 37645774 PMCID: PMC10462232 DOI: 10.21203/rs.3.rs-3250117/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Despite advances in the treatment of high-risk neuroblastoma, approximately half of these patients die from the disease. Targeted therapy based on synthetic lethality associated with homologous recombination deficiency (HRD) caused by germline mutations in homologous recombination repair genes has shown great efficacy in several adult solid tumors. Here we report the first successful treatment of a pediatric patient with refractory neuroblastoma and a germline pathogenic mutation in BARD1 using a PARP inhibitor, talazoparib, in combination with cytotoxic chemotherapy and radiation therapy. Allele-specific expression in RNA-seq indicates bi-allelic loss of BARD1 in tumor; however, the HRD score was below the threshold currently used for HRD classification in adult cancers. Our study demonstrates that the use of PARP inhibition in combination with DNA-damaging agents should be considered in children with BARD1-mutated neuroblastoma and cautions against the use of HRD score alone as a biomarker for this pediatric population.
Collapse
Affiliation(s)
- Maggie Cupit-Link
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Kohei Hagiwara
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Sara M. Federico
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| |
Collapse
|
5
|
Kuick CH, Tan JY, Jasmine D, Sumanty T, Ng AYJ, Venkatesh B, Chen H, Loh E, Jain S, Seow WY, Ng EHQ, Lian DWQ, Soh SY, Chang KTE, Chen ZX, Loh AHP. Mutations of 1p genes do not consistently abrogate tumor suppressor functions in 1p-intact neuroblastoma. BMC Cancer 2022; 22:717. [PMID: 35768791 PMCID: PMC9245282 DOI: 10.1186/s12885-022-09800-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Background Deletion of 1p is associated with poor prognosis in neuroblastoma, however selected 1p-intact patients still experience poor outcomes. Since mutations of 1p genes may mimic the deleterious effects of chromosomal loss, we studied the incidence, spectrum and effects of mutational variants in 1p-intact neuroblastoma. Methods We characterized the 1p status of 325 neuroblastoma patients, and correlated the mutational status of 1p tumor suppressors and neuroblastoma candidate genes with survival outcomes among 100 1p-intact cases, then performed functional validation of selected novel variants of 1p36 genes identified from our patient cohort. Results Among patients with adverse disease characteristics, those who additionally had 1p deletion had significantly worse overall survival. Among 100 tumor-normal pairs sequenced, somatic mutations of 1p tumor suppressors KIF1Bβ and CHD5 were most frequent (2%) after ALK and ATRX (8%), and BARD1 (3%). Mutations of neuroblastoma candidate genes were associated with other synchronous mutations and concurrent 11q deletion (P = 0.045). In total, 24 of 38 variants identified were novel and predicted to be deleterious or pathogenic. Functional validation identified novel KIF1Bβ I1355M variant as a gain-of-function mutation with increased expression and tumor suppressive activity, correlating with indolent clinical behavior; another novel variant CHD5 E43Q was a loss-of-function mutation with decreased expression and increased long-term cell viability, corresponding with aggressive disease characteristics. Conclusions Our study showed that chromosome 1 gene mutations occurred frequently in 1p-intact neuroblastoma, but may not consistently abrogate the function of bonafide 1p tumor suppressors. These findings may augment the evolving model of compounding contributions of 1p gene aberrations toward tumor suppressor inactivation in neuroblastoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09800-0.
Collapse
Affiliation(s)
- Chik Hong Kuick
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Jia Ying Tan
- Neurodevelopment and Cancer Laboratory, NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Deborah Jasmine
- Neurodevelopment and Cancer Laboratory, NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Tohari Sumanty
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Singapore
| | - Alvin Y J Ng
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Singapore
| | - Byrrappa Venkatesh
- Comparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673, Singapore
| | - Huiyi Chen
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Eva Loh
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Sudhanshi Jain
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Wan Yi Seow
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Eileen H Q Ng
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Derrick W Q Lian
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Shui Yen Soh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, 229899, Singapore.,Department of Paediatric Subspecialties Haematology Oncology Service, KK Women's and Children's Hospital, Singapore, 229899, Singapore.,Duke NUS Medical School, Singapore, 169857, Singapore
| | - Kenneth T E Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, 229899, Singapore.,VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, 229899, Singapore.,Duke NUS Medical School, Singapore, 169857, Singapore
| | - Zhi Xiong Chen
- Neurodevelopment and Cancer Laboratory, NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore. .,VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, 229899, Singapore. .,National University Cancer Institute, Singapore, 119074, Singapore.
| | - Amos H P Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, 229899, Singapore. .,Duke NUS Medical School, Singapore, 169857, Singapore. .,Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, 229899, Singapore.
| |
Collapse
|
6
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
7
|
Marcotte EL, Domingues AM, Sample JM, Richardson MR, Spector LG. Racial and ethnic disparities in pediatric cancer incidence among children and young adults in the United States by single year of age. Cancer 2021; 127:3651-3663. [PMID: 34151418 DOI: 10.1002/cncr.33678] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/05/2021] [Accepted: 04/26/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Incidence rates of pediatric cancers in the United States are typically reported in 5-year age groups, obscuring variation by single year of age. Additionally, racial and ethnic variation in incidence is typically presented in broad categories rather than by narrow age ranges. METHODS The Surveillance, Epidemiology, and End Results (SEER) 18 data (2000-2017) were examined to calculate frequencies and age-adjusted incidence rates among individuals aged birth to 39 years. Incidence rate ratios (IRRs) and 95% confidence intervals (95% CIs) were estimated as the measure of association for rate comparisons by race and Hispanic origin overall and by single year of age. RESULTS Several histologic types showed substantial variation in race/ethnicity-specific and overall rates by single year of age. Overall, Black children and young adults experienced substantially decreased incidence of acute lymphoid leukemia (IRR, 0.52; 95% CI, 0.49-0.55) compared to Whites, and this decreased incidence was strongest at ages 1 through 7 years and 16 through 20 years. Hispanic individuals experienced decreased overall incidence of Hodgkin lymphoma (IRR, 0.50; 95% CI, 0.48-0.52) and astrocytoma (IRR, 0.54; 95% CI, 0.52-0.56) and increased risk of acute lymphoblastic leukemia (IRR, 1.46; 95% CI, 1.42-1.51) compared to non-Hispanic Whites, and the increased risk was strongest at ages 10 through 23 years. Substantial decreased risk across many tumor types was also observed for Asian/Pacific Islanders and American Indian/Alaska Natives. CONCLUSIONS Examination of incidence rates for pediatric cancers by narrow age groups may provide insights regarding etiological differences in subgroups. Additionally, variation in age-specific incidence rates by race and ethnicity may enable hypothesis generation on drivers of disparities observed.
Collapse
Affiliation(s)
- Erin L Marcotte
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| | - Allison M Domingues
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Jeannette M Sample
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Michaela R Richardson
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Logan G Spector
- Division of Pediatric Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota.,University of Minnesota Masonic Cancer Center, Minneapolis, Minnesota
| |
Collapse
|
8
|
Jasiak A, Krawczyńska N, Iliszko M, Czarnota K, Buczkowski K, Stefanowicz J, Adamkiewicz-Drożyńska E, Cichosz G, Iżycka-Świeszewska E. Expression of BARD1 β Isoform in Selected Pediatric Tumors. Genes (Basel) 2021; 12:genes12020168. [PMID: 33530592 PMCID: PMC7911681 DOI: 10.3390/genes12020168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 12/20/2022] Open
Abstract
Currently, many new possible biomarkers and mechanisms are being searched and tested to analyse pathobiology of pediatric tumours for the development of new treatments. One such candidate molecular factor is BARD1 (BRCA1 Associated RING Domain 1)—a tumour-suppressing gene involved in cell cycle control and genome stability, engaged in several types of adult-type tumours. The data on BARD1 significance in childhood cancer is limited. This study determines the expression level of BARD1 and its isoform beta (β) in three different histogenetic groups of pediatric cancer—neuroblastic tumours, and for the first time in chosen germ cell tumours (GCT), and rhabdomyosarcoma (RMS), using the qPCR method. We found higher expression of beta isoform in tumour compared to healthy tissue with no such changes concerning BARD1 full-length. Additionally, differences in expression of BARD1 β between histological types of neuroblastic tumours were observed, with higher levels in ganglioneuroblastoma and ganglioneuroma. Furthermore, a higher expression of BARD1 β characterized yolk sac tumours (GCT type) and RMS when comparing with non-neoplastic tissue. These tumours also showed a high expression of the TERT (Telomerase Reverse Transcriptase) gene. In two RMS cases we found deep decrease of BARD1 β in post-chemotherapy samples. This work supports the oncogenicity of the beta isoform in pediatric tumours, as well as demonstrates the differences in its expression depending on the histological type of neoplasm, and the level of maturation in neuroblastic tumours.
Collapse
Affiliation(s)
- Anna Jasiak
- Department of Biology and Medical Genetics, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland; (A.J.); (M.I.); (G.C.)
- Laboratory of Clinical Genetics, University Clinical Centre, 17 Smoluchowskiego St., 80-210 Gdansk, Poland
| | - Natalia Krawczyńska
- Department of Biology and Medical Genetics, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland; (A.J.); (M.I.); (G.C.)
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407S Goodwin Ave, Urbana, IL 61801, USA;
| | - Mariola Iliszko
- Department of Biology and Medical Genetics, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland; (A.J.); (M.I.); (G.C.)
- Laboratory of Clinical Genetics, University Clinical Centre, 17 Smoluchowskiego St., 80-210 Gdansk, Poland
| | - Katarzyna Czarnota
- Department of Pathology and Neuropathology, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland; (K.C.); (K.B.)
| | - Kamil Buczkowski
- Department of Pathology and Neuropathology, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland; (K.C.); (K.B.)
- Department of Pathomorphology, Copernicus Hospitals, 1-6 Nowe Ogrody St., 80-803 Gdansk, Poland
| | - Joanna Stefanowicz
- Department of Pediatrics, Hematology, Oncology, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland; (J.S.); (E.A.-D.)
| | - Elżbieta Adamkiewicz-Drożyńska
- Department of Pediatrics, Hematology, Oncology, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland; (J.S.); (E.A.-D.)
| | - Grzegorz Cichosz
- Department of Biology and Medical Genetics, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland; (A.J.); (M.I.); (G.C.)
| | - Ewa Iżycka-Świeszewska
- Department of Pathology and Neuropathology, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland; (K.C.); (K.B.)
- Department of Pathomorphology, Copernicus Hospitals, 1-6 Nowe Ogrody St., 80-803 Gdansk, Poland
- Correspondence:
| |
Collapse
|
9
|
Liu GJ, Tao T, Zhang XS, Lu Y, Wu LY, Gao YY, Wang H, Dai HB, Zhou Y, Zhuang Z, Hang CH, Li W. Resolvin D1 Attenuates Innate Immune Reactions in Experimental Subarachnoid Hemorrhage Rat Model. Mol Neurobiol 2021; 58:1963-1977. [PMID: 33411245 DOI: 10.1007/s12035-020-02237-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022]
Abstract
Excessive inflammation is a major cause contributing to early brain injury (EBI) and is associated with negative or catastrophic outcomes of subarachnoid hemorrhage (SAH). Resolvin D1 (RvD1) exerts strong anti-inflammatory and pro-resolving effects on either acute or chronic inflammation of various origin. Henceforth, we hypothesized that RvD1 potentially attenuates excessive inflammation in EBI following SAH. Therefore, we generated a filament perforation SAH model and administered 3 different doses (0.3, 0.6, and 1.2 nmol) of RvD1 after experimental SAH. Neurological scores, brain edema, and blood-brain barrier integrity were evaluated; besides, neutrophil infiltration, neuronal deaths, and microglial pro-inflammatory polarization were observed using histopathology or immunofluorescence staining, western blots, and qPCR. After confirming the effectiveness of RvD1 in SAH, we administered the FPR2-specific antagonist Trp-Arg-Trp-Trp-Trp-Trp-NH2 (WRW4) 30 min before SAH establishment to observe whether this compound could abolish the anti-inflammatory effect of RvD1. Altogether, our results showed that RvD1 exerted a strong anti-inflammatory effect and markedly reduced neutrophil infiltration and microglial pro-inflammatory activation, leading to remarkable improvements in neurological function and brain tissue restoration. After addition of WRW4, the anti-inflammatory effects of RvD1 were abolished. These results indicated that RvD1 could exert a good anti-inflammatory effect and alleviate EBI, which suggested that RvD1 might be a novel therapeutic alternative for SAH-induced injury.
Collapse
Affiliation(s)
- Guang-Jie Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xiang-Sheng Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ling-Yun Wu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong-Yue Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Han Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southern Medical University (Guangzhou), Nanjing, China
| | - Hai-Bin Dai
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
10
|
Moore KJ, Hubbard AK, Williams LA, Spector LG. Childhood cancer incidence among specific Asian and Pacific Islander populations in the United States. Int J Cancer 2020; 147:3339-3348. [PMID: 32535909 PMCID: PMC7736474 DOI: 10.1002/ijc.33153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/21/2020] [Accepted: 05/30/2020] [Indexed: 12/19/2022]
Abstract
Despite the vast genetic and environmental diversity in Asia, individuals of Asian and Pacific Islander (API) descent are often combined into a single group for epidemiologic analyses within the U.S. We used the Surveillance, Epidemiology and End Results (SEER) Detailed Asian/Pacific Islander Database to calculate incidence rates for discrete groups among children aged 0 to 19 years. Due to sample size constraints we pooled incidence among regional groups based on countries of origin: East Asians (Chinese, Japanese, Korean), Southeast (SE) Asians (Vietnamese, Laotian, Cambodian), Asian Indian/Pakistani, Oceanians (Guamanian, Samoan, Tongan) and Filipinos. Incidence rate ratios (IRR) and 95% confidence intervals (CI) were calculated comparing each API regional group to Non-Hispanic Whites (NHW) and East Asians. Finally, we calculated the correlation between incidence of cancer in specific API ethnicities in SEER and in originating countries in the Cancer Incidence in Five Continents. Incidence rates among API regional groups varied. Acute lymphoblastic leukemia (ALL) was lower in children of SE Asian descent (IRR 0.65, 95% CI 0.44, 0.96) compared to NHW. Acute myeloid leukemia (AML) was more common among children from Oceania compared to NHW (IRR 3.88, 95% CI 1.83, 8.22). East Asians had higher incidence rates than SE Asians but lower rates compared to children from Oceania. Correlation of some incidence rates between US-based API ethnicities and originating countries were similar. The variation observed in childhood cancer incidence patterns among API groups may indicate differences in underlying genetics and/or patterns of exposure.
Collapse
Affiliation(s)
- Kristin J. Moore
- Program in Health Disparities Research, University of Minnesota Medical School, University of Minnesota
| | - Aubrey K. Hubbard
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota
| | - Lindsay A. Williams
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota
- Masonic Cancer Center, University of Minnesota
| | - Logan G. Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota
- Masonic Cancer Center, University of Minnesota
| |
Collapse
|
11
|
Abstract
Neuroblastoma (NB) is a pediatric tumor of embryonic origin. About 1-2% of all NBs are familial cases, and genetic predisposition is suspected for the remaining cases. During the last decade, genome-wide association studies (GWAS) and high-throughput sequencing approaches have been used to identify associations among common and rare genetic variants and NB risk. Substantial data has been produced by large patient cohorts that implicate various genes in NB tumorigenesis, such as CASC15, BARD1, CHEK2, LMO1, LIN28B, AXIN2, BRCA1, TP53, SMARCA4, and CDK1NB. NB, as well as other pediatric cancers, has few recurrent mutations but several copy number variations (CNVs). Almost all NBs show both numerical and structural CNVs. The proportion between numerical and structural CNVs differs between localized and metastatic tumors, with a greater prevalence of structural CNVs in metastatic NB. This genomic chaos frequently identified in NBs suggests that chromosome instability (CIN) could be one of the major actors in NB oncogenesis. Interestingly, many NB-predisposing variants occur in genes involved in the control of genome stability, mitosis, and normal chromosome separation. Here, we discuss the relationship between genetic predisposition and CIN in NB.
Collapse
Affiliation(s)
- Gian Paolo Tonini
- Neuroblastoma Laboratory, Pediatric Research Institute, Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy.
| | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Univeristà degli Studi di Napoli Federico II, Naples, Italy. .,CEINGE Biotecnologie Avanzate, Naples, Italy.
| |
Collapse
|
12
|
Jin Y, Shi J, Wang H, Lu J, Chen C, Yu Y, Wang Y, Yang Y, Ren D, Zeng Q, Ni X, Guo Y. MYC-associated protein X binding with the variant rs72780850 in RNA helicase DEAD box 1 for susceptibility to neuroblastoma. SCIENCE CHINA-LIFE SCIENCES 2020; 64:991-999. [PMID: 32915406 DOI: 10.1007/s11427-020-1784-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/03/2020] [Indexed: 11/30/2022]
Abstract
Neuroblastoma (NB) is one of the most common malignant tumors in children, with variable clinical behaviors and a 15% death rate of all malignancies in childhood. However, genetic susceptibility to sporadic NB in Han Chinese patients is largely unknown. To identify genetic risk factors for NB, we performed an association study on 357 NB patients and 738 control subjects among Han Chinese children. We focused on DEAD box 1 (DDX1), a putative RNA helicase, which is involved in NB carcinogenesis. The potential association of DDX1 polymorphisms with NB has not been discovered. Our results demonstrate that rs72780850 (NM_004939.2:c.-1555T>C) located in the DDX1 promoter region is significantly associated with higher expression of DDX1 transcript and increased NB risk (odds ratio=1.64, 95% confidence interval=1.03%-2.60%, P=0.004), especially in aggressive NB compared with ganglioneuroma and ganglioneuroblastoma in a dominant model (TC+CC vs. TT). Furthermore, the MYC-associated protein X (MAX) transcription factor showed stronger binding affinity to the DDX1 rs 72780850 CC allele compared with the TT allele, explaining the molecular mechanism of the increased NB risk caused by the rs72780850 polymorphism. Our results highlight the involvement of regulatory genetic variants of DDX1 in NB.
Collapse
Affiliation(s)
- Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jin Shi
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.,Department of Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Huanmin Wang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Chenghao Chen
- Department of Thoracic Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yaru Wang
- Department of Allergy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yeran Yang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Dong Ren
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Qi Zeng
- Department of Thoracic Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, 100083, China.,Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China. .,Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
13
|
The Effects of Genetic and Epigenetic Alterations of BARD1 on the Development of Non-Breast and Non-Gynecological Cancers. Genes (Basel) 2020; 11:genes11070829. [PMID: 32708251 PMCID: PMC7396976 DOI: 10.3390/genes11070829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Breast Cancer 1 (BRCA1) gene is a well-characterized tumor suppressor gene, mutations of which are primarily found in women with breast and ovarian cancers. BRCA1-associated RING domain 1 (BARD1) gene has also been identified as an important tumor suppressor gene in breast, ovarian, and uterine cancers. Underscoring the functional significance of the BRCA1 and BARD1 interactions, prevalent mutations in the BRCA1 gene are found in its RING domain, through which it binds the RING domain of BARD1. BARD1-BRCA1 heterodimer plays a crucial role in a variety of DNA damage response (DDR) pathways, including DNA damage checkpoint and homologous recombination (HR). However, many mutations in both BARD1 and BRCA1 also exist in other domains that significantly affect their biological functions. Intriguingly, recent genome-wide studies have identified various single nucleotide polymorphisms (SNPs), genetic alterations, and epigenetic modifications in or near the BARD1 gene that manifested profound effects on tumorigenesis in a variety of non-breast and non-gynecological cancers. In this review, we will briefly discuss the molecular functions of BARD1, including its BRCA1-dependent as well as BRCA1-independent functions. We will then focus on evaluating the common BARD1 related SNPs as well as genetic and epigenetic changes that occur in the non-BRCA1-dominant cancers, including neuroblastoma, lung, and gastrointestinal cancers. Furthermore, the pro- and anti-tumorigenic functions of different SNPs and BARD1 variants will also be discussed.
Collapse
|
14
|
Shi J, Yu Y, Jin Y, Lu J, Zhang J, Wang H, Han W, Chu P, Tai J, Chen F, Ren H, Guo Y, Ni X. Functional Polymorphisms in BARD1 Association with Neuroblastoma in a regional Han Chinese Population. J Cancer 2019; 10:2153-2160. [PMID: 31258718 PMCID: PMC6584405 DOI: 10.7150/jca.26719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/07/2019] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma (NB) is a sympathetic nervous system cancer for children, occupying approximately 15% of pediatric oncology deaths. BARD1, a tumor suppressor, is essential for genome stability by interaction with BRCA1. Here, we performed a systematic investigation for the association between SNPs in BARD1 and the risk of NB in Chinese population. After SNP screening in BARD1 gene, we performed case-control study of eleven selected SNPs in BARD1 with 339 NB patients and 778 cancer-free controls. The OR and 95% CI of these candidate SNPs were computed by logistic regression. After adjusted gender and age, seven out of eleven SNPs in BARD1 were significant associated with the risk of NB, including one SNP in 5'-UTR (rs17489363 G > A), two SNPs in exon (rs2229571 G > C and rs3738888 C > T), and four SNPs in intron (rs3768716 A > G, rs6435862 T > G, rs3768707 C > T and rs17487792 C > T). When stratified by the INPC, primary tumor site and the INSS, these seven SNPs were significant associated with GNB/NB, stage III/IV and adrenal origin of NB. Dual-luciferase reporter assay showed rs17489363 A allele-containing haplotypes (TAC, CAC, TAG and CAG), composed with rs34732883 T > C, and rs1129804 C > G, dramatically reduced the transcriptional activity of reporter gene. The major of our study showed that seven SNPs of BARD1 associated with increased NB risk in Chinese population, and four haplotypes could reduce transcription activity of BARD1.
Collapse
Affiliation(s)
- Jin Shi
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
- Biobank for Clinical Data and Samples in Pediatric, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
- Biobank for Clinical Data and Samples in Pediatric, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
- Biobank for Clinical Data and Samples in Pediatric, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Jie Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Huanmin Wang
- Department of Oncological Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Wei Han
- Department of Oncological Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Ping Chu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
- Biobank for Clinical Data and Samples in Pediatric, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Jun Tai
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Feng Chen
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Huimin Ren
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
- Biobank for Clinical Data and Samples in Pediatric, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
- Biobank for Clinical Data and Samples in Pediatric, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Xin Ni
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
- Biobank for Clinical Data and Samples in Pediatric, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| |
Collapse
|
15
|
Tao J, Zhuo ZJ, Su M, Yan L, He J, Zhang J. XPA gene polymorphisms and risk of neuroblastoma in Chinese children: a two-center case-control study. J Cancer 2018; 9:2751-2756. [PMID: 30087717 PMCID: PMC6072815 DOI: 10.7150/jca.25973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/09/2018] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is a malignant tumor arising from the developing sympathetic nervous system, which mainly affects children. Variations in XPA gene have been shown to confer cancer susceptibility. However, no investigation has been reported regarding the association between XPA polymorphisms and neuroblastoma risk. This study was conducted to measure the association of XPA polymorphisms with neuroblastoma susceptibility in Chinese children. In this hospital-based case-control study with 393 cases and 812 controls, we genotyped two polymorphisms (rs1800975 T>C, and rs3176752 G>T) in XPA gene to access their contributions to neuroblastoma risk by TaqMan methods. The strength of the association with neuroblastoma risk was estimated by odds ratios (ORs) and 95% confidence intervals (CIs). No single polymorphism was found to predispose to neuroblastoma susceptibility. When risk genotypes were combined, we found that carriers of 1-2 risk genotypes had significantly increased neuroblastoma risk (adjusted OR=1.28; 95% CI=1.001-1.64, P=0.049), when compared to non-carriers. Stratification analysis by age, gender, sites of origin and clinical stages failed to show any significant association. Our study provides cues that XPA gene polymorphisms may exert a weak effect in neuroblastoma risk. This finding needs further validations by larger sample size studies.
Collapse
Affiliation(s)
- Jing Tao
- Department of Pathology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450053, Henan, China
| | - Zhen-Jian Zhuo
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Meng Su
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Lizhao Yan
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
16
|
Yang X, He J, Chang Y, Luo A, Luo A, Zhang J, Zhang R, Xia H, Xu L. HOTAIR gene polymorphisms contribute to increased neuroblastoma susceptibility in Chinese children. Cancer 2018; 124:2599-2606. [PMID: 29603181 DOI: 10.1002/cncr.31353] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Neuroblastoma is the most frequently diagnosed extracranial solid tumor in children. Previous studies have shown that single-nucleotide polymorphisms in some genes are associated with the risk of multiple cancers, including neuroblastoma. Although Hox transcript antisense intergenic RNA (HOTAIR) gene polymorphisms have been investigated in a variety of cancers, to the authors' knowledge the relationships between HOTAIR gene polymorphisms and neuroblastoma susceptibility have not been reported to date. The objective of the current study was to evaluate the correlation between HOTAIR gene polymorphisms and neuroblastoma risk in Chinese children. METHODS The authors genotyped 6 polymorphisms (rs920778 A>G, rs12826786 C>T, rs4759314 A>G, rs7958904 G>C, rs874945 C>T, and rs1899663 C>A) of the HOTAIR gene in 2 Chinese populations including 393 neuroblastoma cases and 812 healthy controls. The strength of the associations was evaluated using odds ratios and 95% confidence intervals. Further stratification analyses were conducted to explore the association between the HOTAIR gene polymorphisms rs12826786 C>T, rs874945 C>T, and rs1899663 C>A with neuroblastoma susceptibility in terms of age, sex, clinical stage of disease, and sites of origin. RESULTS The authors found that the rs12826786 C>T (P =.013), rs874945 C>T (P =.020), and rs1899663 C>A (P =.029) polymorphisms were significantly associated with increased neuroblastoma risk. In stratification analyses, these associations were more predominant in females and among patients with tumor in the retroperitoneal region or mediastinum. The remaining 3 polymorphisms were not found to be related to neuroblastoma susceptibility. CONCLUSIONS The results of the current study verified that HOTAIR gene polymorphisms are associated with increased neuroblastoma risk and suggest that HOTAIR gene polymorphisms might be a potential biomarker for neuroblastoma susceptibility. Cancer 2018;124:2599-606. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Xu Yang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Yitian Chang
- Department of Clinical Medicine, Jilin University, Changchun, Jilin, China
| | - Annie Luo
- Department of Science, Fraser Heights Secondary School, Surrey, British Columbia, Canada
| | - Ailing Luo
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruizhong Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Ling Xu
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Ritenour LE, Randall MP, Bosse KR, Diskin SJ. Genetic susceptibility to neuroblastoma: current knowledge and future directions. Cell Tissue Res 2018; 372:287-307. [PMID: 29589100 PMCID: PMC6893873 DOI: 10.1007/s00441-018-2820-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
Neuroblastoma, a malignancy of the developing peripheral nervous system that affects infants and young children, is a complex genetic disease. Over the past two decades, significant progress has been made toward understanding the genetic determinants that predispose to this often lethal childhood cancer. Approximately 1-2% of neuroblastomas are inherited in an autosomal dominant fashion and a combination of co-morbidity and linkage studies has led to the identification of germline mutations in PHOX2B and ALK as the major genetic contributors to this familial neuroblastoma subset. The genetic basis of "sporadic" neuroblastoma is being studied through a large genome-wide association study (GWAS). These efforts have led to the discovery of many common susceptibility alleles, each with modest effect size, associated with the development and progression of sporadic neuroblastoma. More recently, next-generation sequencing efforts have expanded the list of potential neuroblastoma-predisposing mutations to include rare germline variants with a predicted larger effect size. The evolving characterization of neuroblastoma's genetic basis has led to a deeper understanding of the molecular events driving tumorigenesis, more precise risk stratification and prognostics and novel therapeutic strategies. This review details the contemporary understanding of neuroblastoma's genetic predisposition, including recent advances and discusses ongoing efforts to address gaps in our knowledge regarding this malignancy's complex genetic underpinnings.
Collapse
Affiliation(s)
- Laura E Ritenour
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael P Randall
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristopher R Bosse
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon J Diskin
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Zhuo ZJ, Liu W, Zhang J, Zhu J, Zhang R, Tang J, Yang T, Zou Y, He J, Xia H. Functional Polymorphisms at ERCC1/XPF Genes Confer Neuroblastoma Risk in Chinese Children. EBioMedicine 2018; 30:113-119. [PMID: 29544698 PMCID: PMC5952228 DOI: 10.1016/j.ebiom.2018.03.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/05/2018] [Accepted: 03/05/2018] [Indexed: 02/07/2023] Open
Abstract
Variations in nucleotide excision repair pathway genes may predispose to initiation of cancers. However, polymorphisms of ERCC1/XPF genes and neuroblastoma risk have not been investigated before. To evaluate the relevance of polymorphisms of ERCC1/XPF genes in influencing neuroblastoma susceptibility, we genotyped four polymorphisms in ERCC1/XPF genes using a Chinese population of 393 cases and 812 controls. The results showed that ERCC1 rs2298881 and rs11615 predisposed to enhanced neuroblastoma risk [CA vs. AA: adjusted odds ratio (OR)=1.94, 95% confidence interval (CI)=1.30-2.89, P=0.0012; CC vs. AA: adjusted OR=2.18, 95% CI=1.45-3.26, P=0.0002 for rs2298881, and AG vs. GG: adjusted OR=1.31, 95% CI=1.02-1.69, P=0.038 for rs11615]. Moreover, XPF rs2276466 was also associated with increased neuroblastoma risk (GG vs. CC: adjusted OR=1.66, 95% CI=1.02-2.71, P=0.043). In the combined analysis of ERCC1, we found that carriers with 2-3 risk genotypes were more likely to get risk of neuroblastoma, when compared to those with 0-1 risk genotype (adjusted OR=1.75; 95% CI=1.25-2.45, P=0.0012). Our study indicates that common genetic variations in ERCC1/XPF genes predispose to neuroblastoma risk, which needs to be further validated by ongoing efforts.
Collapse
Affiliation(s)
- Zhen-Jian Zhuo
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Wei Liu
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jinhong Zhu
- Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Ruizhong Zhang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jue Tang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Yan Zou
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| |
Collapse
|
19
|
Fu W, Liu G, Zhao Z, Zhu J, Jia W, Zhu S, Hu J, Wang F, He J, Xia H. The correlation between LIN28B gene potentially functional variants and Wilms tumor susceptibility in Chinese children. J Clin Lab Anal 2018; 32:e22200. [PMID: 28301057 PMCID: PMC6817198 DOI: 10.1002/jcla.22200] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/21/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Wilms tumor (WT) is the most common urologic cancer in children. However, genetic bases underlying WT remain largely unknown. Previous studies indicated that Lin28 homolog B (LIN28B) level is significantly elevated in some WTs. Enforced expression of Lin28b during kidney development could induce WT. Genetic variations in the LIN28B gene may be related to WT susceptibility. METHOD In this study, we aimed to assess the association between LIN28B gene polymorphisms and WT susceptibility in Chinese children. Four potentially functional polymorphisms in the LIN28B gene (rs314276 C>A, rs221634 A>T, rs221635 T>C and rs9404590 T>G) were genotyped in 145 cases and 531 cancer-free controls, using Taqman method. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the associations. RESULTS Our results showed that the rs314276 CA genotype was associated with a decreased WT risk (CA vs CC: adjusted OR=0.65, 95% CI=0.43-0.98, P=.042). Moreover, we found that carriers of the 1-3 risk genotypes had a significantly increased WT risk when compared to the non-carriers (adjusted OR=1.51, 95% CI=1.03-2.20, P=.035). The association with risk genotypes was more predominant in children 18 month old or younger and in females. CONCLUSION In summary, these results indicated that the LIN28B gene rs314276 C>A polymorphism alone and three combined polymorphisms may be able to modify WT susceptibility in Southern Chinese children. Our findings call for further validation in large studies with different ethnicities involved.
Collapse
Affiliation(s)
- Wen Fu
- Southern Medical UniversityGuangzhouGuangdongChina
- Department of Pediatric UrologyDepartment of Pediatric SurgeryGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Guo‐Chang Liu
- Department of Pediatric UrologyDepartment of Pediatric SurgeryGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhang Zhao
- Department of Pediatric UrologyDepartment of Pediatric SurgeryGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jinhong Zhu
- Molecular Epidemiology Laboratory and Department of Laboratory MedicineHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Wei Jia
- Department of Pediatric UrologyDepartment of Pediatric SurgeryGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Shi‐Bo Zhu
- Department of Pediatric UrologyDepartment of Pediatric SurgeryGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jin‐Hua Hu
- Department of Pediatric UrologyDepartment of Pediatric SurgeryGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Feng‐Hua Wang
- Department of Pediatric UrologyDepartment of Pediatric SurgeryGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jing He
- Department of Pediatric UrologyDepartment of Pediatric SurgeryGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Huimin Xia
- Southern Medical UniversityGuangzhouGuangdongChina
- Department of Pediatric UrologyDepartment of Pediatric SurgeryGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
20
|
Cimmino F, Formicola D, Capasso M. Dualistic Role of BARD1 in Cancer. Genes (Basel) 2017; 8:genes8120375. [PMID: 29292755 PMCID: PMC5748693 DOI: 10.3390/genes8120375] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 01/17/2023] Open
Abstract
BRCA1 Associated RING Domain 1 (BARD1) encodes a protein which interacts with the N-terminal region of BRCA1 in vivo and in vitro. The full length (FL) BARD1 mRNA includes 11 exons and encodes a protein comprising of six domains (N-terminal RING-finger domain, three Ankyrin repeats and two C-terminal BRCT domains) with different functions. Emerging data suggest that BARD1 can have both tumor-suppressor gene and oncogene functions in tumor initiation and progression. Indeed, whereas FL BARD1 protein acts as tumor-suppressor with and without BRCA1 interactions, aberrant splice variants of BARD1 have been detected in various cancers and have been shown to play an oncogenic role. Further evidence for a dualistic role came with the identification of BARD1 as a neuroblastoma predisposition gene in our genome wide association study which has demonstrated that single nucleotide polymorphisms in BARD1 can correlate with risk or can protect against cancer based on their association with the expression of FL and splice variants of BARD1. This review is an overview of how BARD1 functions in tumorigenesis with opposite effects in various types of cancer.
Collapse
Affiliation(s)
- Flora Cimmino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli "Federico II", 80131 Naples, Italy.
- CEINGE Biotecnologie Avanzate, 80131 Naples, Italy.
| | - Daniela Formicola
- IRCCS SDN, Istituto di Ricerca Diagnostica e Nucleare, 80143 Naples, Italy.
| | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli "Federico II", 80131 Naples, Italy.
- IRCCS SDN, Istituto di Ricerca Diagnostica e Nucleare, 80143 Naples, Italy.
| |
Collapse
|
21
|
He J, Zou Y, Wang T, Zhang R, Yang T, Zhu J, Wang F, Xia H. Genetic Variations of GWAS-Identified Genes and Neuroblastoma Susceptibility: a Replication Study in Southern Chinese Children. Transl Oncol 2017; 10:936-941. [PMID: 29024823 PMCID: PMC5704095 DOI: 10.1016/j.tranon.2017.09.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is one of the most commonly diagnosed solid cancers for children, and genetic factors may play a critical role in neuroblastoma development. Previous genome-wide association studies (GWASs) have identified nine genes associated with neuroblastoma susceptibility in Caucasians. To determine whether genetic variations in these genes are also associated with neuroblastoma susceptibility in Southern Chinese children, we genotyped 25 polymorphisms within these genes by the TaqMan method in 256 cases and 531 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the strength of the associations. We performed a meta-analysis to further evaluate the associations. Furthermore, we calculated the area under the receiver-operating characteristic curves (AUC) to assess which gene/genes may better predict neuroblastoma risk. We confirmed that CASC15 rs6939340 A>G, rs4712653 T>C, rs9295536 C>A, LIN28B rs221634 A>T, and LMO1 rs110419 A>G were associated with significantly altered neuroblastoma susceptibility. We also confirmed that rs6939340 A>G (G versus A: OR=1.30, 95% CI=1.13-1.50) and rs110419 G>A (A versus G: OR=1.37, 95% CI=1.19-1.58) were associated with increased neuroblastoma risk for all subjects. We also found that the combination of polymorphisms in CASC15, LIN28B, and LMO1 may be used to predict neuroblastoma risk (AUC=0.63, 95% CI=0.59-0.67). Overall, we verified five GWAS-identified polymorphisms that were associated with neuroblastoma susceptibility alteration for Southern Chinese population; however, these results need further validation in studies with larger sample sizes.
Collapse
Affiliation(s)
- Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| | - Yan Zou
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Tongmin Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Ruizhong Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jinhong Zhu
- Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Fenghua Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| |
Collapse
|
22
|
Jia W, Deng Z, Zhu J, Fu W, Zhu S, Zhang LY, Hu J, Wang F, Xia H, Liu GC, He J. Association Between HACE1 Gene Polymorphisms and Wilms' Tumor Risk in a Chinese Population. Cancer Invest 2017; 35:633-638. [PMID: 29243987 DOI: 10.1080/07357907.2017.1405016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023]
Abstract
Wilms' tumor is one of the most common solid tumors of childhood; however, the genetic basis underlying the majority of cases remains largely unknown. HACE1 is a putative Wilms' tumor susceptibility gene. We investigated the association between five HACE1 gene polymorphisms and Wilms' tumor susceptibility in a Chinese population consisting of 145 patients and 531 controls. We found a significant association between HACE1 rs9404576 polymorphism and decreased Wilms' tumor risk. No significant association was detected for other polymorphisms in the overall analysis. Our results indicated that HACE1 rs9404576 polymorphism may be associated with Wilms' tumor susceptibility in the Chinese population.
Collapse
Affiliation(s)
- Wei Jia
- a Department of Pediatric Urology, Guangzhou Women and Children's Medical Center , Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Zhijian Deng
- b Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center , Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Jinhong Zhu
- c Molecular Epidemiology Laboratory and Department of Laboratory Medicine , Harbin Medical University Cancer Hospital , Harbin , Heilongjiang , China
| | - Wen Fu
- a Department of Pediatric Urology, Guangzhou Women and Children's Medical Center , Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Shibo Zhu
- a Department of Pediatric Urology, Guangzhou Women and Children's Medical Center , Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Li-Yu Zhang
- a Department of Pediatric Urology, Guangzhou Women and Children's Medical Center , Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Jinhua Hu
- a Department of Pediatric Urology, Guangzhou Women and Children's Medical Center , Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Fenghua Wang
- b Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center , Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Huimin Xia
- b Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center , Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Guo-Chang Liu
- a Department of Pediatric Urology, Guangzhou Women and Children's Medical Center , Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Jing He
- b Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center , Guangzhou Medical University , Guangzhou , Guangdong , China
| |
Collapse
|
23
|
Liu GC, Zhuo ZJ, Zhu SB, Zhu J, Jia W, Zhao Z, Hu JH, He J, Wang FH, Fu W. Associations between LMO1 gene polymorphisms and Wilms' tumor susceptibility. Oncotarget 2017; 8:50665-50672. [PMID: 28881592 PMCID: PMC5584185 DOI: 10.18632/oncotarget.16926] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/22/2017] [Indexed: 02/07/2023] Open
Abstract
Wilms' tumor is the most common childhood renal malignancy. A genome-wide association study identified LIM domain only 1 (LMO1) as having oncogenic potential. We examined the associations between LMO1 gene polymorphisms and susceptibility to Wilms' tumor. In this hospital-based, case-control study, we recruited 145 children with Wilms' tumor and 531 cancer-free children. Four polymorphisms (rs110419 A>G, rs4758051 G>A, rs10840002 A>G and rs204938 A>G) were genotyped using Taqman methodology. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to measure the associations between selected polymorphisms and Wilms' tumor susceptibility. Only rs110419 AG was found to be protective against Wilms' tumor (adjusted OR = 0.62, 95% CI = 0.41-0.94, P = 0.024) when compared to rs110419 AA. Wilms' tumor risk was markedly greater in children with 1-4 risk genotypes (nucleotide alterations) than in those with no risk genotypes (adjusted OR = 1.84, 95% CI = 1.25-2.69, P = 0.002). In a stratified analysis, the protective effect of rs110419 AG/GG was predominant in males. The association of 1-4 risk genotypes with Wilms' tumor risk was limited to subgroups of children who were >18 months old, female, and in clinical stages III+IV. Thus, LMO1 gene polymorphisms may contribute to Wilms' tumor risk, but this conclusion should be validated in other populations and larger studies.
Collapse
Affiliation(s)
- Guo-Chang Liu
- Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhen-Jian Zhuo
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Shi-Bo Zhu
- Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jinhong Zhu
- Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Wei Jia
- Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhang Zhao
- Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jin-Hua Hu
- Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Feng-Hua Wang
- Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Wen Fu
- Department of Pediatric Urology, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
24
|
Zhang Z, Zou Y, Zhu J, Zhang R, Yang T, Wang F, Xia H, He J, Feng Z. HSD17B12 gene rs11037575 C>T polymorphism confers neuroblastoma susceptibility in a Southern Chinese population. Onco Targets Ther 2017; 10:1969-1975. [PMID: 28435286 PMCID: PMC5388261 DOI: 10.2147/ott.s136006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A previous genome-wide association study (GWAS) identified four genetic polymorphisms (rs1027702 near DUSP12, rs10055201 in IL31RA, rs2619046 in DDX4, and rs11037575 in HSD17B12 gene) that were associated with neuroblastoma susceptibility, especially for low-risk subjects. The aim of this study was to examine the association between these four polymorphisms and neuroblastoma susceptibility in a Southern Chinese population composed of 256 cases and 531 controls. Overall, among all the polymorphisms, single-locus analysis only revealed significant association between the HSD17B12 rs11037575 C>T polymorphism and neuroblastoma susceptibility (CT vs CC: adjusted odds ratio [OR] =0.71, 95% confidence interval [CI] =0.51-0.97, P=0.030). Moreover, stratified analysis indicated that the rs11037575 T allele was associated with decreased neuroblastoma risk among the children aged 0-18 months (adjusted OR =0.60, 95% CI =0.37-0.97, P=0.036); regarding the tumor site, this polymorphism protected against tumor in the mediastinum (adjusted OR =0.59, 95% CI =0.37-0.94, P=0.025). When risk genotypes were combined, we found that girls with two to four risk genotypes were at a significantly increased risk of neuroblastoma (adjusted OR =1.65, 95% CI =1.03-2.64, P=0.039). In terms of clinical stages, individuals with two to four risk genotypes had a tendency toward the development of stage III/IV diseases (adjusted OR =1.69, 95% CI =1.12-2.54, P=0.012). In conclusion, we verified that the HSD17B12 rs11037575 T allele might negatively associate with neuroblastoma risk. These findings need further validation by prospective studies with larger sample size and different ethnicities.
Collapse
Affiliation(s)
- Zhuorong Zhang
- Southern Medical University, Guangzhou, Guangdong
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Yan Zou
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Jinhong Zhu
- Molecular Epidemiology Laboratory, Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang
| | - Ruizhong Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Fenghua Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Huimin Xia
- Southern Medical University, Guangzhou, Guangdong
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Zhichun Feng
- Southern Medical University, Guangzhou, Guangdong
- Division of Neonatology, Affiliated BaYi Children’s Hospital, Clinical Medical College in PLA Army General Hospital, Southern Medical University
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology
- Beijing Key Laboratory of Pediatric Organ Failure, Beijing, People’s Republic of China
| |
Collapse
|
25
|
Fu W, Zhuo ZJ, Jia W, Zhu J, Zhu SB, Lin ZF, Wang FH, Xia H, He J, Liu GC. Association between TP53 gene Arg72Pro polymorphism and Wilms' tumor risk in a Chinese population. Onco Targets Ther 2017; 10:1149-1154. [PMID: 28260929 PMCID: PMC5328300 DOI: 10.2147/ott.s131014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Wilms' tumor is one of the most prevalent pediatric malignancies, ranking fourth in childhood cancer worldwide. TP53 is a critical tumor suppressor gene, which encodes a 53 kDa protein, p53. The p53 functions to protect against cancer by regulating cell cycle and apoptosis and maintaining DNA integrity. TP53 gene is highly polymorphic. Several TP53 gene polymorphisms have been considered to be associated with cancer risk. Of them, a nonsynonymous polymorphism, Arg72Pro (rs1042522 C>G), has been most extensively studied for the association with cancer risk; however, few studies have investigated its effect on Wilms' tumor. Because of the central role of p53 in cell cycle control, the TP53 gene Arg72Pro polymorphism is also a good potential candidate predisposition locus for this pediatric cancer. We genotyped this polymorphism in 145 patients and 531 cancer-free controls recruited from Chinese children by Taqman methodology. Overall, our result suggested a lack of association between the TP53 gene Arg72Pro polymorphism and Wilms' tumor. In the stratified analysis, we found that carriers of CG/GG genotypes had a significantly increased Wilms' tumor risk in children not older than 18 months (adjusted odds ratio =2.04, 95% confidence interval =1.003-4.13, P=0.049) compared with CC genotype carriers. Our study indicated that the TP53 gene Arg72Pro polymorphism may have a weak, age-related effect on Wilms' tumor risk in Chinese children. These findings need further validations in other populations with larger sample size.
Collapse
Affiliation(s)
- Wen Fu
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Zhen-Jian Zhuo
- Faculty of Medicine, School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Jinhong Zhu
- Molecular Epidemiology Laboratory, Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Shi-Bo Zhu
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Ze-Feng Lin
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Feng-Hua Wang
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Huimin Xia
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Jing He
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Guo-Chang Liu
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong
| |
Collapse
|
26
|
Fu W, Zhu J, Xiong SW, Jia W, Zhao Z, Zhu SB, Hu JH, Wang FH, Xia H, He J, Liu GC. BARD1 Gene Polymorphisms Confer Nephroblastoma Susceptibility. EBioMedicine 2017; 16:101-105. [PMID: 28161399 PMCID: PMC5474516 DOI: 10.1016/j.ebiom.2017.01.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/27/2017] [Accepted: 01/27/2017] [Indexed: 02/07/2023] Open
Abstract
BRCA1-associated RING domain protein 1 (BARD1) is a tumor suppressor, which forms a heterodimer with BRCA1. Three BARD1 gene polymorphisms (rs7585356 G>A, rs6435862 T>G and rs3768716 A>G) were initially identified as high-risk neuroblastoma susceptibility loci by a previous GWAS. Because of the general tumor-suppressing function of BARD1, we hypothesized that these BARD1 gene polymorphisms might modify the susceptibility to nephroblastoma. We genotyped these polymorphisms in 145 cases and 531 controls using Taqman methods. Out of three polymorphisms, only the rs7585356 G>A polymorphism was significantly associated with increased susceptibility to nephroblastoma [AA vs. GG: adjusted odds ratio (OR)=1.78, 95% confidence interval (CI)=1.01-3.12]. Combined analysis of three polymorphisms indicated that subjects with 3 risk genotypes exhibited significantly elevated nephroblastoma risk, when compared with subjects with 0-2 risk genotypes (adjusted OR=1.72, 95% CI=1.02-2.89). Stratified analysis revealed that in term of clinical stage, rs7585356 AA carriers were associated with increased risk of developing clinical stage I+II nephroblastoma. The presence of three risk genotypes was significantly associated with nephroblastoma risk in females and clinical stage I+II nephroblastoma. Our results suggested that BARD1 rs7585356 G>A may be associated with nephroblastoma risk.
Collapse
Affiliation(s)
- Wen Fu
- Department of Pediatric Urology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jinhong Zhu
- Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Si-Wei Xiong
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhang Zhao
- Department of Pediatric Urology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Shi-Bo Zhu
- Department of Pediatric Urology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jin-Hua Hu
- Department of Pediatric Urology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Feng-Hua Wang
- Department of Pediatric Urology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Urology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Urology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| | - Guo-Chang Liu
- Department of Pediatric Urology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China; Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| |
Collapse
|
27
|
Zheng J, Zhang R, Zhu J, Wang F, Yang T, He J, Xia H. Lack of Associations between XPC Gene Polymorphisms and Neuroblastoma Susceptibility in a Chinese Population. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2932049. [PMID: 27847809 PMCID: PMC5101359 DOI: 10.1155/2016/2932049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023]
Abstract
Neuroblastoma is one of the most malignant solid tumors in infants and young children. No more than 40% of neuroblastoma patients can survive for longer than five years after it has been diagnosed. XPC protein is a pivotal factor that recognizes DNA damage and starts up the nucleotide excision repair (NER) in mammalian cells. This makes up the first group to defend against the cancer. Previous studies have identified that XPC gene polymorphisms were associated with various types of cancer. However, the associations between XPC gene polymorphisms and neuroblastoma risk have not yet been studied. We investigated the associations between three XPC gene polymorphisms (rs2228001 A>C, rs2228000 C>T, and rs2229090 G>C) and neuroblastoma risk with 256 neuroblastoma patients and 531 healthy controls in a Chinese Han population. Odds ratios and 95% confidence intervals were used to access the association between these three polymorphisms and neuroblastoma risk. No significant association was detected between these three polymorphisms and neuroblastoma risk in the overall analysis as well as in the stratification analysis. These results suggest that none of these three polymorphisms may be associated with the risk of neuroblastoma in the Chinese Han population.
Collapse
Affiliation(s)
- Jintao Zheng
- Department of Pediatric Surgery, Foshan Maternity and Children's Healthcare Hospital Affiliated to Southern Medical University, Foshan, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Ruizhong Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Jinhong Zhu
- Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150040, China
| | - Fenghua Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| | - Huimin Xia
- Department of Pediatric Surgery, Foshan Maternity and Children's Healthcare Hospital Affiliated to Southern Medical University, Foshan, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, China
| |
Collapse
|
28
|
He J, Wang F, Zhu J, Zhang R, Yang T, Zou Y, Xia H. Association of potentially functional variants in the XPG gene with neuroblastoma risk in a Chinese population. J Cell Mol Med 2016; 20:1481-1490. [PMID: 27019310 PMCID: PMC4956948 DOI: 10.1111/jcmm.12836] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/14/2016] [Indexed: 02/05/2023] Open
Abstract
XPG gene plays a critical role in the nucleotide excision repair pathway. However, the association between XPG gene polymorphisms and neuroblastoma risk has not been investigated. In this study with 256 neuroblastoma cases and 531 cancer-free controls, we investigated the effects of five potentially functional polymorphisms (rs2094258 C>T, rs751402 C>T, rs2296147 T>C, rs1047768 T>C and rs873601G>A) on neuroblastoma risk. We calculated odds ratio (OR) and 95% confidence interval (CI) to evaluate the association between the five selected polymorphisms and neuroblastoma risk. False-positive report probability (FPRP) was utilized to determine whether significant findings were noteworthy or because of a chance. We also performed genotype-phenotype association analysis to explore the biological plausibility of our findings. We found that the rs2094258 T allele was significantly associated with decreased neuroblastoma risk (CT versus CC: adjusted OR = 0.65, 95% CI = 0.47-0.90, P = 0.010; and CT/TT versus CC: adjusted OR = 0.71, 95% CI = 0.53-0.97, P = 0.030) after adjusting for age and gender. The association was more prominent for subjects with retroperitoneal tumour or early-stage tumour. We also found that carriers of the 2-3 risk genotypes had a significantly increased neuroblastoma risk when compared to carriers of the 0-1 risk genotypes. The association with risk genotypes was more predominant in older children, females and subjects with retroperitoneal tumour or early stage. Our results were further supported by FPRP analysis and genotype-phenotype association analysis. In conclusion, our study verified that the XPG gene rs2094258 C>T polymorphism may contribute to neuroblastoma susceptibility. Our findings require further validation by studies with larger sample size and concerning different ethnicities.
Collapse
Affiliation(s)
- Jing He
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Fenghua Wang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinhong Zhu
- Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Ruizhong Zhang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yan Zou
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
He J, Zhong W, Zeng J, Zhu J, Zhang R, Wang F, Yang T, Zou Y, Xia H. LMO1 gene polymorphisms contribute to decreased neuroblastoma susceptibility in a Southern Chinese population. Oncotarget 2016; 7:22770-22778. [PMID: 27009839 PMCID: PMC5008399 DOI: 10.18632/oncotarget.8178] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/21/2016] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is one of the most commonly diagnosed extracranial solid tumors in infancy; however, the etiology of neuroblastoma remains largely unknown. Previous genome-wide association study (GWAS) indicated that several common genetic variations (rs110419 A > G, rs4758051 G > A, rs10840002 A > G and rs204938 A > G) in the LIM domain only 1 (LMO1) gene were associated with neuroblastoma susceptibility. The aim of this study was to evaluate the correlation between the four GWAS-identified LMO1 gene polymorphisms and neuroblastoma risk in a Southern Chinese population. We genotyped the four polymorphisms in 256 neuroblastoma cases and 531 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the strength of the associations. False-positive report probability was calculated for all significant findings. We found that the rs110419 A > G polymorphism was associated with a significantly decreased neuroblastoma risk (AG vs. AA: adjusted OR = 0.65, 95% CI = 0.47-0.91; GG vs. AA: adjusted OR = 0.58, 95% CI = 0.36-0.91; AG/GG vs. AA: adjusted OR = 0.63, 95% CI = 0.46-0.86), and the protective effect was more predominant in children of age > 18 months, males, subgroups with tumor in adrenal gland and mediastinum, and patients in clinical stages III/IV. These results suggested that LMO1 gene rs110419 A > G polymorphism may contribute to protection against neuroblastoma. Our findings call for further validation studies with larger sample size.
Collapse
Affiliation(s)
- Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Department of Experimental Research, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Wei Zhong
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jixiao Zeng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jinhong Zhu
- Molecular Epidemiology Laboratory and Department of Laboratory Medicine, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Ruizhong Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Fenghua Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Yan Zou
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|