1
|
Fang L, Cheng H, Chen W, Peng C, Liu Y, Zhang C. Therapeutic effects of Tanshinone IIA and Tetramethylpyrazine nanoemulsions on cognitive impairment and neuronal damage in Alzheimer's disease rat models. J Pharm Pharmacol 2024; 76:1169-1177. [PMID: 38934298 DOI: 10.1093/jpp/rgae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES The aim of this study was to investigate the therapeutic effects and related mechanisms of Tanshinone IIA and Tetramethylpyrazine O/W composite nanoemulsions on Alzheimer's disease (AD) rats. METHODS The therapeutic effect of TSN/TMP O/W NEs on AD rats was evaluated by behavioral tests, H&E, Nissl, and Immunohistochemistry staining. ELISA and Western blot were used to analyze the mechanism. KEY FINDINGS The results showed that TSN/TMP O/W NEs could down-regulate the expression of Bax and Caspase-3 proteins, decrease the level of MDA, increase the expression of SOD and GSH-Px, and alleviate cognitive impairment in AD rats. CONCLUSIONS TSN/TMP O/W NEs can inhibit MAPK/ERK/CREB signaling pathway and effectively alleviate cognitive impairment, oxidative stress injury, and neuronal apoptosis in AD rats.
Collapse
Affiliation(s)
- Liang Fang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Hongyan Cheng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Weidong Chen
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Can Peng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Yuanxu Liu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| | - Caiyun Zhang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
- Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
- Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China
- Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, P.R. China
| |
Collapse
|
2
|
Wang H, Zhou L, Zheng Q, Song Y, Huang W, Yang L, Xiong Y, Cai Z, Chen Y, Yuan J. Kai-xin-san improves cognitive impairment in D-gal and Aβ 25-35 induced ad rats by regulating gut microbiota and reducing neuronal damage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118161. [PMID: 38599474 DOI: 10.1016/j.jep.2024.118161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kai-Xin-San (KXS) is a classic herbal formula for the treatment and prevention of AD (Alzheimer's disease) with definite curative effect, but its mechanism, which involves multiple components, pathways, and targets, is not yet fully understood. AIM OF THE STUDY To verify the effect of KXS on gut microbiota and explore its anti-AD mechanism related with gut microbiota. MATERIALS AND METHODS AD rat model was established and evaluated by intraperitoneal injection of D-gal and bilateral hippocampal CA1 injections of Aβ25-35. The pharmacodynamics of KXS in vivo includes general behavior, Morris water maze test, ELISA, Nissl & HE staining and immunofluorescence. Systematic analysis of gut microbiota was conducted using 16S rRNA gene sequencing technology. The potential role of gut microbiota in the anti-AD effect of KXS was validated with fecal microbiota transplantation (FMT) experiments. RESULTS KXS could significantly improve cognitive impairment, reduce neuronal damage and attenuate neuroinflammation and colonic inflammation in vivo in AD model rats. Nine differential intestinal bacteria associated with AD were screened, in which four bacteria (Lactobacillus murinus, Ligilactobacillus, Alloprevotella, Prevotellaceae_NK3B31_group) were very significant. CONCLUSION KXS can maintain the ecological balance of intestinal microbiota and exert its anti-AD effect by regulating the composition and proportion of gut microbiota in AD rats through the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Huijuan Wang
- Key Lab of Modern Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Lifen Zhou
- Key Lab of Modern Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Qin Zheng
- Key Lab of Modern Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yonggui Song
- Laboratory Animal Science and Technology Development Center, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, 410008, China
| | - Lin Yang
- Key Lab of Modern Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yongchang Xiong
- Key Lab of Modern Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Zhinan Cai
- Key Lab of Modern Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Ying Chen
- Key Lab of Modern Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Jinbin Yuan
- Key Lab of Modern Preparations of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
3
|
Hong H, Yu L, Cong W, Kang K, Gao Y, Guan Q, Meng X, Zhang H, Zhou Z. Cross-Talking Pathways of Rapidly Accelerated Fibrosarcoma-1 (RAF-1) in Alzheimer's Disease. Mol Neurobiol 2024; 61:2798-2807. [PMID: 37940778 DOI: 10.1007/s12035-023-03765-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Alzheimer's disease (AD) becomes one of the main global burden diseases with the aging population. This study was to investigate the potential molecular mechanisms of rapidly accelerated fibrosarcoma-1 (RAF-1) in AD through bioinformatics analysis. Differential gene expression analysis was performed in GSE132903 dataset. We used weight gene correlation network analysis (WGCNA) to evaluate the relations among co-expression modules and construct global regulatory network. Cross-talking pathways of RAF-1 in AD were identified by functional enrichment analysis. Totally, 2700 differentially expressed genes (DEGs) were selected between AD versus non-dementia control and RAF-1-high versus low group. Among them, DEGs in turquoise module strongly associated with AD and high expression of RAF-1 were enriched in vascular endothelial growth factor (VEGF), neurotrophin, mitogen-activated protein kinase (MAPK) signaling pathway, oxidative phosphorylation, GABAergic synapse, and axon guidance. Moreover, cross-talking pathways of RAF-1, including MAPK, VEGF, neurotrophin signaling pathways, and axon guidance, were identified by global regulatory network. The performance evaluation of AUC was 84.2%. The gene set enrichment analysis (GSEA) indicated that oxidative phosphorylation and synapse-related biological processes were enriched in RAF-1-high and AD group. Our findings strengthened the potential roles of high RAF-1 level in AD pathogenesis, which were mediated by MAPK, VEGF, neurotrophin signaling pathways, and axon guidance.
Collapse
Affiliation(s)
- Hong Hong
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Lujiao Yu
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Wenqiang Cong
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Kexin Kang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Yazhu Gao
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Qing Guan
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, 110001, Liaoning, China
| | - Haiyan Zhang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Zhike Zhou
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
4
|
Prasanth MI, Verma K, Brimson S, Tencomnao T, Brimson JM. Simple ammonium salt and sigma-1 receptor ligand dipentylammonium provides neuroprotective effects in cell culture and Caenorhabditis elegans models of Alzheimer's disease. Biomed Pharmacother 2024; 173:116455. [PMID: 38503234 DOI: 10.1016/j.biopha.2024.116455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
The sigma-1 receptor (σ-1R), a chaperone protein located at the mitochondria-associated membrane (MAM) of the endoplasmic reticulum, can interact with and modify the signaling pathways of various proteins, thereby modulating many disease pathologies, including Alzheimer's disease (AD). The σ-1R ligand dipentylammonium (DPA) was analyzed for its anti-AD properties using PC12 cells (in vitro) and Caenorhabditis elegans (in vivo) models along with molecular docking (in silico) analysis. DPA at 1 and 10 µM concentrations was able to significantly potentiate NGF-induced neurite growth length by 137.7 ± 12.0 and 187.8 ± 16.4, respectively, when compared to the control 76.9 ± 7.4. DPA also regulated neurite damage caused by Aβ(25-35) treatment in differentiated PC12 cells by improving cell viability and neurite length. In C. elegans, DPA could significantly extend the median and maximum lifespan of Aβ transgenic strain CL2006 without impacting wild-type nematodes. Additionally, it could significantly reduce the paralysis phenotype of another Aβ transgenic strain, CL4176, thereby improving the overall health in AD pathogenesis. This effect depended on σ-1R, as DPA could not modulate the lifespan of σ-1R mutant TM3443. This was further confirmed using agonist PRE084 and antagonist BD1047, wherein the agonist alone could extend the lifespan of CL2006, while the antagonist suppressed the effect of DPA in CL2006. Interestingly, neither had an TM3443. Further, molecular docking analysis showed that DPA had a similar binding affinity as that of PRE084, BD1047 and pentazocine against the σ-1R receptor in humans and C. elegans, which collectively suggests the anti-AD properties of DPA.
Collapse
Affiliation(s)
- Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanika Verma
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Molecular Epidemiology, ICMR-National Institute of Malaria Research (NIMR), New Delhi 110077, India
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - James Michael Brimson
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Research Unit for Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
5
|
Liu L, Huang B, Lu Y, Zhao Y, Tang X, Shi Y. Interactions between electromagnetic radiation and biological systems. iScience 2024; 27:109201. [PMID: 38433903 PMCID: PMC10906530 DOI: 10.1016/j.isci.2024.109201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Even though the bioeffects of electromagnetic radiation (EMR) have been extensively investigated during the past several decades, our understandings of the bioeffects of EMR and the mechanisms of the interactions between the biological systems and the EMRs are still far from satisfactory. In this article, we introduce and summarize the consensus, controversy, limitations, and unsolved issues. The published works have investigated the EMR effects on different biological systems including humans, animals, cells, and biochemical reactions. Alternative methodologies also include dielectric spectroscopy, detection of bioelectromagnetic emissions, and theoretical predictions. In many studies, the thermal effects of the EMR are not properly controlled or considered. The frequency of the EMR investigated is limited to the commonly used bands, particularly the frequencies of the power line and the wireless communications; far fewer studies were performed for other EMR frequencies. In addition, the bioeffects of the complex EM environment were rarely discussed. In summary, our understanding of the bioeffects of the EMR is quite restrictive and further investigations are needed to answer the unsolved questions.
Collapse
Affiliation(s)
- Lingyu Liu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Huang
- Brain Function and Disease Laboratory, Department of Pharmacology, Shantou University Medical College, 22 Xin-Ling Road, Shantou 515041, China
| | - Yingxian Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yanyu Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xiaping Tang
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
6
|
Sarimov RM, Serov DA, Gudkov SV. Biological Effects of Magnetic Storms and ELF Magnetic Fields. BIOLOGY 2023; 12:1506. [PMID: 38132332 PMCID: PMC10740910 DOI: 10.3390/biology12121506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Magnetic fields are a constant and essential part of our environment. The main components of ambient magnetic fields are the constant part of the geomagnetic field, its fluctuations caused by magnetic storms, and man-made magnetic fields. These fields refer to extremely-low-frequency (<1 kHz) magnetic fields (ELF-MFs). Since the 1980s, a huge amount of data has been accumulated on the biological effects of magnetic fields, in particular ELF-MFs. However, a unified picture of the patterns of action of magnetic fields has not been formed. Even though a unified mechanism has not yet been generally accepted, several theories have been proposed. In this review, we attempted to take a new approach to analyzing the quantitative data on the effects of ELF-MFs to identify new potential areas for research. This review provides general descriptions of the main effects of magnetic storms and anthropogenic fields on living organisms (molecular-cellular level and whole organism) and a brief description of the main mechanisms of magnetic field effects on living organisms. This review may be of interest to specialists in the fields of biology, physics, medicine, and other interdisciplinary areas.
Collapse
Affiliation(s)
| | | | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilova Street, 119991 Moscow, Russia; (R.M.S.); (D.A.S.)
| |
Collapse
|
7
|
Wang P, Wang X, Wang Q, Jiao Y, Wang X, Chen C, Chen H, Song T. Cognitive improvement via a modulated rhythmic pulsed magnetic field in D-galactose-induced accelerated aging mice. Brain Res 2023; 1810:148372. [PMID: 37094765 DOI: 10.1016/j.brainres.2023.148372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023]
Abstract
Rhythmic physical stimulations have emerged as effective noninvasive intervention strategies in the treatment of pathological cognitive deficits. Transcranial magnetic stimulation (TMS) can regulate neural firing and improve the learning and memory abilities of rodents or patients with cognitive deterioration. However, the effects of elaborate magnetic stimulation with low intensity during aging or other neurological disordering processes on cognitive decline remain unclear. In this study, we developed an elaborate modulated pulsed magnetic field (PMF) stimulation with a complex pattern in the theta repeated frequency and gamma carrier frequency and then determined the effects of this rhythmic PMF on the cognitive function of accelerated aging mice established by chronic subcutaneous injection of D-galactose (D-gal). The results of the Morris water maze (MWM) test showed that mice treated with modulated PMF displayed shorter swimming distance and latency time in the spatial exploration acquisition trial and exhibited a significant preference in the target presumptive platform area in the probe trial, all of which indicated the enhancement in spatial learning and memory abilities upon PMF stimulation of the accelerated aging mice. The novel object recognition (NOR) test results showed a similar tendency as the MWM results although without statistical significance. Further determination of histological structures demonstrated that the cognitive function-related hippocampal CA3 neurons degenerated upon D-gal injection, which could also be partially rescued by PMF application. In comparison with the high-intensity TMS approach, low-intensity magnetic stimulation could be much safer and allow deeper penetration without adverse effects such as seizure. In summary, modulated PMF, even with low intensity, could effectively improve rodent cognitive functions impaired by D-gal-induced accelerated aging, which might provide a new safe therapeutic strategy for cognitive deficits as well as other neurological disorders.
Collapse
Affiliation(s)
- Pingping Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xue Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qingmeng Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yangkun Jiao
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xuting Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Changyou Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Haitao Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Song
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Abkhezr H, Mohaddes G, Nikniaz Z, Abbasalizad Farhangi M, Heydari H, Nikniaz L. The effect of Extremely Low Frequency Electromagnetic Field on spatial memory of mice and rats: A systematic review. LEARNING AND MOTIVATION 2023. [DOI: 10.1016/j.lmot.2023.101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
9
|
Gu L, Sun M, Li R, Tao Y, Luo X, Xu J, Wu X, Xie Z. Activation of RKIP Binding ASC Attenuates Neuronal Pyroptosis and Brain Injury via Caspase-1/GSDMD Signaling Pathway After Intracerebral Hemorrhage in Mice. Transl Stroke Res 2022; 13:1037-1054. [PMID: 35355228 DOI: 10.1007/s12975-022-01009-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
Pyroptosis has been proven to be responsible for secondary brain injury after intracerebral hemorrhage (ICH). A recent study reported that Raf kinase inhibitor protein (RKIP) inhibited assembly and activation of inflammasome in macrophages. Our present study aimed to investigate the effects of RKIP on inflammasome-mediated neuronal pyroptosis and underlying neuroprotective mechanisms in experimental ICH. Here, we showed that RKIP expression was decreased both in cerebrospinal fluid (CSF) samples from patients with ICH and in the peri-hematoma tissues after experimental ICH. In mouse ICH model, activation of RKIP remarkably improved neurological deficits, reduced brain water content and BBB disruption, and promoted hematoma absorption at 24 h after ICH, as well as alleviated neuronal degeneration, reduced membrane pore formation, and downregulated pyroptotic molecules NLRP3, caspase-1 P20, GSDMD-N, and mature IL-1β. Besides, RKIP activation decreased the number of caspase-1 P20-positive neurons after ICH. However, RKIP inhibitor reserved the neuroprotective effects of RKIP at 24 h following ICH. Moreover, RKIP could bind with ASC, then interrupt the assembly of NLRP3 inflammasome. Mechanistically, inhibiting the caspase-1 by VX-765 attenuated brain injury and suppressed neuronal pyroptosis after RKIP inhibitor-pretreated ICH. In conclusion, our findings indicated that activation of RKIP could attenuate neuronal pyroptosis and brain injury after ICH, to some extent, through ASC/Caspase-1/GSDMD pathway. Thus, RKIP may be a potential target to attenuate brain injury via its anti-pyroptosis effect after ICH.
Collapse
Affiliation(s)
- Lingui Gu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Mingjiang Sun
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Ruihao Li
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Yihao Tao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Xu Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Jing Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China
| | - Xuan Wu
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing, 400010, China.
| |
Collapse
|
10
|
Hao W, Chen J, Zhang Y, Mou T, Wang J, Zhang C, Gu S, Zhao T, Sun Y, Cui M, Wei B. Integration of Metabolomics and Network Pharmacology to Validate the Mechanism of Schisandra chinensis(Turcz.)Baill - Acorus tatarinowii Schott Ameliorating the Alzheimer's Disease by Regulating the Aromatase Activity to affect Local Estrogen in Brain of AD Model Rats. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
11
|
Differential biological responses of adherent and non-adherent (cancer and non-cancerous) cells to variable extremely low frequency magnetic fields. Sci Rep 2022; 12:14225. [PMID: 35987807 PMCID: PMC9392794 DOI: 10.1038/s41598-022-18210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
Extremely low-frequency electromagnetic field (ELF-EMF) induces biological effects on different cells through various signaling pathways. To study the impact of the ELF-EMF on living cells under an optimal physiological condition, we have designed and constructed a novel system that eliminates several limitations of other ELF-EMF systems. Apoptosis and cell number were assessed by flow cytometry and the Trypan Blue dye exclusion method, respectively. In vitro cell survival was evaluated by colony formation assay. The distribution of cells in the cell cycle, intracellular ROS level, and autophagy were analyzed by flow cytometer. Suspended cells differentiation was assessed by phagocytosis of latex particles and NBT reduction assay. Our results showed that response to the exposure to ELF-EMF is specific and depends on the biological state of the cell. For DU145, HUVEC, and K562 cell lines the optimum results were obtained at the frequency of 0.01 Hz, while for MDA-MB-231, the optimum response was obtained at 1 Hz. Long-term exposure to ELF-EMF in adherent cells effectively inhibited proliferation by arresting the cell population at the cell cycle G2/M phase and increased intracellular ROS level, leading to morphological changes and cell death. The K562 cells exposed to the ELF-EMF differentiate via induction of autophagy and decreasing the cell number. Our novel ELF-EMF instrument could change morphological and cell behaviors, including proliferation, differentiation, and cell death.
Collapse
|
12
|
Jiedu-Yizhi Formula Alleviates Neuroinflammation in AD Rats by Modulating the Gut Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4023006. [PMID: 35958910 PMCID: PMC9357688 DOI: 10.1155/2022/4023006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023]
Abstract
Background The Jiedu-Yizhi formula (JDYZF) is a Chinese herbal prescription used to treat Alzheimer's disease (AD). It was previously confirmed that JDYZF can inhibit the expression of pyroptosis-related proteins in the hippocampus of AD rats and inhibit gut inflammation in AD rats. Therefore, it is hypothesized that JDYZF has a regulatory effect on the gut microbiota. Methods In this study, an AD rat model was prepared by bilateral hippocampal injection of Aβ25-35 and AD rats received high, medium, and low doses of JDYZF orally for 8 weeks. The body weights of the AD rats were observed to assess the effect of JDYZF. The 16S rRNA sequencing technique was used to study the regulation of the gut microbiota by JDYZF in AD rats. Immunohistochemical staining was used to observe the expression levels of Caspase-1 and Caspase-11 in the hippocampus. Results JDYZF reduced body weight in AD rats, and this effect may be related to JDYZF regulating body-weight-related gut microbes. The 16S rRNA analysis showed that JDYZF increased the diversity of the gut microbiota in AD rats. At the phylum level, JDYZF increased the abundances of Bacteroidota and Actinobacteriota and decreased the abundances of Firmicutes, Campilobacterota, and Desulfobacterota. At the genus level, the abundances of Lactobacillus, Prevotella, Bacteroides, Christensenellaceae_R-7_group, Rikenellaceae_RC9_gut_group, and Blautia were increased and the abundances of Lachnospiraceae-NK4A136-group, Anaerobiospirillum, Turicibacter, Oscillibacter, Desulfovibrio, Helicobacter, and Intestinimonas were decreased. At the species level, the abundances of Lactobacillus johnsonii, Lactobacillus reuteri, and Lactobacillus faecis were increased and the abundances of Helicobacter rodentium and Ruminococcus_sp_N15.MGS-57 were decreased. Immunohistochemistry showed that JDYZF reduced the levels of Caspase-1- and Caspase-11-positive staining. Conclusion JDYZF has a regulatory effect on the gut microbiota of AD rats, which may represent the basis for the anti-inflammatory effect of JDYZF.
Collapse
|
13
|
Lai H. Neurological effects of static and extremely-low frequency electromagnetic fields. Electromagn Biol Med 2022; 41:201-221. [DOI: 10.1080/15368378.2022.2064489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Jiedu-Yizhi Formula Improves Cognitive Impairment in an A β 25-35-Induced Rat Model of Alzheimer's Disease by Inhibiting Pyroptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6091671. [PMID: 35341145 PMCID: PMC8942661 DOI: 10.1155/2022/6091671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/19/2022] [Indexed: 12/28/2022]
Abstract
Jiedu-Yizhi formula (JDYZF) is prescribed for the treatment of Alzheimer's disease (AD) and was created by Jixue Ren, a master of traditional Chinese medicine, based on the "marrow deficiency and toxin damage" theory. In our clinic, this formula has been used for the treatment of AD for many years and has achieved good results. However, the mechanism by which JDYZF improves cognitive impairment has not been determined. In this study, we confirmed that orally administered JDYZF reversed the cognitive deficits in an Aβ 25-35-induced rat model, increased the number of neurons in the hippocampal CA1 area, improved their structure, decreased the deposition of β-amyloid (Aβ), reduced the expression of proteins related to the NLRP3/Caspase-1/GSDMD and LPS/Caspase-11/GSDMD pyroptosis pathways, and reduced the levels of interleukin 1β (IL-1β) and IL-18, thereby inhibiting the inflammatory response. In addition, JDYZF exerted no hepatotoxicity in rats. In short, these results provide scientific support for the clinical use of JDYZF to improve the cognitive function of patients with AD.
Collapse
|
15
|
Gu L, Sun M, Li R, Zhang X, Tao Y, Yuan Y, Luo X, Xie Z. Didymin Suppresses Microglia Pyroptosis and Neuroinflammation Through the Asc/Caspase-1/GSDMD Pathway Following Experimental Intracerebral Hemorrhage. Front Immunol 2022; 13:810582. [PMID: 35154128 PMCID: PMC8828494 DOI: 10.3389/fimmu.2022.810582] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation has been proven to exert an important effect on brain injury after intracerebral hemorrhage (ICH). Previous studies reported that Didymin possessed anti-inflammatory properties after acute hepatic injury, hyperglycemia-induced endothelial dysfunction, and death. However, the role of Didymin in microglial pyroptosis and neuroinflammation after ICH is unclear. The current study aimed to investigate the effect of Didymin on neuroinflammation mediated by microglial pyroptosis in mouse models of ICH and shed some light on the underlying mechanisms. In this study, we observed that Didymin treatment remarkably improved neurobehavioral performance and decreased BBB disruption and brain water content. Microglial activation and neutrophil infiltration in the peri-hematoma tissue after ICH were strikingly mitigated by Didymin as well. At the molecular level, administration of Didymin significantly unregulated the expression of Rkip and downregulated the expression of pyroptotic molecules and inflammatory cytokines such as Nlrp3 inflammasome, GSDMD, caspase-1, and mature IL-1β, TNF-α, and MPO after ICH. Besides, Didymin treatment decreased the number of Caspase-1-positive microglia and GSDMD-positive microglia after ICH. Inversely, Locostatin, an Rkip-specific inhibitor, significantly abolished the anti-pyroptosis and anti-neuroinflammation effects of Didymin. Moreover, Rkip binding with Asc could interrupt the activation and assembly of the inflammasome. Mechanistically, inhibition of Caspase-1 by VX-765 attenuated brain injury and suppressed microglial pyroptosis and neuroinflammation by downregulation of GSDMD, mature IL-1β, TNF-α, and MPO based on Locostatin-treated ICH. Taken together, Didymin alleviated microglial pyroptosis and neuroinflammation, at least in part through the Asc/Caspase-1/GSDMD pathway via upregulating Rkip expression after ICH. Therefore, Didymin may be a potential agent to attenuate neuroinflammation via its anti-pyroptosis effect after ICH.
Collapse
Affiliation(s)
- Lingui Gu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mingjiang Sun
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ruihao Li
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xingyu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yihao Tao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ye Yuan
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xu Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Bi J, Jing H, Zhou C, Gao P, Han F, Li G, Zhang S. Regulation of skeletal myogenesis in C2C12 cells through modulation of Pax7, MyoD, and myogenin via different low-frequency electromagnetic field energies. Technol Health Care 2022; 30:371-382. [PMID: 35124612 PMCID: PMC9028610 DOI: 10.3233/thc-thc228034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND: A low-frequency electromagnetic field (LF-EMF) exerts important biological effects on the human body. OBJECTIVE: We previously studied the immunity and atrophy of gastrocnemius muscles in rats with spinal cord injuries and found that LF-EMF with a magnetic flux density of 1.5 mT exerted excellent therapeutic and preventive effects on reducing myotubes and increasing spatium intermusculare. However, the effects of LF-EMF on all stages of skeletal myogenesis, such as activation, proliferation, differentiation, and fusion of satellite cells to myotubes as stimulated by myogenic regulatoryfactors (MRFs), have not been fully elucidated. METHODS: This study investigated the optimal LF-EMF magnetic flux density that exerted maximal effects on all stages of C2C12 cell skeletal myogenesis as well as its impact on regulatory MRFs. RESULTS: The results showed that an LF-EMF with a magnetic flux density of 2.0 mT could activate C2C12 cells and upregulate the proliferation-promoting transcription factor PAX7. On the other hand, 1.5 mT EMF could upregulate the expression of MyoD and myogenin. CONCLUSION: LF-EMF could prevent the disappearance of myotubes, with different magnetic flux densities of LF-EMF exerting independent and positive effects on skeletal myogenesis such as satellite cell activation and proliferation, muscle cell differentiation, and myocyte fusion.
Collapse
Affiliation(s)
- Jiaqi Bi
- Harbin Children’s Hospital, Harbin, Heilongjiang, China
- Emergency Department, SongBei Hospital of The Fourth Hospital Affiliated of Harbin Medical University, Harbin, Heilongjiang, China
- Harbin Children’s Hospital, Harbin, Heilongjiang, China
| | - Hong Jing
- Harbin Children’s Hospital, Harbin, Heilongjiang, China
- Harbin Children’s Hospital, Harbin, Heilongjiang, China
| | - ChenLiang Zhou
- Emergency Department, SongBei Hospital of The Fourth Hospital Affiliated of Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Gao
- The First Department of General Surgery, Harbin Children’s Hospital, Harbin, Heilongjiang, China
| | - Fujun Han
- Emergency Department, SongBei Hospital of The Fourth Hospital Affiliated of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gang Li
- The Second Department of Orthopedics, The First Hospital of Yichun, Yichun, Heilongjiang, China
| | - Shiwei Zhang
- Harbin Children’s Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
17
|
The Role of NMDAR and BDNF in Cognitive Dysfunction Induced by Different Microwave Radiation Conditions in Rats. RADIATION 2021. [DOI: 10.3390/radiation1040023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: To investigate the effects of different levels of microwave radiation on learning and memory in Wistar rats and explore the underlying mechanisms of N-methyl-D-aspartate receptor (NMDAR/NR) and Brain-derived neurotropic factor (BDNF); Methods: A total of 140 Wistar rats were exposed to microwave radiation levels of 0, 10, 30 or 50 mW/cm2 for 6 min. Morris Water Maze Test, high-performance liquid chromatography, Transmission Electron Microscope and Western blotting were used; Results: The 30 and 50 mW/cm2 groups exhibited longer average escape latencies and fewer platform crossings than the 0 mW/cm2 group from 6 h to 3 d after microwave radiation. Alterations in the amino acid neurotransmitters of the hippocampi were shown at 6 h, 3 d and 7 d after exposure to 10, 30 or 50 mW/cm2 microwave radiation. The length and width of the Postsynaptic density were increased. The expression of NR1, NR2A and NR2B increased from day 1 to day 7; Postsynaptic density protein-95 and cortactin expression increased from day 3 to day 7; BDNF and Tyrosine kinase receptor B (TrkB) expression increased between 6 h and 1 d after 30 mW/cm2 microwave radiation exposure, but they decreased after 50mW/cm2 exposure. Conclusions: Microwave exposure (30 or 50 mW/cm2, for 6 min) may cause abnormalities in neurotransmitter release and synaptic structures, resulting in impaired learning and memory; BDNF and NMDAR-related signaling molecules might contribute differently to these alterations.
Collapse
|
18
|
Gao F, Wu D, Guo L, Wang L, Hao M, Li L, Ni D, Hao H. Liraglutide inhibits the progression of prediabetes in rats by reducing Raf-1 kinase inhibitor protein. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1157. [PMID: 34430598 PMCID: PMC8350642 DOI: 10.21037/atm-21-3094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022]
Abstract
Background The cleavage product of Raf-1 kinase inhibitor protein (RKIP), hippocampal cholinergic neurostimulating peptide (HCNP) is involved in the promotion of insulin secretion. Studies have shown that liraglutide can inhibit the progression of prediabetes. This study aims to investigate whether the above effects of liraglutide are related to RKIP and HCNP. Methods Insulin-1 (INS-1) cells were divided into control group (CON), HCNP group, and HCNP + darifenacin group (H-DAR). The three groups were cultured with Roswell Park Memorial Institute (RPMI) 1640, synthetic HCNP (50 pg/mL) and RPMI 1640, and HCNP + RPMI 1640 + darifenacin respectively. Subsequently, twelve 12- to 14-week-old Otsuka Long-Evans Tokushima Fatty (OLETF) rats were randomly divided into 2 groups: the placebo group (PBO) and the liraglutide treatment group (LIRA). Six Long Evans Tokushima Otsuka (LETO) rats were used as the control group (CON). The LIRA group was given liraglutide 200 µg/kg intraperitoneally twice a day. After 12 weeks, body weight, fasting blood glucose, 2 hours postprandial blood glucose, and insulin resistance index were recorded. Western blot was used to detect expression level of C-RKIP, N-RKIP, and extracellular signal-regulated kinase of phosphorylation (p-ERK). Real-time quantitative polymerase chain reaction (qRT-PCR) to detect pancreatic tissue choline acetyltransferase (ChAT) and M3 cholinergic receptor (M3R) gene expression levels. Results At glucose concentrations of 5.6 and 16.7 mmol/L, the insulin content in the HCNP group was higher than that in the CON and H-DAR groups (all P<0.01). The body weight and fasting serum insulin (FINS) of rats in the PBO group were higher than those in the LIRA group and the CON group (P<0.01). The relative content of C-RKIP protein in the PBO group was higher than that in the LIRA and CON groups (P<0.01). The relative content of N-RKIP protein and p-ERK protein was lower than that in the LIRA and CON group (P<0.05 and P<0.01, respectively). ChAT and M3R gene expression levels in PBO group were lower than those in LIRA and CON group (P<0.01). Conclusions Liraglutide promotes the production of HCNP, can increase ChAT activity, activate M3R, and further promote the secretion of insulin.
Collapse
Affiliation(s)
- Fei Gao
- Department of Endocrinology, Electric Power Teaching Hospital, Capital Medical University, Beijing, China
| | - Dingying Wu
- Department of Endocrinology, Electric Power Teaching Hospital, Capital Medical University, Beijing, China
| | - Lingling Guo
- Department of Endocrinology, Electric Power Teaching Hospital, Capital Medical University, Beijing, China
| | - Lixue Wang
- Department of Endocrinology, Electric Power Teaching Hospital, Capital Medical University, Beijing, China
| | - Min Hao
- Department of Endocrinology, Electric Power Teaching Hospital, Capital Medical University, Beijing, China
| | - Ling Li
- Department of Endocrinology, Electric Power Teaching Hospital, Capital Medical University, Beijing, China
| | - Dongmei Ni
- Department of Endocrinology, Electric Power Teaching Hospital, Capital Medical University, Beijing, China
| | - Haojie Hao
- Beijing Hengfeng Mingcheng Biotechnology Co., Ltd., Beijing, China
| |
Collapse
|
19
|
Gaps in Knowledge Relevant to the "Guidelines for Limiting Exposure to Time-Varying Electric and Magnetic Fields (1 Hz-100 kHz)". HEALTH PHYSICS 2020; 118:533-542. [PMID: 32251081 DOI: 10.1097/hp.0000000000001261] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sources of low-frequency fields are widely found in modern society. All wires or devices carrying or using electricity generate extremely low frequency (ELF) electric fields (EFs) and magnetic fields (MFs), but they decline rapidly with distance to the source. High magnetic flux densities are usually found in the vicinity of power lines and close to equipment using strong electrical currents, but can also be found in buildings with unbalanced return currents, or indoor transformer stations. For decades, epidemiological as well as experimental studies have addressed possible health effects of exposure to ELF-MFs. The main goal of ICNIRP is to protect people and the environment from detrimental exposure to all forms of non-ionizing radiation (NIR). To this end, ICNIRP provides advice and guidance by developing and disseminating exposure guidelines based on the available scientific research. Research in the low-frequency range began more than 40 years ago, and there is now a large body of literature available on which ICNIRP set its protection guidelines. A review of the literature has been carried out to identify possible relevant knowledge gaps, and the aim of this statement is to describe data gaps in research that would, if addressed, assist ICNIRP in further developing guidelines and setting revised recommendations on limiting exposure to electric and magnetic fields. It is articulated in two parts: the main document, which reviews the science related to LF data gaps, and the annex, which explains the methodology used to identify the data gaps.
Collapse
|
20
|
Chrysophanol improves memory ability of d-galactose and Aβ 25-35 treated rat correlating with inhibiting tau hyperphosphorylation and the CaM-CaMKIV signal pathway in hippocampus. 3 Biotech 2020; 10:111. [PMID: 32117672 DOI: 10.1007/s13205-020-2103-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/01/2020] [Indexed: 12/25/2022] Open
Abstract
This study was aimed to investigate the effect of Chrysophanol (CHR) on Alzheimer's disease. We also attempted to understand the potential mechanisms. An Alzheimer's disease rat model was established using an intraperitoneal injection of d-galactose combined with an intracerebral injection of amyloid-β peptide (25-35), and the effect of CHR on the learning and memory ability, the hippocampal neurons change, the ultrastructure of the hippocampal CA1 region, the protein levels of CaM, CaMKK, CaMKIV, p-CaMKIV and p-tau in the hippocampus of rats were studied. The results showed that CHR significantly improved the cognitive deficits, alleviated hippocampal neurons damage, prevented the ultrastructure alteration of neurons in hippocampal CA1 region, and reduced the protein levels of CaM, CaMKK, p-CaMKIV and p-tau in the hippocampus of AD rats. These results suggested that Chrysophanol could improve memory ability of Alzheimer's disease rat by inhibiting tau hyperphosphorylation and the CaM-CaMKIV signal pathway.
Collapse
|