1
|
Chavan PR, Pandey R, Patil BM, Murti K, Kumar N. Unravelling key signaling pathways for the therapeutic targeting of non-small cell lung cancer. Eur J Pharmacol 2025; 998:177494. [PMID: 40090536 DOI: 10.1016/j.ejphar.2025.177494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
Lung cancer (LC) remains the foremost cause of cancer-related mortality across the globe. Non-small cell lung cancer (NSCLC) is a type of LC that exhibits significant heterogeneity at histological and molecular levels. Genetic alterations in upstream signaling molecules activate cascades affecting apoptosis, proliferation, and differentiation. Disruption of these signaling pathways leads to the proliferation of cancer-promoting cells, progression of cancer, and resistance to its treatment. Recent insights into the function of signaling pathways and their fundamental mechanisms in the onset of various diseases could pave the way for new therapeutic approaches. Recently, numerous drug molecules have been created that target these cell signaling pathways and could be used alongside other standard therapies to achieve synergistic effects in mitigating the pathophysiology of NSCLC. Additionally, many researchers have identified several predictive biomarkers, and alterations in transcription factors and related pathways are employed to create new therapeutic strategies for NSCLC. Findings suggest using specific inhibitors to target cellular signaling pathways in tumor progression to treat NSCLC. This review investigates the role of signaling pathways in NSCLC development and explores novel therapeutic strategies to enhance clinical treatment options for NSCLC.
Collapse
Affiliation(s)
- Pavan Ramrao Chavan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Ruchi Pandey
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Baswant Malesh Patil
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India.
| |
Collapse
|
2
|
Ali FEM, Badran KSA, El-Maksoud MSA, Ibrahim IM, Althagafy HS, Hassanein EHM. The role of Wnt/β-catenin signaling in lung cancer progression and therapy: a comprehensive review. Med Oncol 2025; 42:183. [PMID: 40289194 DOI: 10.1007/s12032-025-02709-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/30/2025] [Indexed: 04/30/2025]
Abstract
Most instances of lung cancer (LC), which is the primary cause of cancer-related death worldwide, are non-small-cell lung cancer (NSCLC). Genetic predispositions, environmental exposures, and smoking are risk factors that lead to the development of LC, and the ineffectiveness of existing treatments emphasizes the need for innovative approaches to therapy. Through its regulation of cell proliferation, apoptosis, epithelial-to-mesenchymal transition (EMT), and cancer stem cell maintenance, the Wnt/β-catenin signaling system is essential to advancing LC. This study offers a thorough examination of Wnt/β-catenin signaling in LC, emphasizing how miRNAs, long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), protein-coding genes, enzymes, and both natural and synthetic drugs affect this signaling. Recent research supports the dual function of Wnt/β-catenin signaling in tumor development and repression, which we describe. We also emphasize the therapeutic potential of Wnt/β-catenin inhibitors despite issues including off-target effects and bioavailability. This study highlights the potential of focusing on Wnt/β-catenin signaling to enhance LC patient outcomes by combining computational studies with molecular insights. It also lays the groundwork for further research and treatment development.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt.
- Faculty of Pharmacy, Michael Sayegh, Aqaba University of Technology, Aqaba, 77110, Jordan.
| | - Khalid S A Badran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | - Mostafa S Abd El-Maksoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62521, Egypt
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62521, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| |
Collapse
|
3
|
Siang S, Patel U, Chaves-Mejía M, Purslow JA, Potoyan D, Roche J. Fine-Tuning of ATF4 DNA Binding Activity by a Secondary Basic Motif Unique to the ATF-X Subfamily of bZip Transcription Factors. Biochemistry 2025; 64:1257-1265. [PMID: 39993237 PMCID: PMC11924230 DOI: 10.1021/acs.biochem.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
The fine-tuning of transcription factor DNA-binding activity is often governed by transient intramolecular interactions between the transactivation domain and the DNA-binding domain. An example of such interaction is found in the transcription factor ATF4, a central regulator of the Integrated Stress Response. In ATF4, dynamic coupling between the transactivation domain and the basic-leucine zipper (bZip) domain modulates the phosphorylation levels of the disordered transactivation domain by casein kinase 2. However, the structural and molecular basis of these interdomain interactions remains poorly understood. This study focuses on a secondary basic motif at the C-terminus of ATF4, which is shared exclusively with its closest paralogue, ATF5. Through a combination of solution NMR spectroscopy, fluorescence polarization assays, and long-timescale molecular simulations, we demonstrate that this secondary basic motif is the primary driver of interdomain coupling between the transactivation and bZip domains of ATF4. Moreover, this motif enhances ATF4's DNA-binding specificity via interaction with the transactivation domain while also potentially facilitating rapid DNA scanning. Our findings reveal the pivotal role of a conserved motif in establishing disorder-mediated interactions that critically modulate ATF4's DNA-binding activity.
Collapse
Affiliation(s)
- Steven Siang
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Urval Patel
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Manuela Chaves-Mejía
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Jeffrey A. Purslow
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Davit Potoyan
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Julien Roche
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
4
|
Shi F, Wei Y, Huang Y, Yao D. Activating Transcription Factor 5 Promotes Tumorigenic Capability in Cervical Cancer Through the Wnt/β-Catenin Signaling Pathway. Cancer Manag Res 2025; 17:131-143. [PMID: 39881945 PMCID: PMC11775824 DOI: 10.2147/cmar.s496925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/18/2025] [Indexed: 01/31/2025] Open
Abstract
Purpose Cervical cancer is the fourth leading cause of cancer-related death in women. Furthermore, owing to its significant risk of recurrence or metastasis, the overall prognosis of patients with cervical cancer remains poor. Activating transcription factor 5 (ATF5) plays a crucial role in cell proliferation, survival, and apoptosis, and has been implicated in the progression of various types of cancer. However, the biological function and precise mechanism of ATF5 in cervical cancer remain unclear. This study, aimed to explore the function of ATF5 and its potential mechanisms in cervical cancer. Patients and Methods Quantitative real-time PCR, Western blot and immunohistochemistry were used to detect the expression of ATF5 in cervical cancer tissues and cell lines. Knockdown ATF5 expression in cervical cancer cell lines was constructed using lentivirus-mediated shRNA to explore the role of ATF5 in cervical cancer through cell viability, transwell, and wound healing experiments. The expression of Wnt3a and β-catenin were investigated using quantitative real-time PCR and Western blot. Results ATF5 was overexpressed in cervical cancer, and upregulation of ATF5 expression was associated with a poor prognosis. ATF5 knockdown inhibited the proliferation, migration and invasion abilities of cervical cancer cells. Furthermore, the downregulation of ATF5 led to the suppression of Wnt3a and β-catenin expression, which are key molecules in the Wnt/β-catenin signaling pathway. Conclusion ATF5 promotes tumorigenic capability in cervical cancer through the Wnt/β-catenin signaling pathway. ATF5 may be a potential prognostic biomarker and therapeutic target in the management of cervical cancer.
Collapse
Affiliation(s)
- Fengjuan Shi
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Department of Gynecology, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Yumei Wei
- Department of Gynecology, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Yingmei Huang
- Department of Gynecology, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Desheng Yao
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
5
|
Zhang X, Fan Y, Tan K. A bird's eye view of mitochondrial unfolded protein response in cancer: mechanisms, progression and further applications. Cell Death Dis 2024; 15:667. [PMID: 39261452 PMCID: PMC11390889 DOI: 10.1038/s41419-024-07049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Mitochondria are essential organelles that play critical roles in energy metabolism, apoptosis and various cellular processes. Accumulating evidence suggests that mitochondria are also involved in cancer development and progression. The mitochondrial unfolded protein response (UPRmt) is a complex cellular process that is activated when the protein-folding capacity of the mitochondria is overwhelmed. The core machinery of UPRmt includes upstream regulatory factors, mitochondrial chaperones and proteases. These components work together to eliminate misfolded proteins, increase protein-folding capacity, and restore mitochondrial function. Recent studies have shown that UPRmt is dysregulated in various cancers and contributes to tumor initiation, growth, metastasis, and therapeutic resistance. Considering the pivotal role of the UPRmt in oncogenesis, numerous compounds and synthetic drugs targeting UPRmt-related components induce cancer cell death and suppress tumor growth. In this review, we comprehensively summarize recent studies on the molecular mechanisms of UPRmt activation in C. elegans and mammals and elucidate the conceptual framework, functional aspects, and implications of the UPRmt for cancer therapy. In summary, we paint a developmental landscape of the UPRmt in different types of cancer and offer valuable insights for the development of novel cancer treatment strategies by targeting the UPRmt.
Collapse
Affiliation(s)
- Xinyu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| |
Collapse
|
6
|
Wang Y, Ge H, Chen P, Wang Y. Wnt/β-catenin signaling in corneal epithelium development, homeostasis, and pathobiology. Exp Eye Res 2024; 246:110022. [PMID: 39117134 DOI: 10.1016/j.exer.2024.110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/07/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The corneal epithelium is located on the most anterior surface of the eyeball and protects against external stimuli. The development of the corneal epithelium and the maintenance of corneal homeostasis are essential for the maintenance of visual acuity. It has been discovered recently via the in-depth investigation of ocular surface illnesses that the Wnt/β-catenin signaling pathway is necessary for the growth and stratification of corneal epithelial cells as well as the control of endothelial cell stability. In addition, the Wnt/β-catenin signaling pathway is directly linked to the development of common corneal illnesses such as keratoconus, fungal keratitis, and corneal neovascularization. This review mainly summarizes the role of the Wnt/β-catenin signaling pathway in the development, homeostasis, and pathobiology of cornea, hoping to provide new insights into the study of corneal epithelium and the treatment of related diseases.
Collapse
Affiliation(s)
- Yihui Wang
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Huanhuan Ge
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Ye Wang
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao, Shandong 266042, China.
| |
Collapse
|
7
|
Zhang X, Li Z, Zhang X, Yuan Z, Zhang L, Miao P. ATF family members as therapeutic targets in cancer: From mechanisms to pharmacological interventions. Pharmacol Res 2024; 208:107355. [PMID: 39179052 DOI: 10.1016/j.phrs.2024.107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The activating transcription factor (ATF)/ cAMP-response element binding protein (CREB) family represents a large group of basic zone leucine zip (bZIP) transcription factors (TFs) with a variety of physiological functions, such as endoplasmic reticulum (ER) stress, amino acid stress, heat stress, oxidative stress, integrated stress response (ISR) and thus inducing cell survival or apoptosis. Interestingly, ATF family has been increasingly implicated in autophagy and ferroptosis in recent years. Thus, the ATF family is important for homeostasis and its dysregulation may promote disease progression including cancer. Current therapeutic approaches to modulate the ATF family include direct modulators, upstream modulators, post-translational modifications (PTMs) modulators. This review summarizes the structural domain and the PTMs feature of the ATF/CREB family and comprehensively explores the molecular regulatory mechanisms. On this basis, their pathways affecting proliferation, metastasis, and drug resistance in various types of cancer cells are sorted out and discussed. We then systematically summarize the status of the therapeutic applications of existing ATF family modulators and finally look forward to the future prospect of clinical applications in the treatment of tumors by modulating the ATF family.
Collapse
Affiliation(s)
- Xueyao Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaochun Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Peng Miao
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
8
|
Zheng X, Pang Y, Hasenbilige, Yang Y, Li Q, Liu Y, Cao J. ATF4-mediated different mode of interaction between autophagy and mTOR determines cell fate dependent on the level of ER stress induced by Cr(VI). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116639. [PMID: 38964069 DOI: 10.1016/j.ecoenv.2024.116639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
Hexavalent chromium [Cr(VI)] exists widely in occupational environments. The mechanistic target of rapamycin (mTOR) has been well-documented to regulate autophagy negatively. However, we found that low concentration of Cr(VI) (0.2 μM) elevated both mTOR and autophagy and promote cell survival. Conversely, high concentration of Cr(VI) (6 μM) caused cell death by inhibiting mTOR and subsequently inducing autophagy. Tunicamycin (Tm), as an Endoplasmic reticulum (ER) stress activator was used to induce mild ER stress at 0.1 μg/ml and it activated both autophagy and mTOR, which also caused cell migration in a similar manner to that observed with low concentration of Cr(VI). Severe ER stress caused by Tm (2 μg/ml) decreased mTOR, increased autophagy and then inhibited cell migration, which was the same as 6 μM Cr(VI) treatment, although Cr(VI) in high concentration inhibited ER stress. Activating transcription factor 4 (ATF4), a downstream target of ER stress, only increased under mild ER stress but decreased under severe ER stress and 6 μM Cr(VI) treatment. Chromatin immunoprecipitation (ChIP) experiment indicated that ATF4 could bind to the promoter of ATG4B and AKT1. To sum up, our data revealed that mild ER stress induced by low concentration of Cr(VI) could enhance transcriptional regulation of ATG4B and AKT1 by ATF4, which induced both autophagy and mTOR to promote cell viability.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Anesthesiology, Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116027, China
| | - Yuxin Pang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Hasenbilige
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Yanqiu Yang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Yong Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
9
|
Lan B, Zhuang Z, Zhang J, He Y, Wang N, Deng Z, Mei L, Li Y, Gao Y. Triggering of endoplasmic reticulum stress via ATF4-SPHK1 signaling promotes glioblastoma invasion and chemoresistance. Cell Death Dis 2024; 15:552. [PMID: 39090107 PMCID: PMC11294582 DOI: 10.1038/s41419-024-06936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Despite advances in therapies, glioblastoma (GBM) recurrence is almost inevitable due to the aggressive growth behavior of GBM cells and drug resistance. Temozolomide (TMZ) is the preferred drug for GBM chemotherapy, however, development of TMZ resistance is over 50% cases in GBM patients. To investigate the mechanism of TMZ resistance and invasive characteristics of GBM, analysis of combined RNA-seq and ChIP-seq was performed in GBM cells in response to TMZ treatment. We found that the PERK/eIF2α/ATF4 signaling was significantly upregulated in the GBM cells with TMZ treatment, while blockage of ATF4 effectively inhibited cell migration and invasion. SPHK1 expression was transcriptionally upregulated by ATF4 in GBM cells in response to TMZ treatment. Blockage of ATF4-SPHK1 signaling attenuated the cellular and molecular events in terms of invasive characteristics and TMZ resistance. In conclusion, GBM cells acquired chemoresistance in response to TMZ treatment via constant ER stress. ATF4 transcriptionally upregulated SPHK1 expression to promote GBM cell aggression and TMZ resistance. The ATF4-SPHK1 signaling in the regulation of the transcription factors of EMT-related genes could be the underlying mechanism contributing to the invasion ability of GBM cells and TMZ resistance. ATF4-SPHK1-targeted therapy could be a potential strategy against TMZ resistance in GBM patients.
Collapse
Affiliation(s)
- Beiwu Lan
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Zhoudao Zhuang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Jinnan Zhang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Yichun He
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Nan Wang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Zhuoyue Deng
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Lin Mei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Yan Li
- Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
- Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China.
- Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China.
| |
Collapse
|
10
|
Zhang Z, Westover D, Tang Z, Liu Y, Sun J, Sun Y, Zhang R, Wang X, Zhou S, Hesilaiti N, Xia Q, Du Z. Wnt/β-catenin signaling in the development and therapeutic resistance of non-small cell lung cancer. J Transl Med 2024; 22:565. [PMID: 38872189 PMCID: PMC11170811 DOI: 10.1186/s12967-024-05380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Wnt/β-catenin signaling is a critical pathway that influences development and therapeutic response of non-small cell lung cancer (NSCLC). In recent years, many Wnt regulators, including proteins, miRNAs, lncRNAs, and circRNAs, have been found to promote or inhibit signaling by acting on Wnt proteins, receptors, signal transducers and transcriptional effectors. The identification of these regulators and their underlying molecular mechanisms provides important implications for how to target this pathway therapeutically. In this review, we summarize recent studies of Wnt regulators in the development and therapeutic response of NSCLC.
Collapse
Affiliation(s)
- Zixu Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - David Westover
- High-Throughput Analytics, Analytical Research and Development, Merck & Co. Inc., Rahway, NJ, USA
| | - Zhantong Tang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Yue Liu
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Jinghan Sun
- School of Life Science and Technology, Southeast University, Nanjing, 210018, China
| | - Yunxi Sun
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Runqing Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Xingyue Wang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Shihui Zhou
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Nigaerayi Hesilaiti
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Qi Xia
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Zhenfang Du
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China.
| |
Collapse
|
11
|
Yang L, Xiao Y, Deng S, Yan D, Li Z, Wang Y, Lei C. Signal Transducer and Activator of Transcription 4-Induced Up-Regulated LINC01278 Enhances Proliferation and Invasion of Non-Small Cell Lung Cancer Cells via the MicroRNA-877-5p/Activating Transcription Factor 4 Axis. Tissue Eng Regen Med 2024; 21:595-608. [PMID: 38466361 PMCID: PMC11087432 DOI: 10.1007/s13770-024-00625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND The purpose of this study was to investigate the specific effects of signal transducer and activator of transcription 4 (STAT4)-induced long intergenic nonprotein coding RNA 1278 (LINC01278) on the growth of non-small cell lung cancer (NSCLC) cells involved in the microRNA (miR)-877-5p/activated transcription factor 4 (ATF4) axis. METHODS NSCLC tumor tissue and adjacent normal tissue were collected. Human normal lung epithelial cell BEAS-2B and human NSCLC cell lines (H1299, H1975, A549, H2228) were collected. The expression levels of STAT4, LINC01278, miR-877-5p, and ATF4 were detected. A549 cells were screened for subsequent experiments. The proliferation ability of cells was detected by colony formation experiment. Cell apoptosis was tested by flow cytometry. Scratch test and transwell assay were used to detect the migration and invasion ability of cells. Biological function of LINC01278 in NSCLC was confirmed by xenograft experiments. RESULTS Low expression miR-877-5p and high expression of STAT4, LINC01278 and ATF4 were detected in NSCLC. Silenced LINC01278 in A549 cell depressed cell proliferation, migration and invasion, but facilitated cell apoptosis. LINC01278 was positively correlated with STAT4 and could directly bind to miR-877-5p. Upregulating miR-877-5p suppressed NSCLC cell progression, while downregulating miR-877-5p had the opposite effect. Upregulating miR-877-5p abrogated the effects of silenced LINC01278 on NSCLC cell progression. MiR-877-5p targeted ATF4. ATF4 upregulation could partly restore the carcinogenic effect of LINC01278 in vitro and in vivo. CONCLUSION Our data supports that STAT4-induced upregulation of LINC01278 promotes NSCLC progression by modulating the miR-877-5p/ATF4 axis, suggesting a novel direction for NSCLC treatment.
Collapse
Affiliation(s)
- LinZhu Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, KunMing City, 650032, YunNan Province, China
| | - Yi Xiao
- First Department of Pumonary and Critical Care Medicline, Yan'an Affiliated Hospital of Kunming Medical University, KunMing City, 650051, YunNan Province, China
| | - ShouJun Deng
- Department of Thoracic Surgery, Yan'an Affiliated Hospital of Kunming Medical University, 245 East Renmin Road, Panlong District, KunMing City, 650051, YunNan Province, China
| | - DaiLing Yan
- First Department of Pumonary and Critical Care Medicline, Yan'an Affiliated Hospital of Kunming Medical University, KunMing City, 650051, YunNan Province, China
| | - ZhenHua Li
- Department of Thoracic Surgery, Yan'an Affiliated Hospital of Kunming Medical University, 245 East Renmin Road, Panlong District, KunMing City, 650051, YunNan Province, China
| | - Ying Wang
- Department of Thoracic Surgery, Yan'an Affiliated Hospital of Kunming Medical University, 245 East Renmin Road, Panlong District, KunMing City, 650051, YunNan Province, China.
| | - ChangCheng Lei
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, KunMing City, 650032, YunNan Province, China.
| |
Collapse
|
12
|
Rozpędek-Kamińska W, Galita G, Siwecka N, Granek Z, Barczuk J, Saramowicz K, Majsterek I. NCI 159456 PERK Inhibitor as a Targeted Therapy for Lung Cancer: An In Vitro Study. Biomedicines 2024; 12:889. [PMID: 38672243 PMCID: PMC11048160 DOI: 10.3390/biomedicines12040889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) represents the most common histological type of lung cancer, characterized by a five-year survival rate of 15% and poor prognosis. Accumulating evidence indicates a prominent role of endoplasmic reticulum (ER) stress and the protein kinase RNA-like ER kinase (PERK)-dependent pathway of the unfolded protein response (UPR) in the pathogenesis of NSCLC. Increased expression of downstream targets of PERK was observed in various subtypes of NSCLC, and it was associated with a more aggressive phenotype, high risk of recurrence, and poor prognosis. Therefore, the present study aimed to investigate the biological effect of the selective PERK inhibitor NCI 159456 on A549 NSCLC cells and Human Pulmonary Fibroblasts (HPF) in vitro. Treatment of both normal and ER-stressed A549 cells with NCI 159456 resulted in a significant increase in the mRNA expression level of pro-apoptotic genes like activating transcription factor 4 (ATF4), DNA damage inducible transcript 3 (DDIT3), and BCL2 Associated X, Apoptosis Regulator (BAX) as well as a decreased level of the anti-apoptotic gene B-cell lymphoma 2 (Bcl-2). Cytotoxicity and genotoxicity analyses revealed that NCI 159456 significantly decreased viability and increased DNA damage in A549 cells under normal and ER stress conditions. Caspase-3 and reactive oxygen species (ROS) detection assays demonstrated that NCI 159456 significantly induced apoptosis and increased the ROS level in normal and ER-stressed A549 cells. Importantly, treatment with the inhibitor did not affect substantially normal HPF cells at any used concentration. The results indicate that PERK inhibitors could potentially be applied as a targeted therapy for NSCLC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (G.G.); (N.S.); (Z.G.); (J.B.); (K.S.)
| |
Collapse
|
13
|
Ahmad B, Tian C, Tang JX, Dumbuya JS, Li W, Lu J. Anticancer activities of natural abietic acid. Front Pharmacol 2024; 15:1392203. [PMID: 38633616 PMCID: PMC11021724 DOI: 10.3389/fphar.2024.1392203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Cancer is the main cause of death in the world. There are several therapies that are in practice for cancer cure including radiotherapy, chemotherapy, and surgery. Among the chemotherapies, natural products are considered comparable safe, easily available and cost effective. Approximately 60% of cancer approved FDA drugs are natural products including vinblastine, doxorubicin, and paclitaxel. These natural products have complex structures due to which they work against cancer through different molecular pathways, STAT3, NF-kB, PI3K/AKT/mTOR, cell cycle arrest, mitochondrial dependent pathway, extrinsic apoptosis pathway, autophagy, mitophagy and ferroptosis. AA is a natural abietane diterpenoid compound from Pinus palustris and Pimenta racemose var. grissea with different pharmacological activities including anti-inflammatory, anti-convulsant, anti-obesity and anti-allergic. Recently it has been reported with its anticancer activities through different molecular mechanisms including NF-kB, PI3K/AKT, call cycle arrest at G0/G1 phase, mitochondrial dependent pathway, extrinsic apoptosis pathway, AMPK pathway and ferroptosis pathways. The literature survey reveals that there is no review on AA anticancer molecular mechanisms, therefore in current review, we summarize the anticancer molecular mechanisms of AA.
Collapse
Affiliation(s)
- Bashir Ahmad
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chuan Tian
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Chronic Non-Communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - John Sieh Dumbuya
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wen Li
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jun Lu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
14
|
Wu D, Liang J. Activating transcription factor 4: a regulator of stress response in human cancers. Front Cell Dev Biol 2024; 12:1370012. [PMID: 38601083 PMCID: PMC11004295 DOI: 10.3389/fcell.2024.1370012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Activating transcription factor 4 (ATF4) is an adaptive response regulator of metabolic and oxidative homeostasis. In response to cellular stress, ATF4 is activated and functions as a regulator to promote cell adaptation for survival. As a transcriptional regulator, ATF4 also widely participates in the regulation of amino acid metabolism, autophagy, redox homeostasis and endoplasmic reticulum stress. Moreover, ATF4 is associated with the initiation and progression of glioblastoma, hepatocellular carcinoma, colorectal cancer, gastric cancer, breast cancer, prostate cancer and lung cancer. This review primarily aims to elucidate the functions of ATF4 and its role in multiple cancer contexts. This review proposes potential therapeutic targets for clinical intervention.
Collapse
Affiliation(s)
| | - Jie Liang
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
15
|
Li CY, Chou TF, Lo YL. An innovative nanoformulation utilizing tumor microenvironment-responsive PEG-polyglutamic coating and dynamic charge adjustment for specific targeting of ER stress inducer, microRNA, and immunoadjuvant in pancreatic cancer: In vitro investigations. Int J Biol Macromol 2024; 254:127905. [PMID: 37939778 DOI: 10.1016/j.ijbiomac.2023.127905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a significant obstacle to lowering global cancer deaths. CB-5083, a novel valosin-containing protein (VCP)/p97 inhibitor that disrupts proteasomal degradation and induces endoplasmic reticulum stress (ERS) accumulation, was evaluated as an inducer of immunogenic cell death (ICD) in PDAC treatment. Furthermore, miR-142 enhances checkpoint blockade and promotes M1 repolarization, while Toll-like receptor 7/8 agonist resiquimod (R) acts as an immunoadjuvant to amplify the immune response to miR-142. This research signifies the first integration of CB, miR-142, and R in solid lipid nanoparticles (SLNs) modified with peptides targeting PD-L1, EGFR, and ER, which were shelled by the PEG-polyglutamic (PGA) coating that detaches in response to the acidic pH values in the tumor microenvironment (TME). The modified SLNs exhibited pH-sensitive cytotoxicity against Panc-02 cells, preserving normal cells and preventing hemolysis. The innovative approach simultaneously modulated pathways, including VCP/Bip/K48-Ub/ATF6, IRE1α/XBPs/LC3II, PD-L1/TGF-β/IL-10/CD206/MSR1/Arg1, and TNF-α/IFN-γ/IL-6/iNOS/COX-2. Combined treatment blocked VCP, arrested the cell cycle, inhibited EMT, triggered ERS-mediated autophagy/apoptosis, and stimulated robust ICD via the release of damage-associated molecular patterns. This adaptable nanoformulation, displaying pH-sensitive PEG-PGA de-coating and precisely targeting EGFR, PD-L1, and ER, serves to hinder EMT and immune evasion, subsequently amplifying ICD in PDAC cells and the TME.
Collapse
Affiliation(s)
- Ching-Yao Li
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States; Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, United States
| | - Yu-Li Lo
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Faculty of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| |
Collapse
|
16
|
Xiao Y, Xie X, Chen Z, Yin G, Kong W, Zhou J. Advances in the roles of ATF4 in osteoporosis. Biomed Pharmacother 2023; 169:115864. [PMID: 37948991 DOI: 10.1016/j.biopha.2023.115864] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Osteoporosis (OP) is characterized by reduced bone mass, decreased strength, and enhanced bone fragility fracture risk. Activating transcription factor 4 (ATF4) plays a role in cell differentiation, proliferation, apoptosis, redox balance, amino acid uptake, and glycolipid metabolism. ATF4 induces the differentiation of bone marrow mesenchymal stem cells (BM-MSCs) into osteoblasts, increases osteoblast activity, and inhibits osteoclast formation, promoting bone formation and remodeling. In addition, ATF4 mediates the energy metabolism in osteoblasts and promotes angiogenesis. ATF4 is also involved in the mediation of adipogenesis. ATF4 can selectively accumulate in osteoblasts. ATF4 can directly interact with RUNT-related transcription factor 2 (RUNX2) and up-regulate the expression of osteocalcin (OCN) and osterix (Osx). Several upstream factors, such as Wnt/β-catenin and BMP2/Smad signaling pathways, have been involved in ATF4-mediated osteoblast differentiation. ATF4 promotes osteoclastogenesis by mediating the receptor activator of nuclear factor κ-B (NF-κB) ligand (RANKL) signaling. Several agents, such as parathyroid (PTH), melatonin, and natural compounds, have been reported to regulate ATF4 expression and mediate bone metabolism. In this review, we comprehensively discuss the biological activities of ATF4 in maintaining bone homeostasis and inhibiting OP development. ATF4 has become a therapeutic target for OP treatment.
Collapse
Affiliation(s)
- Yaosheng Xiao
- Department of Orthopaetics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Zhixi Chen
- Department of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Guoqiang Yin
- Ganzhou Hospital Affiliated to Nanchang University, Ganzhou 341000, China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
17
|
Kosai K, Masuda T, Kitagawa A, Tobo T, Ono Y, Ando Y, Takahashi J, Haratake N, Kohno M, Takenaka T, Yoshizumi T, Mimori K. Transducin Beta-Like 2 is a Potential Driver Gene that Adapts to Endoplasmic Reticulum Stress to Promote Tumor Growth of Lung Adenocarcinoma. Ann Surg Oncol 2023; 30:7538-7548. [PMID: 37477745 DOI: 10.1245/s10434-023-13864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress has a close relation with cancer progression. Blocking the adaptive pathway of ER stress could be an anticancer strategy. Here, we identified an ER stress-related gene, Transducin beta-like 2 (TBL2), an ER-localized type I transmembrane protein, on increased chromosome 7q as a candidate driver gene of lung adenocarcinoma (LUAD). METHODS The association between TBL2 mRNA expression and prognostic outcomes and clinicopathological factors was analyzed using The Cancer Genome Atlas (TCGA) datasets of LUAD and lung squamous cell carcinoma (LUSC). Localization of TBL2 in tumor tissues was observed by immunohistochemical staining. Gene set enrichment analysis (GSEA) was conducted using TCGA dataset. In vitro cell proliferation assays were performed using TBL2 knockdown LUAD cells, LUSC cells, and LUAD cells overexpressing TBL2. Apoptosis and ATF4 expression (ER stress marker) were evaluated by western blotting. RESULTS TBL2 was overexpressed in LUAD and LUSC cells. Multivariate analysis indicated high TBL2 mRNA expression was an independent poor prognostic factor of LUAD. GSEA revealed high TBL2 expression was positively correlated to the ER stress response in LUAD. TBL2 knockdown attenuated LUAD cell proliferation under ER stress. TBL2 inhibited apoptosis in LUAD cells under ER stress. TBL2 knockdown reduced ATF4 expression under ER stress. CONCLUSIONS TBL2 may be a novel driver gene that facilitates cell proliferation, possibly by upregulating ATF4 expression followed by adaptation to ER stress, and it is a poor prognostic biomarker of LUAD.
Collapse
Affiliation(s)
- Keisuke Kosai
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita, Japan
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita, Japan
| | - Akihiro Kitagawa
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita, Japan
| | - Taro Tobo
- Department of Pathology, Kyushu University Beppu Hospital, Beppu, Oita, Japan
| | - Yuya Ono
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita, Japan
| | - Yuki Ando
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita, Japan
| | - Junichi Takahashi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita, Japan
| | - Naoki Haratake
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Mikihiro Kohno
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Tomoyoshi Takenaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita, Japan.
| |
Collapse
|
18
|
Yu D, Yang P, Lu X, Huang S, Liu L, Fan X. Single-cell RNA sequencing reveals enhanced antitumor immunity after combined application of PD-1 inhibitor and Shenmai injection in non-small cell lung cancer. Cell Commun Signal 2023; 21:169. [PMID: 37430270 DOI: 10.1186/s12964-023-01184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have altered the clinical management of non-small cell lung cancer (NSCLC). However, the low response rate, severe immune-related adverse events (irAEs), and hyperprogressive disease following ICIs monotherapy require attention. Combination therapy may overcome these limitations and traditional Chinese medicine with immunomodulatory effects provides a promising approach. Shenmai injection (SMI) is a clinically effective adjuvant treatment for cancer with chemotherapy and radiotherapy. Therefore, the combined effects and mechanisms of SMI and programmed death-1 (PD-1) inhibitor against NSCLC was focused on this study. METHODS A Lewis lung carcinoma mouse model and a lung squamous cell carcinoma humanized mouse model were used to investigate the combined efficacy and safety of SMI and PD-1 inhibitor. The synergistic mechanisms of the combination therapy against NSCLC were explored using single-cell RNA sequencing. Validation experiments were performed using immunofluorescence analysis, in vitro experiment, and bulk transcriptomic datasets. RESULTS In both models, combination therapy alleviated tumor growth and prolonged survival without increasing irAEs. The GZMAhigh and XCL1high natural killer (NK) cell subclusters with cytotoxic and chemokine signatures increased in the combination therapy, while malignant cells from combination therapy were mainly in the apoptotic state, suggesting that mediating tumor cell apoptosis through NK cells is the main synergistic mechanisms of combination therapy. In vitro experiment confirmed that combination therapy increased secretion of Granzyme A by NK cells. Moreover, we discovered that PD-1 inhibitor and SMI combination blocked inhibitory receptors on NK and T cells and restores their antitumoral activity in NSCLC better than PD-1 inhibitor monotherapy, and immune and stromal cells exhibited a decrease of angiogenic features and attenuated cancer metabolism reprogramming in microenvironment of combination therapy. CONCLUSIONS This study demonstrated that SMI reprograms tumor immune microenvironment mainly by inducing NK cells infiltration and synergizes with PD-1 inhibitor against NSCLC, suggested that targeting NK cells may be an important strategy for combining with ICIs. Video Abstract.
Collapse
Affiliation(s)
- Dingyi Yu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Penghui Yang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China.
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shaoze Huang
- Zhejiang Engineering Research Center for Advanced Manufacturing of Traditional Chinese Medicine, Huzhou, China
| | - Li Liu
- Zhejiang Engineering Research Center for Advanced Manufacturing of Traditional Chinese Medicine, Huzhou, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China.
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
19
|
Wang Y, Ali M, Zhang Q, Sun Q, Ren J, Wang W, Tang D, Wang D. ATF4 Transcriptionally Activates SHH to Promote Proliferation, Invasion, and Migration of Gastric Cancer Cells. Cancers (Basel) 2023; 15:1429. [PMID: 36900220 PMCID: PMC10000907 DOI: 10.3390/cancers15051429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Activating transcription factor 4 (ATF4) is a DNA-binding protein widely generated in mammals, which has two biological characteristics that bind the cAMP response element (CRE). The mechanism of ATF4 as a transcription factor in gastric cancer affecting the Hedgehog pathway remains unclear. Here, we observed that ATF4 was markedly upregulated in gastric cancer (GC) using immunohistochemistry and Western blotting assays in 80 paraffin-embedded GC samples and 4 fresh samples and para-cancerous tissues. ATF4 knockdown using lentiviral vectors strongly inhibited the proliferation and invasion of GC cells. ATF4 upregulation using lentiviral vectors promoted the proliferation and invasion of GC cells. We predicted that the transcription factor ATF4 is bound to the SHH promoter via the JASPA database. Transcription factor ATF4 is bound to the promoter region of SHH to activate the Sonic Hedgehog pathway. Mechanistically, rescue assays showed that ATF4 regulated gastric cancer cells' proliferation and invasive ability through SHH. Similarly, ATF4 enhanced the tumor formation of GC cells in a xenograft model.
Collapse
Affiliation(s)
- Yang Wang
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
- Department of General Surgery, Northern Jiangsu People’s Hospital, Yangzhou 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225009, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou 225001, China
| | - Muhammad Ali
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
- Department of General Surgery, Northern Jiangsu People’s Hospital, Yangzhou 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225009, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou 225001, China
| | - Qi Zhang
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| | - Qiannan Sun
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| | - Jun Ren
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| | - Wei Wang
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| | - Dong Tang
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
- Department of General Surgery, Northern Jiangsu People’s Hospital, Yangzhou 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225009, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou 225001, China
| | - Daorong Wang
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People’s Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
- Department of General Surgery, Northern Jiangsu People’s Hospital, Yangzhou 225001, China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou 225009, China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic Diseases, Yangzhou 225001, China
| |
Collapse
|
20
|
Neill G, Masson GR. A stay of execution: ATF4 regulation and potential outcomes for the integrated stress response. Front Mol Neurosci 2023; 16:1112253. [PMID: 36825279 PMCID: PMC9941348 DOI: 10.3389/fnmol.2023.1112253] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
ATF4 is a cellular stress induced bZIP transcription factor that is a hallmark effector of the integrated stress response. The integrated stress response is triggered by phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 complex that can be carried out by the cellular stress responsive kinases; GCN2, PERK, PKR, and HRI. eIF2α phosphorylation downregulates mRNA translation initiation en masse, however ATF4 translation is upregulated. The integrated stress response can output two contradicting outcomes in cells; pro-survival or apoptosis. The mechanism for choice between these outcomes is unknown, however combinations of ATF4 heterodimerisation partners and post-translational modifications have been linked to this regulation. This semi-systematic review article covers ATF4 target genes, heterodimerisation partners and post-translational modifications. Together, this review aims to be a useful resource to elucidate the mechanisms controlling the effects of the integrated stress response. Additional putative roles of the ATF4 protein in cell division and synaptic plasticity are outlined.
Collapse
Affiliation(s)
- Graham Neill
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | | |
Collapse
|
21
|
Yang C, Deng X, Wu L, Jiang T, Fu Z, Li J. Morusin Protected Ruminal Epithelial Cells against Lipopolysaccharide-Induced Inflammation through Inhibiting EGFR-AKT/NF-κB Signaling and Improving Barrier Functions. Int J Mol Sci 2022; 23:ijms232214428. [PMID: 36430903 PMCID: PMC9695078 DOI: 10.3390/ijms232214428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Using phytogenic extracts for preventing or treating rumen epithelial inflammatory injury is a potential alternative to antibiotic use due to their residue-free characteristics. In this study, the efficacy of Morus root bark extract Morusin on ruminal epithelial cells (RECs) against pathogenic stimulus was investigated for the first time. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and quantitative real-time polymerase chain reaction (qPCR) results showed that the Morusin did not affect the cell viability of RECs and exerted anti-inflammatory effects in a concentration-dependent manner. Transcriptome analysis further revealed that the Morusin significantly downregulated the inflammatory-response-related cell signaling, while it upregulated the cell-proliferation-inhibition- and barrier-function-related processes in RECs upon lipopolysaccharide (LPS) stimulation. The epidermal growth factor receptor (EGFR) blocking and immunoblotting analysis further confirmed that the Morusin suppressed LPS-induced inflammation in RECs by downregulating the phosphorylation of protein kinase B (AKT) and nuclear factor-kappaB (NF-κB) p65 protein via inhibiting the EGFR signaling. These findings demonstrate the protective roles of Morusin in LPS-induced inflammation in RECs.
Collapse
Affiliation(s)
- Chunlei Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangfei Deng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Linjun Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tianrui Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinjun Li
- Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence:
| |
Collapse
|
22
|
Identification and Validation of Ferroptosis-Related Genes in Sevoflurane-Induced Hippocampal Neurotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4435161. [PMID: 36238640 PMCID: PMC9553355 DOI: 10.1155/2022/4435161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Background Sevoflurane is one of the most popular inhalational anesthetics during perioperative period but presenting neurotoxicity among pediatric and aged populations. Recent experiments in vivo and in vitro have indicated that ferroptosis may contribute to the neurotoxicity of sevoflurane anesthesia. However, the exact mechanism is still unclear. Methods In current study, we explored the differential expressed genes (DEGs) in HT-22 mouse hippocampal neuronal cells after sevoflurane anesthesia using RNA-seq. Differential expressed ferroptosis-related genes (DEFRGs) were screened and analyzed by Gene Ontology (GO) and pathway enrichment analysis. Protein-to-protein interaction (PPI) network was constructed by the Search Tool for the Retrieval of Interacting Genes (STRING). Significant modules and the hub genes were identified by using Cytoscape. The Connectivity Map (cMAP) was used for screening drug candidates targeting the identified DEFRGs. Potential TF-gene network and drug-gene pairs were established towards the hub genes. In final, we validated these results in experiments. Results A total of 37 ferroptosis-related genes (18 upregulated and 19 downregulated) after sevoflurane exposure in hippocampal neuronal cells were finally identified. These differentially expressed genes were mainly involved into the biological processes of cellular response to oxidative stress. Pathway analysis indicated that these genes were involved in ferroptosis, mTOR signaling pathway, and longevity-regulating pathway. PPI network was constructed. 10 hub genes including Prkaa2, Chac1, Arntl, Tfrc, Slc7a11, Atf4, Mgst1, Lpin1, Atf3, and Sesn2 were found. Top 10 drug candidates, gene-drug networks, and TFs targeting these genes were finally identified. These results were validated in experiments. Conclusion Our results suggested that ferroptosis-related genes play roles in sevoflurane anesthesia-related hippocampal neuron injury and offered the hub genes and potential therapeutic agents for investigating and treatment of this neurotoxicity after sevoflurane exposure. Finally, therapeutic effect of these drug candidates and function of potential ferroptosis targets should be further investigated for treatment and clarifying mechanisms of sevoflurane anesthesia-induced neuron injury in future research.
Collapse
|
23
|
Xi XX, Hei YY, Guo Y, Zhao HY, Xin M, Lu S, Jiang C, Zhang SQ. Identification of benzamides derivatives of norfloxacin as promising microRNA-21 inhibitors via repressing its transcription. Bioorg Med Chem 2022; 66:116803. [PMID: 35561631 DOI: 10.1016/j.bmc.2022.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022]
Abstract
MicroRNA-21 is a carcinogenic microRNA, whose overexpression arises in a variety of tumor tissues. Hence, microRNA-21 a prospective target for cancer treatment, and regulation of microRNA-21 by small molecule inhibitors is deemed as a promising approach for tumor therapy. In this work, to discover potent microRNA-21 inhibitor, series of 4-(N-norfloxacin-acyl)aminobenzamides were designed and synthesized, and their inhibitory effects were appraised by utilizing dual luciferase reporter assays. The results indicated that compound A7 was the most efficient microRNA-21 small molecule inhibitor. What's more, A7 suppressed the migration of Hela cells and the colony formation of Hela and HCT-116 cells as well as promoted apoptosis of Hela cells. In the mechanism study, results of RT-qPCR certified that A7 could reduce the level of mature microRNA-21 via disrupting its expression at the transcriptional level of its primary form "pri-miR-21", which was distinct from most previous inhibitors directly binding with pre-miR-21. Noticeably, Western blotting and RT-qPCR uncovered A7 could upregulate the expression PTEN, EGR1 and SLIT2, which are the downstream functional targets of microRNA-21. These findings demonstrated that A7 was a promising microRNA-21 small molecule inhibitor and 4-(N-norfloxacin-acyl) aminobenzamide can serve as a new scaffold for discovery of potent microRNA-21 inhibitor.
Collapse
Affiliation(s)
- Xiao-Xiao Xi
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Yuan-Yuan Hei
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Yuanxu Guo
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Hong-Yi Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Shemin Lu
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710003, PR China; Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China
| | - Congshan Jiang
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710003, PR China; Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China.
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
24
|
Downregulation of HULC Induces Ferroptosis in Hepatocellular Carcinoma via Targeting of the miR-3200-5p/ATF4 Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9613095. [PMID: 35615577 PMCID: PMC9126659 DOI: 10.1155/2022/9613095] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/12/2022] [Accepted: 04/30/2022] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma is a malignant tumor that poses a serious threat to human health. Ferroptosis, which represents an identified type of regulated iron-dependent cell death, may play an important role in hepatocellular carcinoma. However, it is unclear as to whether ferroptosis is involved with the mechanisms of lncRNA HULC in liver cancer cells. Here, we show that knockdown of HULC increases ferroptosis and oxidative stress in liver cancer cells. We also found changes in some related miRNAs in cells treated with HULC siRNA. Differential miRNA expression levels were determined with the use of high-throughput sequencing and prediction target genes identified using bioinformatics analysis. HULC was found to function as a ceRNA of miR-3200-5p, and miR-3200-5p regulates ferroptosis by targeting ATF4, resulting in the inhibition of proliferation and metastasis within HCC cells. In summary, these findings illuminate some of the molecular mechanisms through which downregulation of HULC induces liver cancer cell ferroptosis by targeting the miR-3200-5p/ATF4 axis to modulate the development of hepatocellular carcinoma.
Collapse
|
25
|
Zhao N, Wang C, Guo P, Hou J, Yang H, Lan T, Zhou Y, Li J, Bhawal UK, Liu Y. CCDC106 promotes the proliferation and invasion of ovarian cancer cells by suppressing p21 transcription through a p53-independent pathway. Bioengineered 2022; 13:10956-10972. [PMID: 35484984 PMCID: PMC9208459 DOI: 10.1080/21655979.2022.2066759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ovarian cancers are the major cause of mortality for women worldwide. This study was aimed to elucidate the biological activities of CCDC106 in the proliferation and invasion of mutant p53 and of wild-type p53 ovarian cancer cells. CAOV3 (mutant p53) cells showed high expression levels of CCDC106, but it was expressed at low levels in SKOV3 (mutant p53) and in A2780 (wild-type p53) cells. The overexpression of CCDC106 promoted the expression of proliferation markers (cyclin family members), invasion and Epithelial-to-mesenchymal transition (EMT) markers (claudin-1, claudin-4, N-cadherin, snail, slug) while the knockdown of CCDC106 inhibited their expression in mutant p53 cells but not in wild-type p53 cells. Treatment with a CK2 inhibitor blocked the translocation of CCDC106 into the nuclei of mutant p53 cells. Immunoprecipitation assays confirmed that ATF4 is a potential binding partner of CCDC106. The overexpression of CCDC106 reduced p21 and p27 protein expression levels while treatment with an ATF4 siRNA rescued their expression. The overexpression of CCDC106 promoted colony formation and invasion of mutant p53 cells, which was suppressed by treatment with an ATF4 siRNA. Immunohistochemistry results showed that CCDC106 and ATF4 are expressed at high levels but p21 is expressed at low levels in FIGO III-IV stage and in mutant p53 ovarian cancer samples. A significant association between poor overall survival and high CCDC106 and ATF4 expression levels was observed in human ovarian cancer samples. In conclusion, CCDC106 promotes proliferation, invasion and EMT of mutant p53 ovarian cancer cells via the ATF4 mediated inhibition of p21.
Collapse
Affiliation(s)
- Na Zhao
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chen Wang
- Department of Histology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Peng Guo
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jun Hou
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Hong Yang
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ting Lan
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yehan Zhou
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jiayu Li
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ujjal K Bhawal
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, India.,Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Yang Liu
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
26
|
Wang M, Lu Y, Wang H, Wu Y, Xu X, Li Y. High ATF4 Expression Is Associated With Poor Prognosis, Amino Acid Metabolism, and Autophagy in Gastric Cancer. Front Oncol 2022; 11:740120. [PMID: 34976799 PMCID: PMC8718699 DOI: 10.3389/fonc.2021.740120] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/19/2021] [Indexed: 12/30/2022] Open
Abstract
Background The role of activating transcription factor 4 (ATF4) underlying gastric cancer (GC) remains unclear. The purpose of this study was to investigate the expression levels and biological functions of ATF4 in GC. Methods Expression of ATF4 was detected by quantitative PCR (qPCR), Western blotting, and immunohistochemistry. Cox regression was used for survival analysis and the construction of the nomogram. Immunofluorescence was used to identify the intracellular localization of ATF4. Knockdown and overexpression of ATF4 in GC cells followed by wound healing and Transwell assays, EdU and Calcein-AM/propidium iodide (PI) staining, and cell cycle detection were performed to examine its function in vitro. Transmission electron microscopy was performed to assess the autophagy levels upon ATF4 silencing. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and gene set enrichment analysis (GSEA) were used to determine gene enrichment. SPSS 22.0 software, GraphPad Prism 7.0, and R version 3.6.1 were used for statistical analysis. Results ATF4 expression was upregulated in GC cells and tissues compared with corresponding normal tissues. Survival analysis suggested that a high ATF4 expression was strongly associated with worse overall survival (OS) of GC patients (p < 0.001). The nomogram and the receiver operating characteristic (ROC) curves demonstrated that ATF4 was a highly sensitive and specific prognostic marker of GC [C-index = 0.797, area under the ROC curve (AUC) of 3-year OS = 0.855, and AUC of 5-year OS = 0.863]. In addition, ATF4 knockdown inhibited the cell proliferation, migration, invasion, and cell cycle progression of GC cells in vitro, while overexpression of ATF4 exerted the opposite effects. Bioinformatics analysis showed that ATF4 could promote GC progression possibly by regulating asparagine (Asn) metabolism and autophagy pathways. Further experiments indicated that ATF4 expression was significantly positively correlated with ASNS expression. The inhibition of cell clone formation in Asn-deprived conditions was more significant in the shATF4 group. Finally, we found that ATF4 promoted autophagy through regulating the mTORC1 pathway in GC cells. Conclusion These findings suggested that ATF4 can significantly promote GC development and serve as an independent prognostic factor for GC.
Collapse
Affiliation(s)
- Mingliang Wang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yida Lu
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huizhen Wang
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Youliang Wu
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin Xu
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongxiang Li
- General Surgery Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
27
|
Xiang Y, Yu Y, Li Q, Jiang Z, Li J, Liang C, Chen J, Li Y, Chen X, Cao W. Mutual regulation between chicken telomerase reverse transcriptase and the Wnt/β-catenin signalling pathway inhibits apoptosis and promotes the replication of ALV-J in LMH cells. Vet Res 2021; 52:110. [PMID: 34412690 PMCID: PMC8375160 DOI: 10.1186/s13567-021-00979-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/10/2021] [Indexed: 12/14/2022] Open
Abstract
This study aimed to explore the mutual regulation between chicken telomerase reverse transcriptase (chTERT) and the Wnt/β-catenin signalling pathway and its effects on cell growth and avian leukosis virus subgroup J (ALV-J) replication in LMH cells. First, LMH cells stably overexpressing the chTERT gene (LMH-chTERT cells) and corresponding control cells (LMH-NC cells) were successfully constructed with a lentiviral vector expression system. The results showed that chTERT upregulated the expression of β-catenin, Cyclin D1, TCF4 and c-Myc. chTERT expression level and telomerase activity were increased when cells were treated with LiCl. When the cells were treated with ICG001 or IWP-2, the activity of the Wnt/β-catenin signalling pathway was significantly inhibited, and chTERT expression and telomerase activity were also inhibited. However, when the β-catenin gene was knocked down by small interfering RNA (siRNA), the changes in chTERT expression and telomerase activity were consistent with those in cells treated with ICG001 or IWP-2. These results indicated that chTERT and the Wnt/β-catenin signalling pathway can be mutually regulated. Subsequently, we found that chTERT not only shortened the cell cycle to promote proliferation but also inhibited apoptosis by downregulating the expression of Caspase 3, Caspase 9 and BAX; upregulating BCL-2 and BCL-X expression; and promoting autophagy. Moreover, chTERT significantly enhanced the migration ability of LMH cells, upregulated the protein and mRNA expression of ALV-J and increased the virus titre. ALV-J replication promoted chTERT expression and telomerase activity.
Collapse
Affiliation(s)
- Yong Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yun Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qingbo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zeng Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jinqun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Canxin Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyan Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China. .,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, 510642, China. .,Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, 510642, China.
| |
Collapse
|