1
|
Ahmed MZ, Billah MM, Ferdous J, Antar SI, Al Mamun A, Hossain MJ. Pan-cancer analysis reveals immunological and prognostic significance of CCT5 in human tumors. Sci Rep 2025; 15:14405. [PMID: 40274875 PMCID: PMC12022336 DOI: 10.1038/s41598-025-88339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/28/2025] [Indexed: 04/26/2025] Open
Abstract
The chaperonin containing TCP1 subunit 5 (CCT5) is believed to function as a tumor driver. However, a systematic pan-cancer analysis of CCT5 is still lacking. Therefore, this study aimed to identify the potential role of CCT5 in different types of tumors. This study comprehensively investigated the gene expression, proteomic expression, immune infiltration, DNA methylation, genetic alterations, correlation with TMB and MSI, drug sensitivity, enrichment analysis, and prognostic significance of CCT5 in 33 different tumors based on the TIMER2.0, GEPIA2, UALCAN, SMART, cBioPortal, GSCA databases, and TCGAplot R package. The results revealed significant CCT5 overexpression in most tumors and was significantly associated with poor OS and DFS in different tumor types. Reduced promoter and N-shore methylation of CCT5, indicating its potential oncogenic and epigenetic roles. Amplification was the most common type of CCT5 alterations. Immune infiltration analysis revealed a strong correlation between CCT5 and different immune cells. CCT5 exhibited a significant correlation with TMB and MSI in KIRC and STAD. Furthermore, enrichment analysis revealed associations between CCT5 and cell cycle pathway and various cellular functions. These findings suggested that CCT5 might serve as a potential prognostic biomarker and target for immunotherapy in various cancers.
Collapse
Affiliation(s)
- Md Zabir Ahmed
- Big Bioinformatics Lab (BigBio Lab), Center for Health Innovation, Research, Action, and Learning- Bangladesh (CHIRAL Bangladesh), Dhaka, Bangladesh
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Md Mohtasim Billah
- Big Bioinformatics Lab (BigBio Lab), Center for Health Innovation, Research, Action, and Learning- Bangladesh (CHIRAL Bangladesh), Dhaka, Bangladesh
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Jannatul Ferdous
- Big Bioinformatics Lab (BigBio Lab), Center for Health Innovation, Research, Action, and Learning- Bangladesh (CHIRAL Bangladesh), Dhaka, Bangladesh
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Shoriful Islam Antar
- Big Bioinformatics Lab (BigBio Lab), Center for Health Innovation, Research, Action, and Learning- Bangladesh (CHIRAL Bangladesh), Dhaka, Bangladesh
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Big Bioinformatics Lab (BigBio Lab), Center for Health Innovation, Research, Action, and Learning- Bangladesh (CHIRAL Bangladesh), Dhaka, Bangladesh
- Department of Animal Science and Veterinary Medicine, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Jubayer Hossain
- Center for Health Innovation, Research, Action, and Learning-Bangladesh (CHIRAL Bangladesh), Dhaka, Bangladesh.
| |
Collapse
|
2
|
Yerukala Sathipati S, Aimalla N, Tsai MJ, Carter T, Jeong S, Wen Z, Shukla SK, Sharma R, Ho SY. Prognostic microRNA signature for estimating survival in patients with hepatocellular carcinoma. Carcinogenesis 2023; 44:650-661. [PMID: 37701974 DOI: 10.1093/carcin/bgad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023] Open
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is one of the leading cancer types with increasing annual incidence and high mortality in the USA. MicroRNAs (miRNAs) have emerged as valuable prognostic indicators in cancer patients. To identify a miRNA signature predictive of survival in patients with HCC, we developed a machine learning-based HCC survival estimation method, HCCse, using the miRNA expression profiles of 122 patients with HCC. METHODS The HCCse method was designed using an optimal feature selection algorithm incorporated with support vector regression. RESULTS HCCse identified a robust miRNA signature consisting of 32 miRNAs and obtained a mean correlation coefficient (R) and mean absolute error (MAE) of 0.87 ± 0.02 and 0.73 years between the actual and estimated survival times of patients with HCC; and the jackknife test achieved an R and MAE of 0.73 and 0.97 years between actual and estimated survival times, respectively. The identified signature has seven prognostic miRNAs (hsa-miR-146a-3p, hsa-miR-200a-3p, hsa-miR-652-3p, hsa-miR-34a-3p, hsa-miR-132-5p, hsa-miR-1301-3p and hsa-miR-374b-3p) and four diagnostic miRNAs (hsa-miR-1301-3p, hsa-miR-17-5p, hsa-miR-34a-3p and hsa-miR-200a-3p). Notably, three of these miRNAs, hsa-miR-200a-3p, hsa-miR-1301-3p and hsa-miR-17-5p, also displayed association with tumor stage, further emphasizing their clinical relevance. Furthermore, we performed pathway enrichment analysis and found that the target genes of the identified miRNA signature were significantly enriched in the hepatitis B pathway, suggesting its potential involvement in HCC pathogenesis. CONCLUSIONS Our study developed HCCse, a machine learning-based method, to predict survival in HCC patients using miRNA expression profiles. We identified a robust miRNA signature of 32 miRNAs with prognostic and diagnostic value, highlighting their clinical relevance in HCC management and potential involvement in HCC pathogenesis.
Collapse
Affiliation(s)
| | - Nikhila Aimalla
- Department of Internal Medicine-Pediatrics, Marshfield Clinic Health System, Marshfield, WI 54449, USA
| | - Ming-Ju Tsai
- Hinda and Arthur Marcus Institute for Aging Research at Hebrew Senior Life, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Tonia Carter
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Sohyun Jeong
- Hinda and Arthur Marcus Institute for Aging Research at Hebrew Senior Life, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Zhi Wen
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Rohit Sharma
- Department of Surgical Oncology, Marshfield Clinic Health System, Marshfield, WI 54449, USA
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
3
|
Zheng L, Chen X, Zhang L, Qin N, An J, Zhu J, Jin H, Tuo B. A potential tumor marker: Chaperonin containing TCP‑1 controls the development of malignant tumors (Review). Int J Oncol 2023; 63:106. [PMID: 37539774 PMCID: PMC10552740 DOI: 10.3892/ijo.2023.5554] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023] Open
Abstract
Due to concealment, high invasiveness and a lack of indicators, malignant tumors have emerged as one of the deadliest diseases worldwide and their incidence is rising yearly. Research has revealed that the chaperonin family member, chaperonin containing TCP‑1 (CCT), serves a crucial role in malignant tumors. CCT is involved in the growth of numerous malignant tumors such as lung cancer, breast cancer, hepatocellular carcinoma and colorectal cancer and assists the folding of a number of proteins linked to cancer, such as KRAS, p53 and STAT3. According to clinical data, CCT is highly expressed in a range of tumor cells and is associated with poor patient prognosis. In addition, through controlling the cell cycle or interacting with other proteins (including YAP1, HoXB2 and SMAD2), CCT has an effect on the proliferation, invasion and migration of cancer cells. As a result, it is possible that CCT will become a new tumor marker or therapeutic target, which will provide some guidance for early tumor screening or late tumor prognosis. In the present review, the molecular properties of CCT are introduced, alongside a summary of its interactions with other cancer‑related proteins and a discussion of its function in common malignant tumors. It is expected that the present review will offer fresh approaches to the treatment of cancer.
Collapse
Affiliation(s)
- Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Nannan Qin
- Department of Critical Care Medicine of the First People's Hospital of Zunyi (The Third Affiliated Hospital), Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| |
Collapse
|
4
|
Meng H, Jiang L, Jia P, Niu R, Bu F, Zhu Y, Pan X, Li J, Liu J, Zhang Y, Huang C, Lv X, Li J. Inhibition of circular RNA ASPH reduces the proliferation and promotes the apoptosis of hepatic stellate cells in hepatic fibrosis. Biochem Pharmacol 2023; 210:115451. [PMID: 36758707 DOI: 10.1016/j.bcp.2023.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Circular RNAs (circRNAs) are a newly identified form of non-coding RNA that play a crucial role in various pathological processes. However, the expression profile and function of circRNAs in hepatic fibrosis (HF) remain largely unknown. In this study, we showed that a novel circRNA ASPH (circASPH) mediates HF by targeting the miR-139-5p/Notch1 axis. We investigated the expression profile of circRNAs in hepatocyte exosomes of mice with HF using circRNA-sequencing and found significant upregulation of circASPH. Loss- and gain-of-function analysis of circASPH was performed to assess its role in HF. Furthermore, we performed luciferase reporter assay, RNA pull-down, and fluorescence in situ hybridization analyses and confirmed that circASPH directly binds to miR-139-5p. We also found that circASPH was upregulated in liver fibrogenesis. Downregulation of circASPH expression inhibited hepatic stellate cell (HSC) activation and proliferation, induced apoptosis, and attenuated mouse liver fibrogenic injury. Mechanistically, circASPH directly targeted miR-139-5p to regulate the expression of Notch1 in HF. Thus, downregulation of circASPH may suppress the activation of HSCs and HF through the circASPH/miR-139-5p/Notch1 axis. Our findings indicated that circASPH may be a potential biomarker for HF diagnosis and therapy.
Collapse
Affiliation(s)
- Hongwu Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lingfeng Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Pengcheng Jia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ruowen Niu
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Fangtian Bu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yan Zhu
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xueyin Pan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juanjuan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jinyu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yilong Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
5
|
Zhao Y, Li M, Miao N, Wei W, Dong Y, Tao C, Chen J, Pei Y, Guo L. Use of miRNA Sequencing to Reveal Hub miRNAs and the Effect of miR-582-3p/SMAD2 in the Progression of Hepatocellular Carcinoma. Front Genet 2022; 13:819553. [PMID: 35386287 PMCID: PMC8977860 DOI: 10.3389/fgene.2022.819553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/04/2022] [Indexed: 11/22/2022] Open
Abstract
Hepatocellular carcinoma is a common tumor with a high fatality rate worldwide, and exploring its pathogenesis and deterioration mechanism is a focus for many researchers. Increasing evidence has shown that miRNAs are involved in the occurrence and progression of a variety of cancers, including hepatocellular carcinoma. Therefore, this study mainly aimed identify key miRNAs related to hepatocellular carcinoma and explore their potential functions and clinical significance. In this study, we performed miRNA sequencing on three pairs of hepatocellular carcinoma tissue samples and screened 26 differentially expressed miRNAs. Then 2 key miRNAs (miR-139-5p and miR-582-3p) were screened by Kaplan-Meier curve analysis, Cox multivariate analysis and qPCR methods. The expression of miR-582-3p was positively correlated with clinicopathological parameters in patients with hepatocellular carcinoma. Subsequently, miRwalk and starbase were used to predict the target genes of key miRNAs, and then the key pairs miR-582-3p/SMAD2 identified by WGCNA, PPI, qPCR and Pearson correlation analysis. Finally, a dual luciferase experiment, the rescue-of-function experiment and qPCR confirmed that miR-582-3p directly targets SMAD2 and regulates the proliferation, migration and invasion of HepG2 cells by targeting SMAD2. At the same time, interference with SMAD2 can influence the effect of miR-582-3p on HepG2 cells. In conclusion, our findings confirm that miR-582-3p is an independent factor for the prognosis of hepatocellular carcinoma patients, and can regulate the progression of hepatocellular carcinoma cells by targeting SMAD2.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Gastrointestinal Endoscopy, Eastern Hepatobiliary Surgery Hospital,The Third Hospital Affiliated of Naval Medical University, Shanghai, China
| | - Meizhang Li
- Department of Oncology/Hematology, Eastern Hepatobiliary Hospital, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Nana Miao
- Department of Oncology/Hematology, Eastern Hepatobiliary Hospital, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Wei Wei
- Department of Oncology/Hematology, Eastern Hepatobiliary Hospital, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Yulong Dong
- Department of Oncology/Hematology, Eastern Hepatobiliary Hospital, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Chenjie Tao
- Department of Oncology/Hematology, Eastern Hepatobiliary Hospital, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Jinzhong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yongyan Pei
- School of Medicine and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Lieping Guo
- Department of Oncology/Hematology, Eastern Hepatobiliary Hospital, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| |
Collapse
|
6
|
Mo M, Liu B, Luo Y, Tan JHJ, Zeng X, Zeng X, Huang D, Li C, Liu S, Qiu X. Construction and Comprehensive Analysis of a circRNA-miRNA-mRNA Regulatory Network to Reveal the Pathogenesis of Hepatocellular Carcinoma. Front Mol Biosci 2022; 9:801478. [PMID: 35141281 PMCID: PMC8819184 DOI: 10.3389/fmolb.2022.801478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Circular RNAs (circRNAs) have been demonstrated to be closely related to the carcinogenesis of human cancer in recent years. However, the molecular mechanism of circRNAs in the pathogenesis of hepatocellular carcinoma (HCC) has not been fully elucidated. We aimed to identify critical circRNAs and explore their potential regulatory network in HCC.Methods: The robust rank aggregation (RRA) algorithm and weighted gene co-expression network analysis (WGCNA) were conducted to unearth the differentially expressed circRNAs (DEcircRNAs) in HCC. The expression levels of DEcircRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). A circRNA-miRNA-mRNA regulatory network was constructed by computational biology, and protein-protein interaction (PPI) network, functional enrichment analysis, survival analysis, and infiltrating immune cells analysis were performed to uncover the potential regulatory mechanisms of the network.Results: A total of 22 DEcircRNAs were screened out from four microarray datasets (GSE94508, GSE97332, GSE155949, and GSE164803) utilizing the RRA algorithm. Meanwhile, an HCC-related module containing 404 circRNAs was identified by WGCNA analysis. After intersection, only four circRNAs were recognized in both algorithms. Following qRT-PCR validation, three circRNAs (hsa_circRNA_091581, hsa_circRNA_066568, and hsa_circRNA_105031) were chosen for further analysis. As a result, a circRNA-miRNA-mRNA network containing three circRNAs, 17 miRNAs, and 222 mRNAs was established. Seven core genes (ESR1, BUB1, PRC1, LOX, CCT5, YWHAZ, and DDX39B) were determined from the PPI network of 222 mRNAs, and a circRNA-miRNA-hubgene network was also constructed. Functional enrichment analysis suggested that these seven hub genes were closely correlated with several cancer related pathways. Survival analysis revealed that the expression levels of the seven core genes were significantly associated with the prognosis of HCC patients. In addition, we also found that these seven hub genes were remarkably related to the infiltrating levels of immune cells.Conclusion: Our research identified three pivotal HCC-related circRNAs and provided novel insights into the underlying mechanisms of the circRNA-miRNA-mRNA regulatory network in HCC.
Collapse
Affiliation(s)
- Meile Mo
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Bihu Liu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yihuan Luo
- Department of Acute Care Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jennifer Hui Juan Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xi Zeng
- Department of Occupational and Environmental Health, School of Public Health, Guilin Medical University, Guilin, China
| | - Xiaoyun Zeng
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, China
| | - Changhua Li
- Department of Acute Care Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning, China
- *Correspondence: Xiaoqiang Qiu, ; Shun Liu,
| | - Xiaoqiang Qiu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, China
- *Correspondence: Xiaoqiang Qiu, ; Shun Liu,
| |
Collapse
|
7
|
Huang X, Wang H, Xu F, Lv L, Wang R, Jiang B, Liu T, Hu H, Jiang Y. Overexpression of chaperonin containing TCP1 subunit 7 has diagnostic and prognostic value for hepatocellular carcinoma. Aging (Albany NY) 2022; 14:747-769. [PMID: 35073517 PMCID: PMC8833116 DOI: 10.18632/aging.203809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022]
Abstract
Chaperonin containing TCP1 subunit 7 (CCT7) regulates the expression of many tumor-related proteins. We investigated the diagnostic and prognostic value of CCT7 expression for hepatocellular carcinoma (HCC). In datasets from The Cancer Genome Atlas and the Gene Expression Omnibus, CCT7 mRNA levels were greater in HCC tissues than adjacent normal tissues, and these results were validated using immunohistochemistry. In patients with early-stage disease and low alpha-fetoprotein expression, CCT7 expression was still higher in HCC tissues than normal tissues. Receiver operating characteristic curve analyses indicated that CCT7 expression had better diagnostic value than alpha-fetoprotein for HCC patients with early-stage disease and low alpha-fetoprotein expression. The positive predictive value of CCT7 expression was higher than that of alpha-fetoprotein expression. Higher CCT7 mRNA and protein levels were independent risk factors for poorer overall and recurrence-free survival in HCC patients. Greater methylation of the CpG site cg19515186 was associated with better overall survival in HCC patients. Genes co-expressed with CCT7 were upregulated in HCC and associated with poorer overall survival. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analyses demonstrated that CCT7 expression correlated with spliceosome signaling. These findings demonstrate that CCT7 has diagnostic and prognostic value for HCC.
Collapse
Affiliation(s)
- Xinghua Huang
- The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025, PR China.,Department of Hepatobiliary Surgery, 900th Hospital of the Joint Logistics Team, Fuzhou, Fujian 350025, PR China
| | - Huaxiang Wang
- The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025, PR China.,Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, PR China
| | - Fengfeng Xu
- The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025, PR China.,Department of Hepatobiliary Surgery, 900th Hospital of the Joint Logistics Team, Fuzhou, Fujian 350025, PR China
| | - Lizhi Lv
- The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025, PR China.,Department of Hepatobiliary Surgery, 900th Hospital of the Joint Logistics Team, Fuzhou, Fujian 350025, PR China
| | - Ruling Wang
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, PR China
| | - Bin Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, PR China
| | - Tingting Liu
- Department of Hepatobiliary Surgery, 900th Hospital of the Joint Logistics Team, Fuzhou, Fujian 350025, PR China.,Graduate School of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350025, PR China
| | - Huanzhang Hu
- The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025, PR China.,Department of Hepatobiliary Surgery, 900th Hospital of the Joint Logistics Team, Fuzhou, Fujian 350025, PR China
| | - Yi Jiang
- The Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025, PR China.,Department of Hepatobiliary Surgery, 900th Hospital of the Joint Logistics Team, Fuzhou, Fujian 350025, PR China
| |
Collapse
|