1
|
Nyberg T, Govindasami K, Leslie G, Dadaev T, Bancroft E, Ni Raghallaigh H, Brook MN, Hussain N, Keating D, Lee A, McMahon R, Morgan A, Mullen A, Osborne A, Rageevakumar R, Kote-Jarai Z, Eeles R, Antoniou AC. Homeobox B13 G84E Mutation and Prostate Cancer Risk. Eur Urol 2019; 75:834-845. [PMID: 30527799 PMCID: PMC6470122 DOI: 10.1016/j.eururo.2018.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The homeobox B13 (HOXB13) G84E mutation has been recommended for use in genetic counselling for prostate cancer (PCa), but the magnitude of PCa risk conferred by this mutation is uncertain. OBJECTIVE To obtain precise risk estimates for mutation carriers and information on how these vary by family history and other factors. DESIGN, SETTING, AND PARTICIPANTS Two-fold: a systematic review and meta-analysis of published risk estimates, and a kin-cohort study comprising pedigree data on 11983 PCa patients enrolled during 1993-2014 from 189 UK hospitals and who had been genotyped for HOXB13 G84E. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Relative and absolute PCa risks. Complex segregation analysis with ascertainment adjustment to derive age-specific risks applicable to the population, and to investigate how these vary by family history and birth cohort. RESULTS AND LIMITATIONS A meta-analysis of case-control studies revealed significant heterogeneity between reported relative risks (RRs; range: 0.95-33.0, p<0.001) and differences by case selection (p=0.007). Based on case-control studies unselected for PCa family history, the pooled RR estimate was 3.43 (95% confidence interval [CI] 2.78-4.23). In the kin-cohort study, PCa risk for mutation carriers varied by family history (p<0.001). There was a suggestion that RRs decrease with age, but this was not significant (p=0.068). We found higher RR estimates for men from more recent birth cohorts (p=0.004): 3.09 (95% CI 2.03-4.71) for men born in 1929 or earlier and 5.96 (95% CI 4.01-8.88) for men born in 1930 or later. The absolute PCa risk by age 85 for a male HOXB13 G84E carrier varied from 60% for those with no PCa family history to 98% for those with two relatives diagnosed at young ages, compared with an average risk of 15% for noncarriers. Limitations include the reliance on self-reported cancer family history. CONCLUSIONS PCa risks for HOXB13 G84E mutation carriers are heterogeneous. Counselling should not be based on average risk estimates but on age-specific absolute risk estimates tailored to individual mutation carriers' family history and birth cohort. PATIENT SUMMARY Men who carry a hereditary mutation in the homeobox B13 (HOXB13) gene have a higher than average risk for developing prostate cancer. In our study, we examined a large number of families of men with prostate cancer recruited across UK hospitals, to assess what other factors may contribute to this risk and to assess whether we could create a precise model to help in predicting a man's prostate cancer risk. We found that the risk of developing prostate cancer in men who carry this genetic mutation is also affected by a family history of prostate cancer and their year of birth. This information can be used to assess more personalised prostate cancer risks to men who carry HOXB13 mutations and hence better counsel them on more personalised risk management options, such as tailoring prostate cancer screening frequency.
Collapse
Affiliation(s)
- Tommy Nyberg
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Koveela Govindasami
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Tokhir Dadaev
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Elizabeth Bancroft
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, London, UK; Royal Marsden NHS Foundation Trust, London, UK
| | - Holly Ni Raghallaigh
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Mark N Brook
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Nafisa Hussain
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Diana Keating
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Andrew Lee
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Romayne McMahon
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Angela Morgan
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, London, UK; Royal Marsden NHS Foundation Trust, London, UK
| | - Andrea Mullen
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Andrea Osborne
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Reshma Rageevakumar
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Zsofia Kote-Jarai
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Rosalind Eeles
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, London, UK; Royal Marsden NHS Foundation Trust, London, UK
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Sipeky C, Gao P, Zhang Q, Wang L, Ettala O, Talala KM, Tammela TLJ, Auvinen A, Wiklund F, Wei GH, Schleutker J. Synergistic Interaction of HOXB13 and CIP2A Predisposes to Aggressive Prostate Cancer. Clin Cancer Res 2018; 24:6265-6276. [PMID: 30181389 DOI: 10.1158/1078-0432.ccr-18-0444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/09/2018] [Accepted: 08/28/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Distinguishing aggressive prostate cancer from indolent disease improves personalized treatment. Although only few genetic variants are known to predispose to aggressive prostate cancer, synergistic interactions of HOXB13 G84E high-risk prostate cancer susceptibility mutation with other genetic loci remain unknown. The purpose of this study was to examine the interplay of HOXB13 rs138213197 (G84E) and CIP2A rs2278911 (R229Q) germline variants on prostate cancer risk. EXPERIMENTAL DESIGN Genotyping was done in Finnish discovery cohort (n = 2,738) and validated in Swedish (n = 3,132) and independent Finnish (n = 1,155) prostate cancer cohorts. Expression pattern analysis was followed by functional studies in prostate cancer cell models. RESULTS Interplay of HOXB13 (G84E) and CIP2A (R229Q) variants results in highest observed inherited prostate cancer risk (OR, 21.1; P = 0.000024). In addition, this synergism indicates a significant association of HOXB13 T and CIP2A T dual carriers with elevated risk for high Gleason score (OR, 2.3; P = 0.025) and worse prostate cancer-specific life expectancy (HR, 3.9; P = 0.048), and it is linked with high PSA at diagnosis (OR, 3.30; P = 0.028). Furthermore, combined high expression of HOXB13-CIP2A correlates with earlier biochemical recurrence. Finally, functional experiments showed that ectopic expression of variants stimulates prostate cancer cell growth and migration. In addition, we observed strong chromatin binding of HOXB13 at CIP2A locus and revealed that HOXB13 functionally promotes CIP2A transcription. The study is limited to retrospective Nordic cohorts. CONCLUSIONS Simultaneous presence of HOXB13 T and CIP2A T alleles confers for high prostate cancer risk and aggressiveness of disease, earlier biochemical relapse, and lower disease-specific life expectancy. HOXB13 protein binds to CIP2A gene and functionally promotes CIP2A transcription.
Collapse
Affiliation(s)
- Csilla Sipeky
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ping Gao
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Qin Zhang
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Liang Wang
- Department of Pathology, MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Otto Ettala
- Department of Urology, Turku University Hospital, Turku, Finland
| | - Kirsi M Talala
- Finnish Cancer Registry, Mass Screening Registry, Helsinki, Finland
| | - Teuvo L J Tammela
- Department of Urology, Tampere University Hospital and Medical School, University of Tampere, Tampere, Finland
| | - Anssi Auvinen
- Department of Epidemiology, School of Health Sciences, University of Tampere, Tampere, Finland
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Gong-Hong Wei
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| | - Johanna Schleutker
- Institute of Biomedicine, University of Turku, Turku, Finland. .,Tyks Microbiology and Genetics, Department of Medical Genetics, Turku University Hospital, Turku, Finland
| |
Collapse
|
3
|
Luo D, Wang Y, Huan X, Huang C, Yang C, Fan H, Xu Z, Yang L. Identification of a synonymous variant in TRIM59 gene for gastric cancer risk in a Chinese population. Oncotarget 2017; 8:11507-11516. [PMID: 28009992 PMCID: PMC5355281 DOI: 10.18632/oncotarget.14075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/22/2016] [Indexed: 12/04/2022] Open
Abstract
Tripartite motif 59 (TRIM59) is a novel oncogenic driver in gastric cancer (GC) that is implicated in disease progression as well as dismal survival. Genetic variants in peculiar gene are likely candidates for conferring hereditary susceptibility. The role of TRIM59 polymorphism in predicting the risk of malignant diseases and its relevance to TRIM59 expression have not been discussed. Using a HapMap tagSNPs approach, we screened three tag TRIM59 single nucleotide polymorphisms (SNPs) (rs1141023G>A, rs7629A>G, rs11706810T>C) which were genotyped in 602 GC patients and 868 healthy controls. Our study provided convincing result that carries of variant rs1141023A allele markedly increased GC risk (P=0.006). In comparison with the GG homozygotes, the variant GA heterozygotes demonstrated 1.50-fold elevated risk of GC (p=0.014, 95% confidence interval [CI] = 1.09–2.08). Subjects who carried the (GA+AA) genotypes of rs1141023 were associated with remarkable increased GC risk compared with the common genotype (P = 0.013, adjusted OR = 1.50, 95% CI = 1.09–2.05). Further stratified analyses displayed that the relationship between mutant genotype of rs1141023 and GC risk was more profound in male individuals. Intriguingly, there is no significant distinction of TRIM59 mRNA expression between rs1141023GA genotype and GG genotype in 44 normal gastric tissues. Taken together, our results suggest that rs1141023 polymorphism contributes to increased predisposition to GC and thus may be responsible for predicting early GC.
Collapse
Affiliation(s)
- Dakui Luo
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Younan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangkun Huan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chi Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Yang
- Liver Transplantation Center of the First Affiliated Hospital and Key Laboratory on Living Donor Liver Transplantation, Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Fan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Zhang J, Xiao L, Qin Z, Xu A, Zhao K, Liang C, Miao C, Zhu J, Chen W, Hua Y, Liu Y, Zhang C, Yu Y, Su S, Wang Z. Association between germline homeobox B13 (HOXB13) G84E allele and prostate cancer susceptibility: a meta-analysis and trial sequential analysis. Oncotarget 2016; 7:67101-67110. [PMID: 27626483 PMCID: PMC5341860 DOI: 10.18632/oncotarget.11937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
Germline HOXB13 G84E mutation (rs138213197) has been described associated with prostate cancer (PCa) susceptibility but results of different studies are inconsistent. We conducted this meta-analysis to evaluate the specific role of this mutation. Relevant available studies were identified by searching the databases Pubmed, Embase and Web of Science. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to measure the strength of the association. Subgroup analysis were performed to evaluate the specific role of rs138213197 in disease aggressiveness, diagnostic age and family history. Furthermore, trial sequential analysis (TSA) was conducted for the first time to estimate whether the evidence of the results is sufficient. Our results indicated that significant increased PCa susceptibility was associated with rs138213197 compared with non-carriers (OR = 3.38, 95% CI: 2.45-4.66). Besides, in subgroup analysis, HOXB13 G84E variant was obviously associated with early onset (OR = 2.90, 95% CI: 2.24-3.75), affected relatives (OR = 2.60, 95% CI 2.19-3.10) and highly aggressive disease (OR = 2.38, 95% CI 1.84-3.08). By TSA, the findings in the current study were based on sufficient evidence. Therefore, our results indicated that the G84E mutation in HOXB13 gene might increase susceptibility to PCa.
Collapse
Affiliation(s)
- Jianzhong Zhang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Xiao
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Affiliated Cancer Hospital of Jiangsu Province of Nanjing Medical University, Nanjing, China
| | - Zhiqiang Qin
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aiming Xu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Zhao
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenkui Miao
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jundong Zhu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Chen
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yibo Hua
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiyang Liu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yajie Yu
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shifeng Su
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- State Key Laboratory of Reproductive Medicine and Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Germline HOXB13 p.Gly84Glu mutation and cancer susceptibility: a pooled analysis of 25 epidemiological studies with 145,257 participates. Oncotarget 2016; 6:42312-21. [PMID: 26517352 PMCID: PMC4747227 DOI: 10.18632/oncotarget.5994] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/05/2015] [Indexed: 01/31/2023] Open
Abstract
Numerous studies have investigated association between the germline HOXB13 p.Gly84Glu mutation and cancer risk. However, the results were inconsistent. Herein, we performed this meta-analysis to get a precise conclusion of the associations. A comprehensive literature search was conducted through Medline (mainly Pubmed), Embase, Cochrane Library databases. Crude odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated by STATA 12.1 software to evaluate the association of HOXB13 p.Gly84Glu mutation and cancer susceptibility. Then, 25 studies including 51,390 cases and 93,867 controls were included, and there was significant association between HOXB13 p.Gly84Glu mutation and overall cancer risk (OR = 2.872, 95% CI = 2.121-3.888, P < 0.001), particularly in prostate cancer (OR = 3.248, 95% CI = 2.313-4.560, P < 0.001), while no association was found in breast (OR = 1.424, 95% CI = 0.776-2.613, P = 0.253) and colorectal cancers (OR = 2.070, 95% CI = 0.485-8.841, P = 0.326). When we stratified analysis by ethnicity, significant association was found in Caucasians (OR = 2.673, 95%CI = 1.920-3.720, P < 0.001). Further well-designed with large samples and other various cancers should be performed to validate our results.
Collapse
|