1
|
Wu Q, Tian P, He D, Jia Z, He Y, Luo W, Lv X, Wang Y, Zhang P, Liang Y, Zhao W, Qin J, Su P, Jiang YZ, Shao ZM, Yang Q, Hu G. SCUBE2 mediates bone metastasis of luminal breast cancer by modulating immune-suppressive osteoblastic niches. Cell Res 2023; 33:464-478. [PMID: 37142671 PMCID: PMC10235122 DOI: 10.1038/s41422-023-00810-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/02/2023] [Indexed: 05/06/2023] Open
Abstract
Estrogen receptor (ER)-positive luminal breast cancer is a subtype with generally lower risk of metastasis to most distant organs. However, bone recurrence occurs preferentially in luminal breast cancer. The mechanisms of this subtype-specific organotropism remain elusive. Here we show that an ER-regulated secretory protein SCUBE2 contributes to bone tropism of luminal breast cancer. Single-cell RNA sequencing analysis reveals osteoblastic enrichment by SCUBE2 in early bone-metastatic niches. SCUBE2 facilitates release of tumor membrane-anchored SHH to activate Hedgehog signaling in mesenchymal stem cells, thus promoting osteoblast differentiation. Osteoblasts deposit collagens to suppress NK cells via the inhibitory LAIR1 signaling and promote tumor colonization. SCUBE2 expression and secretion are associated with osteoblast differentiation and bone metastasis in human tumors. Targeting Hedgehog signaling with Sonidegib and targeting SCUBE2 with a neutralizing antibody both effectively suppress bone metastasis in multiple metastasis models. Overall, our findings provide a mechanistic explanation for bone preference in luminal breast cancer metastasis and new approaches for metastasis treatment.
Collapse
Affiliation(s)
- Qiuyao Wu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pu Tian
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dasa He
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenchang Jia
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yunfei He
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenqian Luo
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xianzhe Lv
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuan Wang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peiyuan Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yajun Liang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjin Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Jun Qin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng Su
- Department of Pathology, Qilu Hospital of Shandong University, Ji'nan, Shandong, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Ji'nan, Shandong, China.
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
2
|
Deng J, Zhang D, Zhang W, Li J. Construction and Validation of New Nomograms to Predict Risk and Prognostic Factors of Breast Cancer Bone Metastasis in Asian Females: A Population-Based Retrospective Study. Int J Gen Med 2021; 14:8881-8902. [PMID: 34866932 PMCID: PMC8636465 DOI: 10.2147/ijgm.s335123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose To construct a breast cancer bone-only metastasis (BCBM) risk and prognostic model for Asian females and provide a reference for treatment selection in breast cancer (BC) patients with bone-only metastasis (BM). Patients and Methods The data for newly diagnosed female patients of Asian Pacific Islander (API) ethnicity between 2010 and 2018 were obtained from the Surveillance, Epidemiology, and End Results database. A total of 16,972 patients were identified. Logistic regression analyses were used to establish a risk model for BCBM. Cox proportional hazards regression analyses were used to construct nomograms for the prognosis of BC and BCBM. Subsequently, the degree of discrimination of the nomogram was evaluated using the consistency index (C-index) and receiver operating curve. Results The main independent risk factors of BM in Asian females with BC were primary site surgery (p<0.0001), ER (p=0.0015), and T-stage (p=0.0046). The C-index values in the training and validation cohorts were 0.933 and 0.941, respectively. The main independent risk factors of the prognosis of BC were age (p<0.001), summary stage (p<0.001), and grade (p=0.002). The C-index values of 5-year overall survival (OS) in the training and validation cohorts were 0.823 and 0.804, respectively. The risk factors of the prognosis of Asian females with BCBM were subtype (p<0.001), histology (p<0.001), and grade (p=0.033). The C-index values of 5-year OS in the training and validation cohorts were 0.793 and 0.723, respectively. Conclusion Using population-based analysis, this study constructed a prediction model for the risk and prognosis of BM in Asian females with BC. Another newly constructed model was effective in predicting OS in BCBM patients. These models can help prevent skeletal-related events and weigh the risks and benefits of surgery for metastatic lesions in BCBM patients.
Collapse
Affiliation(s)
- Junsen Deng
- Department of Orthopedics Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Zhengzhou, 45000, Henan, People's Republic of China
| | - Di Zhang
- Department of Spine Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Zhengzhou, 45000, Henan, People's Republic of China
| | - Wenming Zhang
- Department of Orthopedics Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Zhengzhou, 45000, Henan, People's Republic of China
| | - Junhui Li
- Department of Spine Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Zhengzhou, 45000, Henan, People's Republic of China
| |
Collapse
|
3
|
Tuffour A, Kosiba AA, Zhang Y, Peprah FA, Gu J, Shi H. Role of the calcium-sensing receptor (CaSR) in cancer metastasis to bone: Identifying a potential therapeutic target. Biochim Biophys Acta Rev Cancer 2021; 1875:188528. [PMID: 33640382 DOI: 10.1016/j.bbcan.2021.188528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/20/2022]
Abstract
Cancer is a major cause of morbidity and mortality worldwide due to its ability to evade immune surveillance and metastasize from its origin to a secondary point of contact. Though several treatment techniques have been developed to suppress or manage cancer spread, a strategy for total control over the disease continues to evade researchers. In considering ways to control or prevent cancer from metastasizing to the bone, we analyze the impact of the calcium-sensing receptor (CaSR), whose primary role is to maintain calcium (Ca2+) homeostasis in cellular and systemic physiological processes. CaSR is a pleiotropic receptor capable of enhancing the proliferation of some cancers such as breast, lung, prostate and kidney cancers at its primary site(s) and stimulating bone metastasis, while exerting a suppressive effect in others such as colon cancer. The activity of CaSR not only increases cancer cell proliferation, migration and suppression of apoptosis in the organs indicated, but also increases the secretion of parathyroid hormone-related protein (PTHrP) and epiregulin, which induce osteolytic activity and osteoblastic suppression. In addition, released cytokines and Ca2+ from bone resorption are critical factors that further promote cancer proliferation. In this review, we seek to highlight previous viewpoints on CaSR, discuss its role in a new context, and consider its potential clinical application in cancer treatment.
Collapse
Affiliation(s)
- Alex Tuffour
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | | | - Yao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Frank Addai Peprah
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
4
|
Liu S, Song A, Zhou X, Huo Z, Yao S, Yang B, Liu Y, Wang Y. ceRNA network development and tumour-infiltrating immune cell analysis of metastatic breast cancer to bone. J Bone Oncol 2020; 24:100304. [PMID: 32760644 PMCID: PMC7393400 DOI: 10.1016/j.jbo.2020.100304] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Advanced breast cancer commonly metastasises to bone; however, the molecular mechanisms underlying the affinity for breast cancer cells to bone remains unclear. Thus, we developed nomograms based on a competing endogenous RNA (ceRNA) network and analysed tumour-infiltrating immune cells to elucidate the molecular pathways that may predict prognosis in patients with breast cancer. METHODS We obtained the RNA expression profile of 1091 primary breast cancer samples included in The Cancer Genome Atlas database, 58 of which were from patients with bone metastasis. We analysed the differential RNA expression patterns between breast cancer with and without bone metastasis and developed a ceRNA network. Cibersort was employed to differentiate between immune cell types based on tumour transcripts. Nomograms were then established based on the ceRNA network and immune cell analysis. The value of prognostic factors was evaluated by Kaplan-Meier survival analysis and a Cox proportional risk model. RESULTS We found significant differences in long non-coding RNAs (lncRNAs), 18 microRNAs (miRNAs), and 20 messenger RNAs (mRNAs) between breast cancer with and without bone metastasis, which were used to construct a ceRNA network. We found that the protein-coding genes GJB3, CAMMV, PTPRZ1, and FBN3 were significantly differentially expressed by Kaplan-Meier analysis. We also observed significant differences in the abundance of plasma cell and follicular helper T cell populations between the two groups. In addition, the proportion of mast cells, gamma delta T cells, and plasma cells differed depending on disease location and stage. Our analysis showed that a high proportion of follicular helper T cells and a low proportion of eosinophils promoted survival and that DLX6-AS1, Wnt6, and GABBR2 expression may be associated with bone metastasis in breast cancer. CONCLUSIONS We developed a bioinformatic tool for exploring the molecular mechanisms of bone metastasis in patients with breast cancer and identified factors that may predict the occurrence of bone metastasis.
Collapse
Key Words
- AIC, Akaike information criterion
- AUC, Area under curve
- Bone metastasis
- Breast cancer
- DE, Differentially expressed
- DEmRNA, differentially expressed messenger RNA
- EMT, epithelial-mesenchymal transition
- ER, estrogen receptor
- FPKM, fragments per kilobase per million mapped reads
- GO, Gene ontology
- HER2, human epidermal growth factor receptor 2
- Immune infiltration
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- Nomogram
- PCC, Pearson correlation coefficient
- Prognosis
- ROC curve, receiver operating characteristic curve
- Runx2, runt related transcription factor 2
- TCGA, The Cancer Genome Atlas
- TNM, Tumor, Node, Metastases
- ceRNA network
- ceRNA, competing endogenous RNA
- lncRNA, long non-coding RNA
- mRNA, messenger RNA
- miRNA, microRNA
Collapse
Affiliation(s)
- Shuzhong Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - An Song
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xi Zhou
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhen Huo
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Siyuan Yao
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Yang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Corresponding authors at: Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing, Beijing 100730, China.
| | - Yong Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Corresponding authors at: Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing, Beijing 100730, China.
| | - Yipeng Wang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Corresponding authors at: Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan Wangfujing, Beijing 100730, China.
| |
Collapse
|
5
|
Identification of Alternatively-Activated Pathways between Primary Breast Cancer and Liver Metastatic Cancer Using Microarray Data. Genes (Basel) 2019; 10:genes10100753. [PMID: 31557971 PMCID: PMC6826985 DOI: 10.3390/genes10100753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Alternatively-activated pathways have been observed in biological experiments in cancer studies, but the concept had not been fully explored in computational cancer system biology. Therefore, an alternatively-activated pathway identification method was proposed and applied to primary breast cancer and breast cancer liver metastasis research using microarray data. Interestingly, the results show that cytokine-cytokine receptor interaction and calcium signaling were significantly enriched under both conditions. TGF beta signaling was found to be the hub in network topology analysis. In total, three types of alternatively-activated pathways were recognized. In the cytokine-cytokine receptor interaction pathway, four active alteration patterns in gene pairs were noticed. Thirteen cytokine-cytokine receptor pairs with inverse activity changes of both genes were verified by the literature. The second type was that some sub-pathways were active under only one condition. For the third type, nodes were significantly active in both conditions, but with different active genes. In the calcium signaling and TGF beta signaling pathways, node E2F5 and E2F4 were significantly active in primary breast cancer and metastasis, respectively. Overall, our study demonstrated the first time using microarray data to identify alternatively-activated pathways in breast cancer liver metastasis. The results showed that the proposed method was valid and effective, which could be helpful for future research for understanding the mechanism of breast cancer metastasis.
Collapse
|
6
|
Kono M, Fujii T, Matsuda N, Harano K, Chen H, Wathoo C, Joon AY, Tripathy D, Meric-Bernstam F, Ueno NT. Somatic mutations, clinicopathologic characteristics, and survival in patients with untreated breast cancer with bone-only and non-bone sites of first metastasis. J Cancer 2018; 9:3640-3646. [PMID: 30310523 PMCID: PMC6171013 DOI: 10.7150/jca.26825] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/07/2018] [Indexed: 02/01/2023] Open
Abstract
Background: Bone is the most common site of metastasis of breast cancer. Biological mechanisms of metastasis to bone may be different from mechanisms of metastasis to non-bone sites, and identification of distinct signaling pathways and somatic mutations may provide insights on biology and rational targets for treatment and prevention of bone metastasis. The aims of this study were to compare and contrast somatic mutations, clinicopathologic characteristics, and survival in breast cancer patients with bone-only versus non-bone sites of first metastasis. Methods: Primary tumor samples were collected before treatment from 389 patients with untreated primary breast cancer and distant metastasis at diagnosis. In each sample, 46 or 50 cancer-related genes were analyzed for mutations by AmpliSeq Ion Torrent next-generation sequencing. Fisher's exact test was used to identify somatic mutations associated with bone-only first metastasis. Logistic regression models were used to identify differences in detected somatic mutations, clinicopathologic characteristics, and survival between patients with bone-only first metastasis and patients with first metastasis in non-bone sites only (“other-only first metastasis”). Results: Among the 389 patients, 72 (18.5%) had bone-only first metastasis, 223 (57.3%) had other-only first metastasis, and 94 (24.2%) had first metastasis in both bone and non-bone sites. The most commonly mutated genes were TP53 (N=103), PIK3CA (N=79), AKT (N=13), and PTEN (N=2). Compared to patients with other-only first metastasis, patients with bone-only first metastasis had higher rates of hormone-receptor-positive disease, non-triple-negative subtype, and lower grade (grade 1 or 2; Nottingham grading system) (all three comparisons, p<0.001); had a lower ratio of cases of invasive ductal carcinoma to cases of invasive lobular carcinoma (p=0.002); and tended to have a higher 5-year overall survival (OS) rate (78.2% [95% confidence interval (CI), 68.6%-89.0%] vs 55.0% [95% CI, 48.1%-62.9%]; p=0.051). However, in the subgroup of patients with TP53 mutation and in the subgroup of patients with PIK3CA mutation, OS did not differ between patients with bone-only and other-only first metastasis (p=0.49 and p=0.68, respectively). In univariate analysis, the rate of TP53 mutation tended to be lower in patients with bone-only first metastasis than in those with other-only first metastasis (15.3% vs 29.1%; p=0.051). In multivariate analysis, TP53 mutation was not significantly associated with site of first metastasis (p=0.54) but was significantly associated with hormone-receptor-negative disease (p<0.001). Conclusions: We did not find associations between somatic mutations and bone-only first metastasis in patients with untreated breast cancer. Patients with bone-only first metastasis tend to have longer OS than patients with other-only first metastasis. More comprehensive molecular analysis may be needed to further understand the factors associated with bone-only metastatic disease in breast cancer.
Collapse
Affiliation(s)
- Miho Kono
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Takeo Fujii
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naoko Matsuda
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenichi Harano
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huiqin Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chetna Wathoo
- Sheikh Khalifa Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aron Y Joon
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Funda Meric-Bernstam
- Sheikh Khalifa Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Investigational Cancer Therapeutics (Phase I Trials Department), The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Schunkert EM, Zhao W, Zänker K. Breast Cancer Recurrence Risk Assessment: Is Non-Invasive Monitoring an Option? Biomed Hub 2018; 3:1-17. [PMID: 31988964 PMCID: PMC6945973 DOI: 10.1159/000492929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Metastatic breast cancer (MBC) represents a life-threatening disease with a median survival time of 18-24 months that often can only be treated palliatively. The majority of women suffering from MBC are those who had been previously diagnosed with locally advanced disease and subsequently experienced cancer recurrence in the form of metastasis. However, according to guidelines, no systemic follow-up for monitoring purposes is recommended for these women. The purpose of this article is to review current methods of recurrent risk assessment as well as non-invasive monitoring options for women at risk for distant disease relapse and metastasis formation. METHODS We used PubMed and national guidelines, such as the National Comprehensive Cancer Network (NCCN), to find recently published studies on breast cancer recurrence risk assessment and systemic monitoring of breast cancer patients through non-invasive means. RESULTS The options for recurrence risk assessment of locally invasive breast cancer has improved due to diverse genetic tests, such as Oncotype DX, MammaPrint, the PAM50 (now known as the "Prosigna Test") assay, EndoPredict (EP), and the Breast Cancer Index (BCI), which evaluate a women's risk of relapse according to certain cancer-gene expression patterns. Different promising non-invasive urinary protein-based biomarkers with metastasis surveillance potential that have been identified are MMP-2, MMP-9, NGAL, and ADAM12. In particular, ααCTX, ββCTX, and NTX could help to monitor bone metastasis. CONCLUSION In times of improved recurrence risk assessment of women with breast cancer, non-invasive biomarkers are urgently needed as potential monitoring options for women who have an increased risk of recurrence. Urine as a bioliquid of choice provides several advantages - it is non-invasive, can be obtained easily and frequently, and is economical. Promising biomarkers that could help to follow up women with increased recurrence risk have been identified. In order for them to be implemented in clinical usage and national guideline recommendations, further validation in larger independent cohorts will be needed.
Collapse
Affiliation(s)
- Elisa M. Schunkert
- Institute of Immunology, Faculty of Health Science, Department of Medicine and School of Life Sciences (ZBAF), University of Witten-Herdecke, Witten, Germany
| | - Wanzhou Zhao
- Nanjing Han and Zaenker Cancer Institute, Nanjing, China
| | - Kurt Zänker
- Institute of Immunology, Faculty of Health Science, Department of Medicine and School of Life Sciences (ZBAF), University of Witten-Herdecke, Witten, Germany
| |
Collapse
|
8
|
Emerging and Established Models of Bone Metastasis. Cancers (Basel) 2018; 10:cancers10060176. [PMID: 29865211 PMCID: PMC6024970 DOI: 10.3390/cancers10060176] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the leading cause of cancer-related death and drives patient morbidity as well as healthcare costs. Bone is the primary site of metastasis for several cancers—breast and prostate cancers in particular. Efforts to treat bone metastases have been stymied by a lack of models to study the progression, cellular players, and signaling pathways driving bone metastasis. In this review, we examine newly described and classic models of bone metastasis. Through the use of current in vivo, microfluidic, and in silico computational bone metastasis models we may eventually understand how cells escape the primary tumor and how these circulating tumor cells then home to and colonize the bone marrow. Further, future models may uncover how cells enter and then escape dormancy to develop into overt metastases. Recreating the metastatic process will lead to the discovery of therapeutic targets for disrupting and treating bone metastasis.
Collapse
|