1
|
Lan YZ, Wu Z, Chen WJ, Yu XN, Wu HT, Liu J. Sine oculis homeobox homolog family function in gastrointestinal cancer: Progression and comprehensive analysis. World J Clin Oncol 2025; 16:97163. [PMID: 39867730 PMCID: PMC11528897 DOI: 10.5306/wjco.v16.i1.97163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/20/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024] Open
Abstract
The sine oculis homeobox homolog (SIX) family, a group of transcription factors characterized by a conserved DNA-binding homology domain, plays a critical role in orchestrating embryonic development and organogenesis across various organisms, including humans. Comprising six distinct members, from SIX1 to SIX6, each member contributes uniquely to the development and differentiation of diverse tissues and organs, underscoring the versatility of the SIX family. Dysregulation or mutations in SIX genes have been implicated in a spectrum of developmental disorders, as well as in tumor initiation and progression, highlighting their pivotal role in maintaining normal developmental trajectories and cellular functions. Efforts to target the transcriptional complex of the SIX gene family have emerged as a promising strategy to inhibit tumor development. While the development of inhibitors targeting this gene family is still in its early stages, the significant potential of such interventions holds promise for future therapeutic advances. Therefore, this review aimed to comprehensively explore the advancements in understanding the SIX family within gastrointestinal cancers, focusing on its critical role in normal organ development and its implications in gastrointestinal cancers, including gastric, pancreatic, colorectal cancer, and hepatocellular carcinomas. In conclusion, this review deepened the understanding of the functional roles of the SIX family and explored the potential of utilizing this gene family for the diagnosis, prognosis, and treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Yang-Zheng Lan
- Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Jia Chen
- Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Xin-Ning Yu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Department of The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
2
|
Bian Z, Benjamin MM, Bialousow L, Tian Y, Hobbs GA, Karan D, Choo YM, Hamann MT, Wang X. Targeting sine oculis homeoprotein 1 (SIX1): A review of oncogenic roles and potential natural product therapeutics. Heliyon 2024; 10:e33204. [PMID: 39022099 PMCID: PMC11252760 DOI: 10.1016/j.heliyon.2024.e33204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Sine oculis homeoprotein 1 (SIX1), a prominent representative of the homeodomain transcription factors within the SIX family, has attracted significant interest owing to its role in tumorigenesis, cancer progression, and prognostic assessments. Initially recognized for its pivotal role in embryonic development, SIX1 has emerged as a resurgent factor across a diverse set of mammalian cancers. Over the past two decades, numerous investigations have emphasized SIX1's dual significance as a developmental regulator and central player in oncogenic processes. A mounting body of evidence links SIX1 to the initiation of diverse cancers, encompassing enhanced cellular metabolism and advancement. This review provides an overview of the multifaceted roles of SIX1 in both normal development and oncogenic processes, emphasizing its importance as a possible therapeutic target and prognostic marker. Additionally, this review discusses the natural product agents that inhibit various pro-oncogenic mechanisms associated with SIX1.
Collapse
Affiliation(s)
- Zhiwei Bian
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Menny M. Benjamin
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Lucas Bialousow
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Yintai Tian
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - G. Aaron Hobbs
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Dev Karan
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yeun-Mun Choo
- Chemistry Department, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mark T. Hamann
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaojuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| |
Collapse
|
3
|
Rafiq A, Aashaq S, Jan I, Ali M, Rakshan R, Bashir A, Haq E, Beigh MA. GSK3β phosphorylates Six1 transcription factor and regulates its APC/C Cdh1 mediated proteosomal degradation. Cell Signal 2024; 115:111030. [PMID: 38163577 DOI: 10.1016/j.cellsig.2023.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Sine oculis homeobox homolog 1 (Six1) is a developmentally important transcription factor that regulates cellular proliferation, apoptosis, and dissemination during embryogenesis. Six1 overexpression as reported in multiple cancers modulates expression of a repertoire of its target genes causing an increase in proliferation, metastasis and survival of cancer cells. Six1 exists as a cell cycle regulated nuclear phosphoprotein and its cellular turnover is regulated by APC/C (Anaphase promoting complex / Cyclosome) complex mediated proteolysis. However, the kinases that regulate Six1 proteolysis have not been identified and the mechanistic details that cause its overproduction in various cancers are lacking. Here, we report that Six1 is a physiological GSK3β substrate. GSK3β interacts with Six1 and phosphorylates it at Ser221 within the conserved consensus sequence in its carboxy terminus. Using pharmacological inhibition, siRNA mediated knockdown and protein overexpression of GSK3β; we show that GSK3β regulates Six1 protein stability. Pulse chase analysis of Six1 revealed that GSK3β regulates its ubiquitin proteolysis such that Six1 phosphomimicking mutant (Six1S221E) for Ser221 site had dramatically increased half-life than its phosphodeficient (Six1S221A) and wild type variants. Furthermore, we demonstrate that GSK3β rescues Six1 from APC dependent proteolysis by regulating its binding with APC/C co-activator protein Cdh1. Importantly, strong positive correlation exists between GSK3β and Six1 protein levels throughout the cell cycle and in multiple cancers indicating that GSK3β activation may in part contribute to Six1 overproduction in a subset of human cancers.
Collapse
Affiliation(s)
- Asma Rafiq
- Department of Nanotechnology, School of Biological Sciences, University of Kashmir-, Srinagar 190006, India
| | - Sabreena Aashaq
- Department of Nanotechnology, School of Biological Sciences, University of Kashmir-, Srinagar 190006, India; Department of Immunology and Molecular Medicine, SKIMS, Srinagar 190011, India
| | - Iqra Jan
- Department of Nanotechnology, School of Biological Sciences, University of Kashmir-, Srinagar 190006, India
| | - Mahvish Ali
- Department of Nanotechnology, School of Biological Sciences, University of Kashmir-, Srinagar 190006, India
| | - Rabia Rakshan
- Department of Nanotechnology, School of Biological Sciences, University of Kashmir-, Srinagar 190006, India
| | - Asma Bashir
- Faculty of Biology, Fatima College of Health Sciences, Al-Raqaib 2, Ajman 3798, United Arab Emirates
| | - Ehtishamul Haq
- Department of Biotechnology, School of Biological Sciences, University of Kashmir-, Srinagar 190006, India
| | - Mushtaq A Beigh
- Department of Nanotechnology, School of Biological Sciences, University of Kashmir-, Srinagar 190006, India.
| |
Collapse
|
4
|
Guitart-Mampel M, Urquiza P, Carnevale Neto F, Anderson JR, Hambardikar V, Scoma ER, Merrihew GE, Wang L, MacCoss MJ, Raftery D, Peffers MJ, Solesio ME. Mitochondrial Inorganic Polyphosphate (polyP) Is a Potent Regulator of Mammalian Bioenergetics in SH-SY5Y Cells: A Proteomics and Metabolomics Study. Front Cell Dev Biol 2022; 10:833127. [PMID: 35252194 PMCID: PMC8892102 DOI: 10.3389/fcell.2022.833127] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 01/04/2023] Open
Abstract
Inorganic polyphosphate (polyP) is an ancient, ubiquitous, and well-conserved polymer which is present in all the studied organisms. It is formed by individual subunits of orthophosphate which are linked by structurally similar bonds and isoenergetic to those found in ATP. While the metabolism and the physiological roles of polyP have already been described in some organisms, including bacteria and yeast, the exact role of this polymer in mammalian physiology still remains poorly understood. In these organisms, polyP shows a co-localization with mitochondria, and its role as a key regulator of the stress responses, including the maintenance of appropriate bioenergetics, has already been demonstrated by our group and others. Here, using Wild-type (Wt) and MitoPPX (cells enzymatically depleted of mitochondrial polyP) SH-SY5Y cells, we have conducted a comprehensive study of the status of cellular physiology, using proteomics and metabolomics approaches. Our results suggest a clear dysregulation of mitochondrial physiology, especially of bioenergetics, in MitoPPX cells when compared with Wt cells. Moreover, the effects induced by the enzymatic depletion of polyP are similar to those present in the mitochondrial dysfunction that is observed in neurodegenerative disorders and in neuronal aging. Based on our findings, the metabolism of mitochondrial polyP could be a valid and innovative pharmacological target in these conditions.
Collapse
Affiliation(s)
| | - Pedro Urquiza
- Department of Biology, Rutgers University, Camden, NJ, United States
| | - Fausto Carnevale Neto
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States
| | - James R. Anderson
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Vedangi Hambardikar
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Ernest R. Scoma
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, United States
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Mandy J. Peffers
- Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Maria E. Solesio
- Department of Biology, Rutgers University, Camden, NJ, United States
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| |
Collapse
|
5
|
Rafiq A, Aashaq S, Jan I, Beigh MA. SIX1 transcription factor: A review of cellular functions and regulatory dynamics. Int J Biol Macromol 2021; 193:1151-1164. [PMID: 34742853 DOI: 10.1016/j.ijbiomac.2021.10.133] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Sine Oculis Homeobox 1 (SIX1) is a member of homeobox transcription factor family having pivotal roles in organismal development and differentiation. This protein functionally acts to regulate the expression of different proteins that are involved in organ development during embryogenesis and in disorders like cancer. Aberrant expression of this homeoprotein has therefore been reported in multiple pathological complexities like hearing impairment and renal anomalies during development and tumorigenesis in adult life. Most of the cellular effects mediated by it are mostly due to its role as a transcription factor. This review presents a concise narrative of its structure, interaction partners and cellular functions vis a vis its role in cancer. We thoroughly discuss the reported molecular mechanisms that govern its function in cellular milieu. Its post-translational regulation by phosphorylation and ubiquitination are also discussed with an emphasis on yet to be explored mechanistic insights regulating its molecular dynamics to fully comprehend its role in development and disease.
Collapse
Affiliation(s)
- Asma Rafiq
- Department of Nanotechnology, University of Kashmir, Hazratbal Campus, Srinagar JK-190006, India
| | - Sabreena Aashaq
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar JK-190011, India
| | - Iqra Jan
- Department of Nanotechnology, University of Kashmir, Hazratbal Campus, Srinagar JK-190006, India
| | - Mushtaq A Beigh
- Department of Nanotechnology, University of Kashmir, Hazratbal Campus, Srinagar JK-190006, India.
| |
Collapse
|
6
|
Zhu G, Liu Y, Zhao L, Lin Z, Piao Y. The Significance of SIX1 as a Prognostic Biomarker for Survival Outcome in Various Cancer Patients: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:622331. [PMID: 34745930 PMCID: PMC8567106 DOI: 10.3389/fonc.2021.622331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Sine Oculis Homeobox Homolog 1 (SIX1) is reported to promote cancer initiation and progression in many preclinical models and is demonstrated in human cancer tissues. However, the correlation between SIX1 and cancer patients’ prognosis has not yet been systematically evaluated. Therefore, we performed a systematic review and meta-analysis in various human cancer types and extracted some data from TCGA datasets for further verification and perfection. We constructed 27 studies and estimated the association between SIX1 expression in various cancer patients’ overall survival and verified with TCGA datasets. Twenty-seven studies with 4899 patients are include in the analysis of overall, and disease-free survival, most of them were retrospective. The pooled hazard ratios (HRs) for overall and disease-free survival in high SIX1 expression patients were 1.54 (95% CI: 1.32-1.80, P<0.00001) and 1.83 (95% CI: 1.31-2.55, P=0.0004) respectively. On subgroup analysis classified in cancer type, high SIX1 expression was associated with poor overall survival in patients with hepatocellular carcinoma (HR 1.50; 95% CI: 1.17-1.93, P =0.001), breast cancer (HR 1.31; 95% CI: 1.10-1.55, P =0.002) and esophageal squamous cell carcinoma (HR 1.89; 95% CI: 1.42-2.52, P<0.0001). Next, we utilized TCGA online datasets, and the consistent results were verified in various cancer types. SIX1 expression indicated its potential to serve as a cancer biomarker and deliver prognostic information in various cancer patients. More works still need to improve the understandings of SIX1 expression and prognosis in different cancer types.
Collapse
Affiliation(s)
- Guang Zhu
- Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Tumor Research Center, Medical School of Yanbian University, Key Laboratory of Pathobiology of High Frequency Oncology in Ethnic Minority Areas (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Ying Liu
- Tumor Research Center, Medical School of Yanbian University, Key Laboratory of Pathobiology of High Frequency Oncology in Ethnic Minority Areas (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Lei Zhao
- Tumor Research Center, Medical School of Yanbian University, Key Laboratory of Pathobiology of High Frequency Oncology in Ethnic Minority Areas (Yanbian University), State Ethnic Affairs Commission, Yanji, China
| | - Zhenhua Lin
- Tumor Research Center, Medical School of Yanbian University, Key Laboratory of Pathobiology of High Frequency Oncology in Ethnic Minority Areas (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Science and Technology Department of Jilin Province, Key Laboratory of Changbai Mountain Natural Medicine of Ministry of Education, Yanbian University, Yanji, China
| | - Yingshi Piao
- Tumor Research Center, Medical School of Yanbian University, Key Laboratory of Pathobiology of High Frequency Oncology in Ethnic Minority Areas (Yanbian University), State Ethnic Affairs Commission, Yanji, China.,Key Laboratory of Science and Technology Department of Jilin Province, Key Laboratory of Changbai Mountain Natural Medicine of Ministry of Education, Yanbian University, Yanji, China
| |
Collapse
|
7
|
Wang W, Yang Z, Li M, Wang Z, Shan Y, Qu Z. Six1 Promotes Epithelial-Mesenchymal Transition in Bronchial Epithelial Cells via the TGFβ1/Smad Signalling Pathway. Int Arch Allergy Immunol 2021; 182:479-488. [PMID: 33631753 DOI: 10.1159/000512873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/09/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The homeodomain transcription factor sine oculis homeobox homolog 1 (Six1) plays a crucial role in embryogenesis and is not expressed in normal adult tissue but is expressed in many pathological processes, including airway remodelling in asthma. The current study aimed to reveal the effects of Six1 in regulating the airway remodelling and its possible mechanism. METHODS A mouse model of ovalbumin-induced asthma-associated airway wall remodelling and a bronchial epithelial cell (16HBE) model of transforming growth factor β1 (TGFβ1)-induced epithelial-mesenchymal transition (EMT) were used to investigate the role of Six1. Then, 16HBE cells were transformed with Six1 expression vectors and treated with a TGFβ1 pathway inhibitor to determine the role of Six1 in EMT. The effect of Six1 and its possible mechanism were assessed by immunohistochemistry, RT-PCR, and Western blot. RESULTS Six1 expression was elevated in the lungs in an OVA mouse model of allergic asthma and in 16HBE cells treated with TGFβ1. Six1 overexpression promoted an EMT-like phenotype with a decreased protein expression of E-cadherin and increased protein expression of α-smooth muscle actin (α-SMA) as well as fibronectin in 16HBE cells; these effects appeared to promote TGFβ1 and phospho-Smad2 (pSmad2) production, which are the main products of the TGFβ1/Smad signalling pathway, which could be reduced by a TGFβ1 inhibitor. CONCLUSION These data reveal that Six1 and TGFβ1 are potentially a part of an autocrine feedback loop that induces EMT, and these factors can be reduced by blocking the TGFβ1/Smad signalling pathway. As such, these factors may represent a promising novel therapeutic target for airway remodelling in asthma.
Collapse
Affiliation(s)
- Wenxin Wang
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhaochuan Yang
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meixiang Li
- Department of Pediatrics, Municipal Hospital of Heze, Heze, China
| | - Zhenhong Wang
- Education and Training Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanchun Shan
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhenghai Qu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China,
| |
Collapse
|
8
|
Liu X, Hu C. Novel Potential Therapeutic Target for E2F1 and Prognostic Factors of E2F1/2/3/5/7/8 in Human Gastric Cancer. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:824-838. [PMID: 32953933 PMCID: PMC7479313 DOI: 10.1016/j.omtm.2020.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/28/2020] [Indexed: 12/27/2022]
Abstract
E2F transcription factors (E2Fs) were found to be related with cell activities and disease progression among a variety of different tumors, including regulating cell division and cell proliferation. In the analysis, it aimed to focus on transcriptional and survival information of E2Fs in gastric cancer (GC) from Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier plotter, cBioPortal, Database for Annotation, Visualization and Integrated Discovery (DAVID), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Oncomine databases. It was found that the expression of E2F1/2/3/5/7/8 in GC tissues was obviously higher than the normal. Of interest, none of the E2Fs was related with pathological stages. Nevertheless, high expression of E2F2/3/5/7/8 was related with better survival data, except E2F6 regarding shorter first-progression (FP) survival. High expression levels of E2F2/5/7/8 have significant correlations with overall survival (OS) in patients with intestinal and diffuse GC, and this prognostic value is not affected by gender. Oppositely, the lower level of E2F1/4 illustrated superior survival data. Moreover, increased expression of E2F1 in GC tissues might play an important role in the development of GC. Collectively, E2F1 could be a potential therapeutic target for patients with GC. E2F1/2/3/5/7/8 might be original prognostic predictors of GC.
Collapse
Affiliation(s)
- Xuhong Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
9
|
Fan Q, Jian Y. MiR-203a-3p regulates TGF-β1-induced epithelial-mesenchymal transition (EMT) in asthma by regulating Smad3 pathway through SIX1. Biosci Rep 2020; 40:BSR20192645. [PMID: 32065213 PMCID: PMC7048677 DOI: 10.1042/bsr20192645] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 12/27/2022] Open
Abstract
Asthma is a common chronic airway disease with increasing prevalence. MicroRNAs act as vital regulators in cell progressions and have been identified to play crucial roles in asthma. The objective of the present study is to clarify the molecular mechanism of miR-203a-3p in the development of asthma. The expression of miR-203a-3p and Sine oculis homeobox homolog 1 (SIX1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of SIX1, fibronectin, E-cadherin, vimentin, phosphorylated-drosophila mothers against decapentaplegic 3 (p-Smad3) and Smad3 were measured by Western blot. The interaction between miR-203a-3p and SIX1 was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. MiR-203a-3p was down-regulated and SIX1 was up-regulated in asthma serums, respectively. Transforming growth factor-β1 (TGF-β1) treatment induced the reduction of miR-203a-3p and the enhancement of SIX1 in BEAS-2B and 16HBE cells in a time-dependent manner. Subsequently, functional experiments showed the promotion of epithelial-mesenchymal transition (EMT) induced by TGF-β1 treatment could be reversed by miR-203a-3p re-expression or SIX1 deletion in BEAS-2B and 16HBE cells. SIX1 was identified as a target of miR-203a-3p and negatively regulated by miR-203a-3p. Then rescue assay indicated that overexpressed miR-203a-3p ameliorated TGF-β1 induced EMT by regulating SIX1 in BEAS-2B and 16HBE cells. Moreover, miR-203a-3p/SIX1 axis regulated TGF-β1 mediated EMT process in bronchial epithelial cells through phosphorylating Smad3. These results demonstrated that MiR-203a-3p modulated TGF-β1-induced EMT in asthma by regulating Smad3 pathway through targeting SIX1.
Collapse
Affiliation(s)
- Qi Fan
- Department of Emergency Medicine, Jingzhou Central Hospital, Jingzhou, Hubei, China
| | - Yu Jian
- Department of Emergency Medicine, Jingzhou Central Hospital, Jingzhou, Hubei, China
| |
Collapse
|
10
|
Yang Z, Qu Z, Yi M, Lv Z, Wang Y, Shan Y, Ran N, Liu X. MiR-204-5p Inhibits Transforming Growth Factor-β1-Induced Proliferation and Extracellular Matrix Production of Airway Smooth Muscle Cells by Regulating Six1 in Asthma. Int Arch Allergy Immunol 2020; 181:239-248. [PMID: 31955160 DOI: 10.1159/000505064] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/27/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Transforming growth factor-β1 (TGF-β1)-in-duced proliferation of airway smooth muscle cells plays critical roles in the development of airway remodeling. Six1 (sine oculis homeobox homolog 1) has been demonstrated to be involved in airway inflammation and remodeling in asthmatic mice. OBJECTIVES The aim of this work was to investigate the potential role of miR-204-5p in the proliferation and extracellular matrix (ECM) production of airway smooth muscle cells in asthma. METHODS Real-time PCR was used to measure the expression of miR-204-5p in asthmatic airway smooth muscle cells. Cell viability and apoptosis were detected to evaluate the effect of miR-204-5p on airway smooth muscle cells. Dual-luciferase reporter experiments were applied to identify the target genes of miR-204-5p. RESULTS MiR-204-5p was downregulated notably in asthmatic airway smooth muscle cells as well as cells stimulated with TGF-β1. Overexpression of miR-204-5p markedly suppressed the TGF-β1-induced proliferation of airway smooth muscle cells and the deposition of ECM, whereas the inhibition of miR-204-5p significantly enhanced the proliferation of airway smooth muscle cells and upregulated the level of fibronectin and collagen III. Furthermore, subsequent analyses demonstrated that Six1 was a direct target of miR-204-5p, and Western blot further indicated that miR-204-5p negatively regulated the expression of Six1. Most importantly, the restoration of Six1 expression reversed the inhibitory effect of miR-204-5p on TGF-β1-induced proliferation and ECM production. CONCLUSIONS MiR-204-5p inhibits TGF-β1-in-duced proliferation and ECM production of airway smooth muscle cells by regulating Six1, identifying a potential therapeutic target for preventing airway remodeling in asthma.
Collapse
Affiliation(s)
- Zhaochuan Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.,Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhenghai Qu
- Center of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingji Yi
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhidong Lv
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanxia Wang
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanchun Shan
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ni Ran
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinjie Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China,
| |
Collapse
|
11
|
Yang X, Zhu X, Yan Z, Li C, Zhao H, Ma L, Zhang D, Liu J, Liu Z, Du N, Ye Q, Xu X. miR-489-3p/SIX1 Axis Regulates Melanoma Proliferation and Glycolytic Potential. MOLECULAR THERAPY-ONCOLYTICS 2019; 16:30-40. [PMID: 32258386 PMCID: PMC7109510 DOI: 10.1016/j.omto.2019.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022]
Abstract
Sine oculis homeobox 1 (SIX1), a key transcription factor for regulating aerobic glycolysis, participates in the occurrence of various cancer types. However, the role of SIX1 in melanoma and the upstream regulating mechanisms of SIX1 remain to be further investigated. MicroRNAs (miRNAs) have emerged as key regulators in tumorigenesis and progression. Here, we show that miR-489-3p suppresses SIX1 expression by directly targeting its 3′ untranslated region (3′ UTR) in melanoma cells. miR-489-3p suppressed melanoma cell proliferation, migration, and invasion through inhibition of SIX1. Mechanistically, by targeting SIX1, miR-489-3p dampens glycolysis, with decreased glucose uptake, lactate production, ATP generation, and extracellular acidification rate (ECAR), as well as an increased oxygen consumption rate (OCR). Importantly, glycolysis regulated by the miR-489-3p/SIX1 axis is critical for its regulation of melanoma growth and metastasis both in vitro and in vivo. In melanoma patients, miR-489-3p expression is negatively correlated with SIX1 expression. In addition, patients who had increased glucose uptake in tumors and with metastasis assessed by positron emission tomography (PET) scans showed decreased miR-489-3p expression and increased expression of SIX1. Collectively, our study demonstrates the importance of the miR-489-3p/SIX1 axis in melanoma, which can be a potential and a promising therapeutic target in melanoma.
Collapse
Affiliation(s)
- Xuhui Yang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, No. 27 Taiping Road, Beijing 100850, China.,Department of Oncology, the 4th Medical Centre, PLA General Hospital, No. 51 Fucheng Road, Beijing 100191, China
| | - Xiang Zhu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, No. 27 Taiping Road, Beijing 100850, China
| | - Zhifeng Yan
- Department of Oncology, the 4th Medical Centre, PLA General Hospital, No. 51 Fucheng Road, Beijing 100191, China
| | - Chenxi Li
- Department of Oncology, the 4th Medical Centre, PLA General Hospital, No. 51 Fucheng Road, Beijing 100191, China
| | - Hui Zhao
- Department of Oncology, the 4th Medical Centre, PLA General Hospital, No. 51 Fucheng Road, Beijing 100191, China
| | - Luyuan Ma
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, No. 27 Taiping Road, Beijing 100850, China
| | - Deyu Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, No. 27 Taiping Road, Beijing 100850, China
| | - Juan Liu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, No. 27 Taiping Road, Beijing 100850, China
| | - Zihao Liu
- Department of Oncology, the 4th Medical Centre, PLA General Hospital, No. 51 Fucheng Road, Beijing 100191, China
| | - Nan Du
- Department of Oncology, the 4th Medical Centre, PLA General Hospital, No. 51 Fucheng Road, Beijing 100191, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, No. 27 Taiping Road, Beijing 100850, China.,The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province 450052, China
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, No. 27 Taiping Road, Beijing 100850, China
| |
Collapse
|
12
|
Wang F, Song X, Ma S, Liu C, Sun X, Wang X, Liu Z, Liang D, Yu Z. The treatment role of Cyperus rotundus L. to triple-negative breast cancer cells. Biosci Rep 2019; 39:BSR20190502. [PMID: 31123166 PMCID: PMC6554218 DOI: 10.1042/bsr20190502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/23/2019] [Accepted: 05/20/2019] [Indexed: 12/31/2022] Open
Abstract
Cyperus rotundus L. is widely used in Traditional Chinese Medicine and studies have reported its anticancer effect, but its chemical composition and therapy mechanism remains unknown. This research aims to analyze the chemical components of the ethanol extract of Cyperus rotundus L. (EECR), detect its treatment effects on human Triple-negative breast cancer (TNBC) cells, and elucidate possible therapy mechanisms. The chemical components of EECR were detected by the Waters UPLC combined with Bruker Q-TOF mass spectrometer (UPLC-Q-TOF-MS). The phytochemical compounds were identified by comparing the mass fragmentations of each metabolite with databases such as METLIN, HMDB, and NCBI. A total of 21 compounds were identified in EECR. MDA-MB-231 and MDA-MB-468 cells were treated with various concentrations of EECR. Cell proliferation was examined using Cell Counting Kit-8 (CCK-8) and colony formation assays. Cell apoptosis and cell cycle were detected by flow cytometry. Apoptosis- and autophagy-related protein expression was detected by Western blot. EECR inhibits the proliferation of TNBC cells (MDA-MB-231 and MDA-MB-468) in a dose-dependent manner, which may be related to the arrest of cell cycle in G0/G1 phase. It induces apoptosis by promoting the expression of BAX and inhibiting the expression of BCL-2. In addition, autophagy inhibitor 3-Methyladenine (3-MA) inhibited TNBC cells pro-survival autophagy and increased the sensitivity of EECR. The present results demonstrated that EECR has potential effects on inhibits the proliferation and induction apoptosis in TNBC.
Collapse
Affiliation(s)
- Fukai Wang
- Department of Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong 250017, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Xiang Song
- Department of Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong 250017, China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250017, China
| | - Shuangshuang Ma
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Chenyu Liu
- Department of Physiology, Georgetown University School of Medicine, Washington, DC 20057, U.S.A
| | - Xiaohui Sun
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
- Department of Breast Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Xinzhao Wang
- Department of Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong 250017, China
| | - Zhaoyun Liu
- Department of Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong 250017, China
| | - Dong Liang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
- Department of Breast Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Zhiyong Yu
- Department of Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong 250017, China
| |
Collapse
|
13
|
Kingsbury TJ, Kim M, Civin CI. Regulation of cancer stem cell properties by SIX1, a member of the PAX-SIX-EYA-DACH network. Adv Cancer Res 2019; 141:1-42. [PMID: 30691681 DOI: 10.1016/bs.acr.2018.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The PAX-SIX-EYA-DACH network (PSEDN) is a central developmental transcriptional regulatory network from Drosophila to humans. The PSEDN is comprised of four conserved protein families; including paired box (PAX), sine oculis (SIX), eyes absent (EYA), and dachshund (DACH). Aberrant expression of PSEDN members, particularly SIX1, has been observed in multiple human cancers, where SIX1 expression correlates with increased aggressiveness and poor prognosis. In conjunction with its transcriptional activator EYA, the SIX1 transcription factor increases cancer stem cell (CSC) numbers and induces epithelial-mesenchymal transition (EMT). SIX1 promotes multiple hallmarks and enabling characteristics of cancer via regulation of cell proliferation, senescence, apoptosis, genome stability, and energy metabolism. SIX1 also influences the tumor microenvironment, enhancing recruitment of tumor-associated macrophages and stimulating angiogenesis, to promote tumor development and progression. EYA proteins are multifunctional, possessing a transcriptional activation domain and tyrosine phosphatase activity, that each contributes to cancer stem cell properties. DACH proteins function as tumor suppressors in solid cancers, opposing the actions of SIX-EYA and reducing CSC prevalence. Multiple mechanisms can lead to increased SIX1 expression, including loss of SIX1-targeting tumor suppressor microRNAs (miRs), whose expression correlates inversely with SIX1 expression in cancer patient samples. In this review, we discuss the major mechanisms by which SIX1 confers CSC and EMT features and other important cancer cell characteristics. The roles of EYA and DACH in CSCs and cancer progression are briefly highlighted. Finally, we summarize the clinical significance of SIX1 in cancer to emphasize the potential therapeutic benefits of effective strategies to disrupt PSEDN protein interactions and functions.
Collapse
|
14
|
Xie Y, Jin P, Sun X, Jiao T, Zhang Y, Li Y, Sun M. SIX1 is upregulated in gastric cancer and regulates proliferation and invasion by targeting the ERK pathway and promoting epithelial-mesenchymal transition. Cell Biochem Funct 2018; 36:413-419. [PMID: 30379332 DOI: 10.1002/cbf.3361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/29/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
Sine oculis homeobox homologue 1 (SIX1) is a Six class homeobox gene conserved throughout many species. It has been reported to act as an oncogene and is overexpressed in many cancers. However, the function and regulatory mechanism of SIX1 in gastric cancer (GC) remains unclear. In our study, we detected protein levels of SIX1 via immunohistochemistry (IHC) and its proliferation and invasion effects via CCK8 and transwell assays. Additionally, expression of cyclin D1, MMP2, p-ERK, and EMT-related proteins was measured by western blotting. We found that SIX1 had significantly higher expression in GC tissues and that it could promote GC cell proliferation and invasion. Also, overexpression of SIX1 increased the expression of cyclin D1, MMP2, p-ERK, and EMT-related proteins, which could all be inhibited by knocking down SIX1. In conclusion, SIX1 is upregulated in GC tissues. It can promote GC cell proliferation by targeting cyclin D1, invasion via ERK signalling, and EMT pathways by targeting MMP2 and E-cadherin. SIGNIFICANCE OF THE STUDY: Our study showed that SIX1 was upregulated in GC tissues, and promoted GC cell proliferation by targeting cyclin D1, invasion via ERK signalling, and EMT pathways by targeting MMP2 and E-cadherin. These results suggested the potential regulatory mechanism of SIX1 in proliferation and invasion of gastric cancer.
Collapse
Affiliation(s)
- Ying Xie
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Peng Jin
- Department of the Third Urology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xuren Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Taiwei Jiao
- Department of Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yining Zhang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yue Li
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Mingjun Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
15
|
Sun Y, Zhou P, Chen S, Hu C, Bai Q, Wu H, Chen Y, Zhou P, Zeng X, Liu Z, Chen L. The JAK/STAT3 signaling pathway mediates inhibition of host cell apoptosis by Chlamydia psittaci infection. Pathog Dis 2018; 75:4062151. [PMID: 28981630 DOI: 10.1093/femspd/ftx088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The JAK-STAT3 signaling pathway is a key regulator of cell growth, motility, migration, invasion and apoptosis in mammalian cells. Infection with intracellular pathogens of the genus Chlamydia can inhibit host cell apoptosis, and here we asked whether the JAK-STAT3 pathway participates in chlamydial anti-apoptotic activity. We found that, compared with uninfected cells, levels of JAK1 and STAT3 mRNA as well as total and phosphorylated JAK1 and STAT3 protein, were significantly increased in C. psittaci-infected HeLa cells. Moreover, the apoptosis rate of infected cells was higher after treatment with the tyrosine kinase inhibitor AG-490 (2-cyano-3-(3, 4-dihydroxyphenyl)-N-(phenylmethyl)-2-propenamide). Immunoblotting of apoptosis-related proteins showed that C. psittaci infection reduces Bax, but increases Bcl-2, protein levels, resulting in reduced activation of caspase-3, caspase-7, caspase-9 and PARP; AG490 attenuates these effects. Together, our data suggest that the JAK/STAT3 signaling pathway facilitates the anti-apoptotic effect of C. psittaci infection by reducing the Bax/Bcl-2 apoptotic switch ratio, and by inhibiting the intracellular activation of key pro-apoptotic enzymes.
Collapse
Affiliation(s)
- Yuanbin Sun
- College of Public Health, University of South China, 28 West Changsheng Rd., Hengyang, Hunan 421001, China
| | - Peng Zhou
- College of Public Health, University of South China, 28 West Changsheng Rd., Hengyang, Hunan 421001, China
| | - Shenghua Chen
- Medical college, University of South China, 28 West Changsheng Rd., Hengyang, Hunan 421001, China
| | - Chunsheng Hu
- Outpatient Department, Hunan Provincial Center for Disease Control and Provention, Changsha 421000, China
| | - Qinqin Bai
- College of Public Health, University of South China, 28 West Changsheng Rd., Hengyang, Hunan 421001, China
| | - Haiying Wu
- The second Affiliated Hospital, University of South China, 28 West Changsheng Rd., Hengyang, Hunan 421001, China
| | - Yuyu Chen
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 421000, China
| | - Pufan Zhou
- College of Public Health, University of South China, 28 West Changsheng Rd., Hengyang, Hunan 421001, China
| | - Xindian Zeng
- College of Public Health, University of South China, 28 West Changsheng Rd., Hengyang, Hunan 421001, China
| | - Ziqing Liu
- College of Public Health, University of South China, 28 West Changsheng Rd., Hengyang, Hunan 421001, China
| | - Lili Chen
- College of Public Health, University of South China, 28 West Changsheng Rd., Hengyang, Hunan 421001, China
| |
Collapse
|
16
|
Yang ZC, Qu ZH, Yi MJ, Shan YC, Ran N, Xu L, Liu XJ. MiR-448-5p inhibits TGF-β1-induced epithelial-mesenchymal transition and pulmonary fibrosis by targeting Six1 in asthma. J Cell Physiol 2018; 234:8804-8814. [PMID: 30362537 DOI: 10.1002/jcp.27540] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/13/2018] [Indexed: 12/28/2022]
Abstract
MicroRNAs (miRNAs) are small yet versatile gene tuners that regulate a variety of cellular processes, including cell growth and proliferation. The aim of this study was to explore how miR-448-5p affects airway remodeling and transforming growth factor-β1 (TGF-β1)-stimulated epithelial-mesenchymal transition (EMT) by targeting Sine oculis homeobox homolog 1 (Six1) in asthma. Asthmatic mice models with airway remodeling were induced with ovalbumin solution. MiRNA expression was evaluated using quantitative real-time polymerase chain reaction. Transfection studies of bronchial epithelial cells were performed to determine the target genes. A luciferase reporter assay system was applied to identify whether Six1 is a target gene of miR-448-5p. In the current study, we found that miR-448-5p was dramatically decreased in lung tissues of asthmatic mice and TGF-β1-stimulated bronchial epithelial cells. In addition, the decreased level of miR-448-5p was closely associated with the increased expression of Six1. Overexpression of miR-448-5p decreased Six1 expression and, in turn, suppressed TGF-β1-mediated EMT and fibrosis. Next, we predicted that Six1 was a potential target gene of miR-448-5p and demonstrated that miR-448-5p could directly target Six1. An SiRNA targeting Six1 was sufficient to suppress TGF-β1-induced EMT and fibrosis in 16HBE cells. Furthermore, the overexpression of Six1 partially reversed the protective effect of miR-448-5p on TGF-β1-mediated EMT and fibrosis in bronchial epithelial cells. Taken together, the miR-448-5p/TGF-β1/Six1 link may play roles in the progression of EMT and pulmonary fibrosis in asthma.
Collapse
Affiliation(s)
- Zhao-Chuan Yang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.,Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zheng-Hai Qu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ming-Ji Yi
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan-Chun Shan
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ni Ran
- Department of Child Health Care, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Xu
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin-Jie Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
17
|
Zhang J, Liu L, Wang J, Ren B, Zhang L, Li W. Formononetin, an isoflavone from Astragalus membranaceus inhibits proliferation and metastasis of ovarian cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2018; 221:91-99. [PMID: 29660466 DOI: 10.1016/j.jep.2018.04.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus membranaceus which was originally described in the Shennong's Classic of Materia Medica, the earliest complete Pharmacopoeia of China written from the Warring States Period to Han Dynasty, has been widely used in Chinese medicine for > 2000 years, especially in the prescription of curing cancer. A. membranaceus has various bioactivities, such as anti-tumor, anti-viral, anti-oxidant, anti-diabetes, anti-inflammation, anti-atherosclerosis, immunomodulation, hepatoprotection, hematopoiesis, neuroprotection and so on. As an important component of A. membranaceus, whether formononetin has a close relationship with its tumor-inhibiting effect on ovarian cancer cell has been investigated. AIM OF STUDY The present study aimed to demonstrate the anti-proliferation, anti- migration and invasion effects of formononetin on ovarian cancer cells and further explore the underlying molecular mechanisms associated with apoptosis, migration and invasion. MATERIALS AND METHODS MTT assay was performed to detect the viability of ovarian cancer cells. DAPI staining, Annexin-V assay and assay for mitochondrial membrane potential detected the apoptosis of ovarian cancer cells treated by formononetin. The migration and invasion of ovarian cancer cells which exposed to formononetin were detected by scratch assay and transwell assay. Meanwhile, the protein-level changes of in ovarian cancer cells treated by formononetin were assessed by western blot analysis. RESULTS MTT assays indicated that cell viability significantly decreased in ovarian cancer cells treated with formononetin. DAPI staining, Annexin-V assay and assay for mitochondrial membrane potential suggested that formononetin suppressed cells proliferation by inducing apoptosis. We detected the expression of apoptosis-related proteins in ovarian cancer cells after treatment with formononetin and found the expression of caspase 3/9 proteins and the ratio of Bax/Bcl-2 were increased in a dose-dependent manner. In addition, wound healing and transwell chamber assays showed that formononetin suppressed the migration and invasion of ovarian cancer cells. And formononetin decreased expression of MMP-2/9 proteins and phosphorylation level of ERK. CONCLUSIONS The present results demonstrated that formononetin have potential effects on induction of apoptosis and suppression of migration and invasion.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biotechnology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Likun Liu
- Department of Biotechnology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Jing Wang
- Department of Biotechnology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Baoyin Ren
- Department of Biotechnology, Dalian Medical University, Dalian 116044, Liaoning, China
| | - Lin Zhang
- Department of Integrative Medicine, Dalian Medical University, Dalian 116044, Liaoning, China.
| | - Weiling Li
- Department of Biotechnology, Dalian Medical University, Dalian 116044, Liaoning, China.
| |
Collapse
|
18
|
Li B, Zhao S, Geng R, Huo Z, Zhang H. The Sineoculis Homeobox Homolog 1 (SIX1) Gene Regulates Paclitaxel Resistance by Affecting Reactive Oxygen Species and Autophagy in Human Hepatocellular Carcinoma Cell Line HepG2. Med Sci Monit 2018; 24:2271-2279. [PMID: 29656300 PMCID: PMC5916092 DOI: 10.12659/msm.906361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background The objective of this study was to explore the role of SIX1 in paclitaxel (TAX) resistance of HepG2 cells via reactive oxygen species (ROS) and autophagy pathway. Material/Methods Hepatoma cell line HepG2 was treated with SIX1 knockdown or/and TAX. Cell growth was detected by MTT assay and colony formation assay. Cell apoptosis was evaluated with flow cytometry. ROS levels were detected using flow cytometry (stained with DCFH2-DA). Western blot was conducted to detect the expression of SIX1 and autophagy-related proteins. Results TAX suppressed the proliferation of HepG2 cells in a time/dose-dependent manner, and upregulated the expression of SIX1. SIX1 siRNA increased TAX sensitivity of HepG2 cells and upregulated cell ROS levels. SIX1 siRNA combined with TAX treatment activated autophagy of HepG2 cells. N-acetyl-L-cysteine (NAC) partially attenuated SIX1 siRNA-induced ROS level increases, and autophagy inhibitor 3-MA notably enhanced SIX1 siRNA-induced cell apoptosis. Conclusions Knockdown of SIX1 increased cell ROS levels and autophagy, promoted cell apoptosis, and enhanced TAX sensitivity of HepG2 cells.
Collapse
Affiliation(s)
- Baowei Li
- Department of Radiology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China (mainland)
| | - Shahe Zhao
- Department of Radiology, The First Hospital of Yongnian District, Handan, Hebei, China (mainland)
| | - Ruipeng Geng
- Department of Medical Imaging, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China (mainland)
| | - Zhongchao Huo
- Department of Radiotherapy, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China (mainland)
| | - Hui Zhang
- Department of Medical Imaging, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China (mainland)
| |
Collapse
|
19
|
microRNA-488 inhibits chemoresistance of ovarian cancer cells by targeting Six1 and mitochondrial function. Oncotarget 2017; 8:80981-80993. [PMID: 29113360 PMCID: PMC5655255 DOI: 10.18632/oncotarget.20941] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of miR-488 has been implicated in several human cancers. In this study, we aim to explore its expression and biological function in ovarian cancers. We found miR-488 expression was downregulated in ovarian cancer tissues. Using CCK8 and colony formation assay showed that miR-488 inhibited SKOV3 cell proliferation and colony formation, with downregulation of cyclin D1 and cyclin E protein. While miR-488 inhibitor promoted OVCAR3 cell growth and colony formation. Cell viability and Annexin V/PI staining showed that miR-488 downregulated cell survival and increased apoptosis rate when treated with cisplatin and paclitaxel. Further experiments using MitoTracker and JC-1 staining indicated that miR-488 regulated mitochondrial fission/fusion balance and inhibited mitochondrial membrane potential, with p-Drp1, Drp1 and Fis1 downregulation. Luciferase reporter assay showed that Six1 is a target of miR-488. We also found a negative association between Six1 and miR-488 in ovarian cancer tissues. In addition, Six1 overexpression induced mitochondrial fission and increased mitochondrial potential, with upregulation of Drp1 signaling. Six1 depletion showed the opposite effects. Restoration of Six1 in SKOV3 cells rescued decreased p-Drp1 and Drp1 expression induced by miR-488 mimic. Six1 plasmid also reversed the effects of miR-488 on chemoresistance and apoptosis. Taken together, the present study showed that, by targeting Six1, miR-488 inhibits chemoresistance of ovarian cancer cells through regulation of mitochondrial function.
Collapse
|