1
|
Brown ZJ, Ruff SM, Pawlik TM. The effect of liver disease on hepatic microenvironment and implications for immune therapy. Front Pharmacol 2023; 14:1225821. [PMID: 37608898 PMCID: PMC10441240 DOI: 10.3389/fphar.2023.1225821] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the fourth leading cause of cancer-related death worldwide. HCC often occurs in the setting of chronic liver disease or cirrhosis. Recent evidence has highlighted the importance of the immune microenvironment in the development and progression of HCC, as well as its role in the potential response to therapy. Liver disease such as viral hepatitis, alcohol induced liver disease, and non-alcoholic fatty liver disease is a major risk factor for the development of HCC and has been demonstrated to alter the immune microenvironment. Alterations in the immune microenvironment may markedly influence the response to different therapeutic strategies. As such, research has focused on understanding the complex relationship among tumor cells, immune cells, and the surrounding liver parenchyma to treat HCC more effectively. We herein review the immune microenvironment, as well as the relative effect of liver disease on the immune microenvironment. In addition, we review how changes in the immune microenvironment can lead to therapeutic resistance, as well as highlight future strategies aimed at developing the next-generation of therapies for HCC.
Collapse
Affiliation(s)
- Zachary J. Brown
- Department of Surgery, New York University Long Island School of Medicine, Mineola, NY, United States
| | - Samantha M. Ruff
- James Comprehensive Cancer Center, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Timothy M. Pawlik
- James Comprehensive Cancer Center, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
2
|
Yang ZR, Chen ZG, Ji ZH, Lin YL, Zhang J, Ma R, Li Z, Jiang X, Chen Q, Du XM, Li Y. Establishment and histopathological study of patient-derived xenograft models and primary cell lines of epithelioid malignant peritoneal mesothelioma. Exp Anim 2021; 70:225-235. [PMID: 33473097 PMCID: PMC8150237 DOI: 10.1538/expanim.20-0119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Malignant peritoneal mesothelioma (MPM) is a rare malignancy with few experimental models. This study used the human surgical specimen to establish MPM
patient-derived xenograft (PDX) models and primary cell lines to provide a study platform for MPM in vitro and in vivo, and
conducted histopathological analysis. Our study used the experimental peritoneal cancer index (ePCI) score to evaluate gross pathology, and the results showed
that the ePCI score of the female and male nude mice were 8.80 ± 1.75 and 9.20 ± 1.81 (P=0.6219), respectively. The Hematoxylin and eosin (HE)
staining of animal models showed that the tumor was epithelioid mesothelioma and invaded multiple organs. Immunohistochemistry (IHC) staining showed that
Calretinin, Cytokeratin 5/6, WT-1 and Ki-67 were all positive. The Swiss-Giemsa and Immunofluorescence (IF) staining of primary cell lines were also consistent
with the pathological characteristics of mesothelioma. We also performed the whole-exome sequencing (WES) to identify the mutant genes between models and the
patient. And the results showed that 21 mutant genes were shared between the two groups, and the genes related to tumorigenesis and development including
BAP1, NF2, MTBP, NECTIN2, CDC23, LRPPRC,
TRIM25, and DHRS2. In conclusion, the PDX models and primary cell lines of MPM were successfully established with the
epithelioid mesothelioma identity confirmed by histopathological evidence. Moreover, our study has also illustrated the shared genomic profile between models
and the patient.
Collapse
Affiliation(s)
- Zhi-Ran Yang
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
| | - Zhi-Gao Chen
- Thorgene Co., Ltd., Yizhuang Biomedical Park, Daxing District, Beijing, Beijing, China
| | - Zhong-He Ji
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
| | - Yu-Lin Lin
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
| | - Jue Zhang
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
| | - Ru Ma
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China
| | - Zhao Li
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Capital Medical University, No. 10 Tieyi Road, Yangfangdian Street, Haidian District, Beijing, China
| | - Xi Jiang
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Capital Medical University, No. 10 Tieyi Road, Yangfangdian Street, Haidian District, Beijing, China
| | - Qian Chen
- Thorgene Co., Ltd., Yizhuang Biomedical Park, Daxing District, Beijing, Beijing, China
| | - Xue-Mei Du
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Capital Medical University, No. 10 Tieyi Road, Yangfangdian Street, Haidian District, Beijing, China
| | - Yan Li
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Yangfangdian Street, Haidian District, Beijing 100038, China.,Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Capital Medical University, No. 10 Tieyi Road, Yangfangdian Street, Haidian District, Beijing, China
| |
Collapse
|
3
|
Hum NR, Martin KA, Malfatti MA, Haack K, Buchholz BA, Loots GG. Tracking Tumor Colonization in Xenograft Mouse Models Using Accelerator Mass Spectrometry. Sci Rep 2018; 8:15013. [PMID: 30302019 PMCID: PMC6178347 DOI: 10.1038/s41598-018-33368-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Here we introduce an Accelerator Mass Spectrometry (AMS)-based high precision method for quantifying the number of cancer cells that initiate metastatic tumors, in xenograft mice. Quantification of 14C per cell prior to injection into animals, and quantification of 14C in whole organs allows us to extrapolate the number of cancer cells available to initiate metastatic tumors. The 14C labeling was optimized such that 1 cancer cell was detected among 1 million normal cells. We show that ~1–5% of human cancer cells injected into immunodeficient mice form subcutaneous tumors, and even fewer cells initiate metastatic tumors. Comparisons of metastatic site colonization between a highly metastatic (PC3) and a non-metastatic (LnCap) cell line showed that PC3 cells colonize target tissues in greater quantities at 2 weeks post-delivery, and by 12 weeks post-delivery no 14C was detected in LnCap xenografts, suggesting that all metastatic cells were cleared. The 14C-signal correlated with the presence and the severity of metastatic tumors. AMS measurements of 14C-labeled cells provides a highly-sensitive, quantitative assay to experimentally evaluate metastasis and colonization of target tissues in xenograft mouse models. This approach can potentially be used to evaluate tumor aggressiveness and assist in making informed decisions regarding treatment.
Collapse
Affiliation(s)
- Nicholas R Hum
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA
| | - Kelly A Martin
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA.,Georgetown University, Department of Biochemistry & Molecular Biology, Washington, DC, USA
| | - Michael A Malfatti
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA
| | - Kurt Haack
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA
| | - Bruce A Buchholz
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Gabriela G Loots
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, CA, USA. .,UC Merced, School of Natural Sciences, Merced, CA, USA.
| |
Collapse
|
4
|
Dhadve A, Thakur B, Ray P. Dual Modality Imaging of Promoter Activity as a Surrogate for Gene Expression and Function. Methods Mol Biol 2018; 1790:1-12. [PMID: 29858779 DOI: 10.1007/978-1-4939-7860-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular functional imaging with optical reporter genes (both bioluminescence and fluorescence) is a rapidly evolving method that allows noninvasive, sensitive, real-time monitoring of many cellular events in live cells and whole organisms. These reporter genes with optical signatures when expressed from gene-specific promoters or Cis/Trans elements mimic the endogenous expression pattern without perturbing cellular physiology. With advanced recombinant molecular biology techniques, several strategies for optimal expression from constitutive or inducible, tissue-specific and weak promoters have been developed and used for dynamic and functional imaging. In this chapter, we provide an overview of the applications of this powerful technology for imaging gene expression in living cells and rodent models.
Collapse
Affiliation(s)
- Ajit Dhadve
- Imaging Cell Signaling & Therapeutics Lab, Tata Memorial Centre (TMC), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Bhushan Thakur
- Imaging Cell Signaling & Therapeutics Lab, Tata Memorial Centre (TMC), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, India
| | - Pritha Ray
- Imaging Cell Signaling & Therapeutics Lab, Tata Memorial Centre (TMC), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India. .,Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
5
|
Therapeutically targeting glypican-2 via single-domain antibody-based chimeric antigen receptors and immunotoxins in neuroblastoma. Proc Natl Acad Sci U S A 2017; 114:E6623-E6631. [PMID: 28739923 DOI: 10.1073/pnas.1706055114] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma is a childhood cancer that is fatal in almost half of patients despite intense multimodality treatment. This cancer is derived from neuroendocrine tissue located in the sympathetic nervous system. Glypican-2 (GPC2) is a cell surface heparan sulfate proteoglycan that is important for neuronal cell adhesion and neurite outgrowth. In this study, we find that GPC2 protein is highly expressed in about half of neuroblastoma cases and that high GPC2 expression correlates with poor overall survival compared with patients with low GPC2 expression. We demonstrate that silencing of GPC2 by CRISPR-Cas9 or siRNA results in the inhibition of neuroblastoma tumor cell growth. GPC2 silencing inactivates Wnt/β-catenin signaling and reduces the expression of the target gene N-Myc, an oncogenic driver of neuroblastoma tumorigenesis. We have isolated human single-domain antibodies specific for GPC2 by phage display technology and found that the single-domain antibodies can inhibit active β-catenin signaling by disrupting the interaction of GPC2 and Wnt3a. To explore GPC2 as a potential target in neuroblastoma, we have developed two forms of antibody therapeutics, immunotoxins and chimeric antigen receptor (CAR) T cells. Immunotoxin treatment was demonstrated to inhibit neuroblastoma growth in mice. CAR T cells targeting GPC2 eliminated tumors in a disseminated neuroblastoma mouse model where tumor metastasis had spread to multiple clinically relevant sites, including spine, skull, legs, and pelvis. This study suggests GPC2 as a promising therapeutic target in neuroblastoma.
Collapse
|
6
|
Xu Z, Li E, Guo Z, Yu R, Hao H, Xu Y, Sun Z, Li X, Lyu J, Wang Q. Design and Construction of a Multi-Organ Microfluidic Chip Mimicking the in vivo Microenvironment of Lung Cancer Metastasis. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25840-25847. [PMID: 27606718 DOI: 10.1021/acsami.6b08746] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Metastasis is a complex pathophysiological process. As the main cause of cancer mortality in humans it represents a serious challenge to both basic researchers and clinicians. Here we report the design and construction of a multi-organ microfluidic chip that closely mimics the in vivo microenvironment of lung cancer metastasis. This multi-organs-on-a-chip includes an upstream "lung" and three downstream "distant organs", with three polydimethylsiloxane (PDMS) layers and two thin PDMS microporous membranes bonded to form three parallel microchannels. Bronchial epithelial, lung cancer, microvascular endothelial, mononuclear, and fibroblast cells were grown separated by the biomembrane in upstream "lung", while astrocytes, osteocytes, and hepatocytes were grown in distant chambers, to mimic lung cancer cell metastasis to the brain, bone, and liver. After culture in this system, lung cancer cells formed a "tumor mass", showed epithelial-mesenchymal transition (with altered expression of E-cadherin, N-cadherin, Snail1, and Snail2) and invasive capacity. A549 cells co-cultured with astrocytes overexpressed CXCR4 protein, indicating damage of astrocytes after cancer cell metastasis to the brain. Osteocytes overexpressed RANKL protein indicates damage of osteocytes after cancer cell metastasis to the bone, and hepatocytes overexpressed AFP protein indicates damage to hepatocytes after cancer cell metastasis to the liver. Finally, in vivo imaging of cancer growth and metastasis in a nude mice model validated the performance of metastasis in the organs-on-chip system. This system provides a useful tool to mimic the in vivo microenvironment of cancer metastasis and to investigate cell-cell interactions during metastasis.
Collapse
Affiliation(s)
- Zhiyun Xu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University , Dalian 116027, China
- Department of Respiratology, Qilu Hospital Shandong University , Jinan 250012, China
| | - Encheng Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University , Dalian 116027, China
| | - Zhe Guo
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University , Dalian 116027, China
| | - Ruofei Yu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University , Dalian 116027, China
| | - Hualong Hao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University , Dalian 116027, China
| | - Yitong Xu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University , Dalian 116027, China
| | - Zhao Sun
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University , Dalian 116027, China
| | - Xiancheng Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University , Dalian 116027, China
| | - Jianxin Lyu
- Chinese Educational Ministry-Designated Key Laboratory of Laboratory Medicine and Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University , Wenzhou 325035, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University , Dalian 116027, China
| |
Collapse
|
7
|
Zhang YF, Phung Y, Gao W, Kawa S, Hassan R, Pastan I, Ho M. New high affinity monoclonal antibodies recognize non-overlapping epitopes on mesothelin for monitoring and treating mesothelioma. Sci Rep 2015; 5:9928. [PMID: 25996440 PMCID: PMC4440525 DOI: 10.1038/srep09928] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/23/2015] [Indexed: 12/17/2022] Open
Abstract
Mesothelin is an emerging cell surface target in mesothelioma and other solid tumors. Most antibody drug candidates recognize highly immunogenic Region I (296–390) on mesothelin. Here, we report a group of high-affinity non-Region I rabbit monoclonal antibodies. These antibodies do not compete for mesothelin binding with the immunotoxin SS1P that binds Region I of mesothelin. One pair of antibodies (YP218 and YP223) is suitable to detect soluble mesothelin in a sandwich ELISA with high sensitivity. The new assay can also be used to measure serum mesothelin concentration in mesothelioma patients, indicating its potential use for monitoring patients treated with current antibody therapies targeting Region I. The antibodies are highly specific and sensitive in immunostaining of mesothelioma. To explore their use in tumor therapy, we have generated the immunotoxins based on the Fv of these antibodies. One immunotoxin (YP218 Fv-PE38) exhibits potent anti-tumor cytotoxicity towards primary mesothelioma cell lines in vitro and an NCI-H226 xenograft tumor in mice. Furthermore, we have engineered a humanized YP218 Fv that retains full binding affinity for mesothelin-expressing cancer cells. In conclusion, with their unique binding properties, these antibodies may be promising candidates for monitoring and treating mesothelioma and other mesothelin-expressing cancers.
Collapse
Affiliation(s)
- Yi-Fan Zhang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Bethesda, MD 20892, United States
| | - Yen Phung
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Bethesda, MD 20892, United States
| | - Wei Gao
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Bethesda, MD 20892, United States
| | - Seiji Kawa
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Bethesda, MD 20892, United States
| | - Raffit Hassan
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Bethesda, MD 20892, United States
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Bethesda, MD 20892, United States
| |
Collapse
|
8
|
Taheri T, Saberi Nik H, Seyed N, Doustdari F, Etemadzadeh MH, Torkashvand F, Rafati S. Generation of stable L. major(+EGFP-LUC) and simultaneous comparison between EGFP and luciferase sensitivity. Exp Parasitol 2015; 150:44-55. [PMID: 25637784 DOI: 10.1016/j.exppara.2015.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 12/17/2014] [Accepted: 01/21/2015] [Indexed: 12/21/2022]
Abstract
Because of the lack of an accurate and sensitive tool to evaluate the parasitemia level, treatment or prevention of leishmaniasis remains an important challenge worldwide. To monitor and track leishmanial infection by two parameters in real time, we generated stably transgenic Leishmania that express a bi-reporter protein as fused EGFP and firefly luciferase. Using two reporter genes (egfp-luc) simultaneously increases the experimental sensitivity for detection/diagnosis, and in vitro quantification of parasites as well as real-time infection in mice. Through different specific tools, EGFP and LUC signals from the parasite were detectable and measurable within a mammalian host and promastigotes. Here, the LUC protein provided a higher level of sensitivity than did EGFP, so that infection was detectable at an earlier stage of the disease in the footpad (injection site) and lymph nodes by bioluminescence. These results depicted that: (1) both quantitative reporter genes, EGFP and LUC, could be simultaneously used to detect parasitemia in vitro and in vivo and (2) sensitivity of firefly luciferase was 10-fold higher than that of EGFP in promastigotes.
Collapse
Affiliation(s)
- Tahereh Taheri
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran.
| | - Hana Saberi Nik
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran; Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
| | - Negar Seyed
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Doustdari
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Torkashvand
- Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Molecular Immunology and Vaccine Research Laboratory, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Meerang M, Boss A, Kenkel D, Broggini-Tenzer A, Bérard K, Lauk O, Arni S, Weder W, Opitz I. Evaluation of imaging techniques for the assessment of tumour progression in an orthotopic rat model of malignant pleural mesothelioma†. Eur J Cardiothorac Surg 2014; 47:e34-41. [PMID: 25344922 DOI: 10.1093/ejcts/ezu393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES An orthotopic rat tumour recurrence model for malignant pleural mesothelioma (MPM) provides clinical similarity to patients and is useful for drug testing combined with surgical intervention. Importantly, a reliable imaging method is required allowing for noninvasive and repetitive evaluation of the tumour load. We compared the tumour load assessed by bioluminescence and magnetic resonance imaging (MRI) to the macroscopic tumour volume as a reference standard. METHODS A total of 500,000 syngeneic rat MPM cells transfected with luciferase were implanted underneath the parietal pleura of immunocompetent rats (n=13). From the second day after implantation, bioluminescence measurements of the tumour load expressed as the maximum bioluminescent intensity (photon/second) were performed daily after intraperitoneal injection of the luciferase substrate, d-luciferin, to observe the first occurrence of tumour. Six days after the first detection of tumour, bioluminescence, MRI and macroscopic tumour volume measurement were conducted. For MRI, a 4.7-Tesla small animal imager equipped with a 1H whole-body rat coil was employed using T2-weighted fast spin-echo sequences. Tumour burden (mm3) was quantified from magnetic resonance transverse images by two independent readers by manual segmentation. Finally, the tumour burden assessed by bioluminescence and MRI was correlated (Pearson's correlation) with the macroscopic measurement of tumour (ellipsoid) volume. RESULTS In all rats, a single tumour nodule was found at the inoculation site with a median macroscopic volume of 46 mm3 (18-377 mm3). For tumour burden quantification of MRIs, we observed good interobserver correlation (R2=0.81, P<0.0001) as well as significant association with the macroscopic tumour volume (R2=0.59, P=0.002). However, the signal intensity of bioluminescence did not correspond to the macroscopic tumour volume (R2=0.01, P=0.76). CONCLUSIONS MRI is a reliable and reproducible noninvasive in vivo imaging method for MPM tumour burden assessment for the present MPM model.
Collapse
Affiliation(s)
- Mayura Meerang
- Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Boss
- Department of Radiology, University Hospital Zurich, Zurich, Switzerland
| | - David Kenkel
- Department of Radiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Karima Bérard
- Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Olivia Lauk
- Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Stephan Arni
- Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Walter Weder
- Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Isabelle Opitz
- Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Kim H, Gao W, Ho M. Novel immunocytokine IL12-SS1 (Fv) inhibits mesothelioma tumor growth in nude mice. PLoS One 2013; 8:e81919. [PMID: 24260587 PMCID: PMC3829959 DOI: 10.1371/journal.pone.0081919] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 10/28/2013] [Indexed: 12/13/2022] Open
Abstract
Mesothelin is a glycosylphosphatidylinositol-anchored glycoprotein that is highly expressed on the cell surface of malignant mesothelioma. Monoclonal antibodies against mesothelin are being evaluated for the treatment of mesothelioma. Immunocytokines represent a novel class of armed antibodies. To provide an alternative approach to current mesothelin-targeted antibody therapies, we have developed a novel immunocytokine based on interleukin-12 (IL12) and the SS1 Fv specific for mesothelin. IL12 possesses potent anti-tumor activity in a wide variety of solid tumors. The newly-developed recombinant immunocytokine, IL12-SS1 (Fv), was produced in insect cells using a baculovirus-insect cell expression system. The SS1 single-chain Fv was fused to the C terminus of the p35 subunit of IL12 through a short linker (GSADGG). The single-chain IL12-SS1 (Fv) immunocytokine bound native mesothelin proteins on malignant mesothelioma (NCI-H226) and ovarian (OVCAR-3) cells as well as recombinant mesothelin on A431/H9 cells. The immunocytokine retained sufficient bioactivity of IL12 and significantly inhibited human malignant mesothelioma (NCI-H226) grown in the peritoneal cavity of nude mice and showed comparable anti-tumor activity to that of the SS1P immunotoxin. IL12-SS1 (Fv) is the first reported immunocytokine to mesothelin-positive tumors and may be an attractive addition to mesothelin-targeted cancer therapies.
Collapse
Affiliation(s)
- Heungnam Kim
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Wei Gao
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mitchell Ho
- Antibody Therapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
11
|
Volta V, Ranzato E, Martinotti S, Gallo S, Russo MV, Mutti L, Biffo S, Burlando B. Preclinical demonstration of synergistic Active Nutrients/Drug (AND) combination as a potential treatment for malignant pleural mesothelioma. PLoS One 2013; 8:e58051. [PMID: 23526965 PMCID: PMC3590277 DOI: 10.1371/journal.pone.0058051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 01/30/2013] [Indexed: 11/19/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a poor prognosis disease lacking adequate therapy. We have previously shown that ascorbic acid administration is toxic to MPM cells. Here we evaluated a new combined therapy consisting of ascorbate/epigallocatechin-3-gallate/gemcitabine mixture (called AND, for Active Nutrients/Drug). In vitro effects of AND therapy on various MPM cell lines revealed a synergistic cytotoxic mechanism. In vivo experiments on a xenograft mouse model for MPM, obtained by REN cells injection in immunocompromised mice, showed that AND strongly reduced the size of primary tumor as well as the number and size of metastases, and prevented abdominal hemorrhage. Kaplan Meier curves and the log-rank test indicated a marked increase in the survival of AND-treated animals. Histochemical analysis of dissected tumors showed that AND induced a shift from cell proliferation to apoptosis in cancer cells. Lysates of tumors from AND-treated mice, analyzed with an antibody array, revealed decreased TIMP-1 and -2 expressions and no effects on angiogenesis regulating factors. Multiplex analysis for signaling protein phosphorylation exhibited inactivation of cell proliferation pathways. The complex of data showed that the AND treatment is synergistic in vitro on MPM cells, and blocks in vivo tumor progression and metastasization in REN-based xenografts. Hence, the AND combination is proposed as a new treatment for MPM.
Collapse
Affiliation(s)
- Viviana Volta
- Molecular Histology and Cell Growth Laboratory, San Raffaele Science Institute, Milano, Italy
| | - Elia Ranzato
- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Alessandria, Italy
| | - Simona Martinotti
- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Alessandria, Italy
| | - Simone Gallo
- Molecular Histology and Cell Growth Laboratory, San Raffaele Science Institute, Milano, Italy
| | - Maria Veronica Russo
- Molecular Histology and Cell Growth Laboratory, San Raffaele Science Institute, Milano, Italy
| | - Luciano Mutti
- Department of General Medicine, Vercelli National Health Trust, Vercelli, Italy
| | - Stefano Biffo
- Molecular Histology and Cell Growth Laboratory, San Raffaele Science Institute, Milano, Italy
- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Alessandria, Italy
| | - Bruno Burlando
- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Alessandria, Italy
- * E-mail:
| |
Collapse
|
12
|
Mazzoletti M, Texidó G. In vivo target validation by inducible RNAi in human xenograft mouse models. Methods Mol Biol 2013; 986:325-337. [PMID: 23436421 DOI: 10.1007/978-1-62703-311-4_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Proper target selection and validation are crucial to the discovery of new anti-cancer agents. Since tumors depend on a suitable microenvironment for their growth, once a putative target has been identified, its validation should be performed whenever possible in vivo. This chapter deals with the generation of human xenograft mouse models genetically modified to induce the modulation of cancer-related genes as an approach to validate oncology targets.
Collapse
Affiliation(s)
- Marco Mazzoletti
- Pharmacology Department of BU Oncology, Nerviano Medical Sciences, Nerviano, MI, Italy
| | | |
Collapse
|
13
|
Changes in global gene expression associated with 3D structure of tumors: an ex vivo matrix-free mesothelioma spheroid model. PLoS One 2012; 7:e39556. [PMID: 22737246 PMCID: PMC3380922 DOI: 10.1371/journal.pone.0039556] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/27/2012] [Indexed: 02/06/2023] Open
Abstract
Tumor microenvironments present significant barriers to anti-tumor agents. Molecules involved in multicellular tumor microenvironments, however, are difficult to study ex vivo. Here, we generated a matrix-free tumor spheroid model using the NCI-H226 mesothelioma cell line and compared the gene expression profiles of spheroids and monolayers using microarray analysis. Microarray analysis revealed that 142 probe sets were differentially expressed between tumor spheroids and monolayers. Gene ontology analysis revealed that upregulated genes were primarily related to immune response, wound response, lymphocyte stimulation and response to cytokine stimulation, whereas downregulated genes were primarily associated with apoptosis. Among the 142 genes, 27 are located in the membrane and related to biologic processes of cellular movement, cell-to-cell signaling, cellular growth and proliferation and morphology. Western blot analysis validated elevation of MMP2, BAFF/BLyS/TNFSF13B, RANTES/CCL5 and TNFAIP6/TSG-6 protein expression in spheroids as compared to monolayers. Thus, we have reported the first large scale comparison of the transcriptional profiles using an ex vivo matrix-free spheroid model to identify genes specific to the three-dimensional biological structure of tumors. The method described here can be used for gene expression profiling of tumors other than mesothelioma.
Collapse
|
14
|
Kalra N, Zhang J, Yu Y, Ho M, Merino M, Cao L, Hassan R. Efficacy of anti-insulin-like growth factor I receptor monoclonal antibody cixutumumab in mesothelioma is highly correlated with insulin growth factor-I receptor sites/cell. Int J Cancer 2012; 131:2143-52. [PMID: 22323052 DOI: 10.1002/ijc.27471] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/24/2012] [Indexed: 12/29/2022]
Abstract
Insulin growth factor-I receptor (IGF-IR) is expressed in mesothelioma and therefore an attractive target for therapy. The antitumor activity of cixutumumab, a humanized monoclonal antibody to IGF-IR, in mesothelioma and relationship to IGF-IR expression was investigated using eight early passage tumor cells obtained from patients, nine established cell lines and an in vivo human mesothelioma tumor xenograft model. Although IGF-IR expression at the mRNA and protein level was present in all mesothelioma cells, using a quantitative ELISA immunoassay, there was considerable variability of IGF-IR expression ranging from 1 to 14 ng/mg of lysate. Using flow cytometry, the number of IGF-IR surface receptors varied from ≈ 2,000 to 50,000 sites/cell. Cells expressing >10,000 sites/cell had greater than 10% growth inhibition when treated with cixutumumab (100 μg/ml). Cixutumumab also induced antibody-dependent cell-mediated toxicity (>10% specific lysis) in cell lines, which had >20,000 IGF-IR sites/cell. Treatment with cixutumumab decreased phosphorylation of IGF-IR, Akt and Erk in cell lines, H226 and H28 having 24,000 and 51,000 IGF-IR sites/cell, respectively, but not in the cell line H2052 with 3,000 IGF-IR sites/cell. In vivo, cixutumumab treatment delayed growth of H226 mesothelioma tumor xenografts in mice and improved the overall survival of these mice compared to mice treated with saline (p < 0.004). Our results demonstrate that the antitumor efficacy of cixutumumab including inhibition of IGF-IR downstream signaling is highly correlated with IGF-IR sites/cell. A phase II clinical trial of cixutumumab is currently ongoing for the treatment of patients with mesothelioma.
Collapse
Affiliation(s)
- Neetu Kalra
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Ho M. Advances in liver cancer antibody therapies: a focus on glypican-3 and mesothelin. BioDrugs 2012; 25:275-84. [PMID: 21942912 DOI: 10.2165/11595360-000000000-00000] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Liver cancer is one of the most common malignancies worldwide. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the two most common primary liver cancers, yet there have been no significant advances in effective therapeutics. There is an urgent need to identify molecular targets for the development of novel therapeutic approaches. In this review, glypican-3 (GPC3) and mesothelin are discussed, with a focus on their potential as targets for antibody therapy in liver cancer. GPC3 and mesothelin are glycosylphosphatidylinositol-anchored proteins present on the cell surface. They are attractive candidates for liver cancer therapy given that GPC3 and mesothelin show high expression in HCC and CCA, respectively. Antibody drugs targeting GPC3 or mesothelin have shown anti-cancer activity in mice. Humanized or chimeric IgG molecules based on first-generation murine monoclonal antibodies against these antigens are being evaluated in clinical studies. Recently, fully human monoclonal antibodies against GPC3 and mesothelin have been isolated by antibody phage display technology that may provide opportunities for novel cancer therapy.
Collapse
Affiliation(s)
- Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA.
| |
Collapse
|
16
|
Xiang X, Feng M, Felder M, Connor JP, Man YG, Patankar MS, Ho M. HN125: A Novel Immunoadhesin Targeting MUC16 with Potential for Cancer Therapy. J Cancer 2011; 2:280-91. [PMID: 21611109 PMCID: PMC3100680 DOI: 10.7150/jca.2.280] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 05/16/2011] [Indexed: 02/06/2023] Open
Abstract
Background: The mucin MUC16 expresses the repeating peptide epitope CA125 that has been known for decades to be a well-validated cancer marker that is overexpressed on the cell surface of ovarian cancers and other malignant tumors. In spite of recent efforts to make mouse monoclonal antibodies to MUC16 to treat ovarian cancer, a human monoclonal antibody against this mucin has not been described. MUC16 interacts with mesothelin, a protein that mediates heterotypic cancer cell adhesion, indicating that MUC16 and mesothelin play an important role in the peritoneal implantation and metastasis of ovarian tumors. Therefore, a suitable candidate for therapeutic targeting of MUC16 would functionally block the interaction of MUC16 and mesothelin. Methodology/Principal Findings: Here we report the generation of a novel immunoadhesin, HN125, against MUC16 that consists of a functional MUC16 binding domain of mesothelin (IAB) and the Fc portion of a human antibody IgG1. The yield for purified HN125 proteins is over 100 µg/mL of HEK-293 culture supernatant. We show that HN125 has high and specific affinity for MUC16-expressing cancer cells by flow cytometry and immunohistochemistry. HN125 has the ability to disrupt the heterotypic cancer cell adhesion mediated by the MUC16-mesothelin interaction. Moreover, it elicits strong antibody-dependent cell mediated cytotoxicity against MUC16-positive cancer cells in vitro. Conclusion/Significance: This report describes a novel human immunotherapeutic agent highly specific for MUC16 with potential for treating ovarian cancer and other MUC16-expressing tumors. Because of its lower immunogenicity in patients, a fully human protein is the most desirable format for clinical applications. We believe that the methods developed here may apply to the generation of other tumor-targeting immunoadhesins when it is difficult to obtain a human monoclonal antibody to a given antigen for clinical applications. The resultant immunoadhesins can have advantages usually found in monoclonal antibodies such as ease of purification, high binding affinity and effector functions.
Collapse
Affiliation(s)
- Xinran Xiang
- 1. Antibody Therapy Unit, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|