1
|
Dai W, Pang S, He Z, Fu X, Liu L, Liu L, Yu N. Prediction of miRNA-disease association based on heterogeneous hypergraph convolution and heterogeneous graph multi-scale convolution. Health Inf Sci Syst 2025; 13:4. [PMID: 39659869 PMCID: PMC11625705 DOI: 10.1007/s13755-024-00319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Making the accurate prediction of miRNA-disease associations essential for medical interventions. Current computational models often fail to capture the complexity of miRNA-disease associations. This study proposes HHMDA, a method based on heterogeneous hypergraph convolution and heterogeneous graph multi-scale convolution, to predict the association between miRNA and disease. Firstly, HHMDA constructs a heterogeneous graph of miRNA-disease relationships. Then, a graph convolution is run on the heterogeneous graph to capture the multi-scale feature representations of miRNA and disease. MiRNA-disease association are reconstructed based on these features. Meanwhile, HHMDA constructs a heterogeneous hypergraph with miRNAs and diseases as nodes, and the hyperedges consist of miRNAs and diseases linked to the same genes. HHMDA performs hypergraph graph convolution operation on the heterogeneous hypergraph to extract the high-order features of miRNA and disease. Finally, these features are leveraged to calculate the Laplacian regularization loss and combined with the miRNA-disease association matrix reconstruction loss to optimize the model. The experimental results show that HHMDA has advantages over the existing state-of-the-art methods under different experimental settings.
Collapse
Affiliation(s)
- Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050 China
- Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming, 650050 China
| | - Sifan Pang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050 China
| | - Zhichen He
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050 China
| | - Xiaodong Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050 China
- Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming, 650050 China
| | - Li Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050 China
- Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming, 650050 China
| | - Lijun Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050 China
- Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming, 650050 China
| | - Ning Yu
- Department of Computing Sciences, The College at Brockport, State University of New York, 350 New Campus Drive, Brockport, NY 14422 USA
| |
Collapse
|
2
|
Mahajan K, Das AV, Alahari SK, Pothuraju R, Nair SA. MicroRNA-532-3p Modulates Colorectal Cancer Cell Proliferation and Invasion via Suppression of FOXM1. Cancers (Basel) 2024; 16:3061. [PMID: 39272919 PMCID: PMC11394065 DOI: 10.3390/cancers16173061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease and classified into various subtypes, among which transcriptional alterations result in CRC progression, metastasis, and drug resistance. Forkhead-box M1 (FOXM1) is a proliferation-associated transcription factor which is overexpressed in CRC and the mechanisms of FOXM1 regulation have been under investigation. Previously, we showed that FOXM1 binds to promoters of certain microRNAs. Database mining led to several microRNAs that might interact with FOXM1 3'UTR. The interactions between shortlisted microRNAs and FOXM1 3'UTR were quantitated by a dual-luciferase reporter assay. MicroRNA-532-3p interacted with the 3'UTR of the FOXM1 mRNA transcript most efficiently. MicroRNA-532-3p was ectopically overexpressed in colorectal cancer (CRC) cell lines, leading to reduced transcript and protein levels of FOXM1 and cyclin B1, a direct transcriptional target of FOXM1. Further, a clonogenic assay was conducted in overexpressed miR-532-3p CRC cells that revealed a decline in the ability of cells to form colonies and a reduction in migratory and invading potential. These alterations were reinforced at molecular levels by the altered transcript and protein levels of the conventional EMT markers E-cadherin and vimentin. Overall, this study identifies the regulation of FOXM1 by microRNA-532-3p via its interaction with FOXM1 3'UTR, resulting in the suppression of proliferation, migration, and invasion, suggesting its role as a tumor suppressor in CRC.
Collapse
Affiliation(s)
- Ketakee Mahajan
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
- Research Centre, University of Kerala, Thiruvananthapuram 695034, Kerala, India
| | - Ani V Das
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ramesh Pothuraju
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - S Asha Nair
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| |
Collapse
|
3
|
Lotfi M, Maharati A, Hamidi AA, Taghehchian N, Moghbeli M. MicroRNA-532 as a probable diagnostic and therapeutic marker in cancer patients. Mutat Res 2024; 829:111874. [PMID: 38986233 DOI: 10.1016/j.mrfmmm.2024.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The high mortality rate in cancer patients is always one of the main challenges of the health systems globally. Several factors are involved in the high rate of cancer related mortality, including late diagnosis and drug resistance. Cancer is mainly diagnosed in the advanced stages of tumor progression that causes the failure of therapeutic strategies and increases the death rate in these patients. Therefore, assessment of the molecular mechanisms associated with the occurrence of cancer can be effective to introduce early tumor diagnostic markers. MicroRNAs (miRNAs) as the stable non-coding RNAs in the biological body fluids are involved in regulation of cell proliferation, migration, and apoptosis. MiR-532 deregulation has been reported in different tumor types. Therefore, in the present review we discussed the role of miR-532 during tumor growth. It has been shown that miR-532 has mainly a tumor suppressor role through the regulation of transcription factors, chemokines, and signaling pathways such as NF-kB, MAPK, PI3K/AKT, and WNT. In addition to the independent role of miR-532 in regulation of cellular processes, it also functions as a mediator of lncRNAs and circRNAs. Therefore, miR-532 can be considered as a non-invasive diagnostic/prognostic marker as well as a therapeutic target in cancer patients.
Collapse
Affiliation(s)
- Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Hamidi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Yao GS, Fu LM, Dai JS, Chen JW, Liu KZ, Liang H, Wang Z, Deng Q, Wang JY, Jin MY, Chen W, Fang Y, Luo JH, Cao JZ, Wei JH. Exploring the oncogenic potential of circSOD2 in clear cell renal cell carcinoma: a novel positive feedback loop. J Transl Med 2024; 22:596. [PMID: 38926764 PMCID: PMC11209967 DOI: 10.1186/s12967-024-05290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/09/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Existing studies have found that circular RNAs (circRNAs) act as sponges for micro RNAs (miRNAs) to control downstream genes. However, the specific functionalities and mechanisms of circRNAs in human clear cell renal cell carcinoma (ccRCC) have yet to be thoroughly investigated. METHODS Patient cohorts from online databases were used to screen candidate circRNAs, while another cohort from our hospital was obtained for validation. CircSOD2 was identified as a potential oncogenic target, and its relevant characteristics were investigated during ccRCC progression through various assays. A positive feedback loop containing downstream miRNA and its target gene were identified using bioinformatics and validated by luciferase reporter assays, RNA pull-down, and high-throughput sequencing. RESULTS CircSOD2 expression was elevated in tumor samples and significantly correlated with overall survival (OS) and the tumor stage of ccRCC patients, which appeared in the enhanced proliferation, invasion, and migration of tumor cells. Through competitive binding to circSOD2, miR-532-3p can promote the expression of PAX5 and the progression of ccRCC, and such regulation can be salvaged by miR-532-3p inhibitor. CONCLUSION A novel positive feedback loop, PAX5/circSOD2/miR-532-3p/PAX5 was identified in the study, indicating that the loop may play an important role in the diagnosis and prognostic prediction in ccRCC patients.
Collapse
Affiliation(s)
- Gao-Sheng Yao
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Liang-Min Fu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Jun-Shang Dai
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jin-Wei Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Ke-Zhi Liu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Hui Liang
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Zhu Wang
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Qiong Deng
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Jie-Yan Wang
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Mei-Yu Jin
- Department of Urology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Wei Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Yong Fang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China.
| | - Jun-Hang Luo
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China.
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Jia-Zheng Cao
- Department of Urology, Affiliated Jiangmen Hospital of Sun Yat-Sen University, No.23 Haibang Street, Jiangmen, 529030, Guangdong, China.
| | - Jin-Huan Wei
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, ZhongShan 2nd Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
5
|
Zhuang S, Yang Z, Cui Z, Zhang Y, Che F. Epigenetic alterations and advancement of lymphoma treatment. Ann Hematol 2024; 103:1435-1454. [PMID: 37581713 DOI: 10.1007/s00277-023-05395-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023]
Abstract
Lymphomas, complex and heterogeneous malignant tumors, originate from the lymphopoietic system. These tumors are notorious for their high recurrence rates and resistance to treatment, which leads to poor prognoses. As ongoing research has shown, epigenetic modifications like DNA methylation, histone modifications, non-coding RNA regulation, and RNA modifications play crucial roles in lymphoma pathogenesis. Epigenetic modification-targeting drugs have exhibited therapeutic efficacy and tolerability in both monotherapy and combination lymphoma therapy. This review discusses pathogenic mechanisms and potential epigenetic therapeutic targets in common lymphomas, offering new avenues for lymphoma diagnosis and treatment. We also discuss the shortcomings of current lymphoma treatments, while suggesting potential areas for future research, in order to improve the prediction and prognosis of lymphoma.
Collapse
Affiliation(s)
- Shuhui Zhuang
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Zhaobo Yang
- Spine Surgery, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Zhuangzhuang Cui
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Yuanyuan Zhang
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China.
- Department of Hematology, Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Fengyuan Che
- Department of Neurology, Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, 276000, China.
| |
Collapse
|
6
|
Al-Rashidi RR, Noraldeen SAM, Kareem AK, Mahmoud AK, Kadhum WR, Ramírez-Coronel AA, Iswanto AH, Obaid RF, Jalil AT, Mustafa YF, Nabavi N, Wang Y, Wang L. Malignant function of nuclear factor-kappaB axis in prostate cancer: Molecular interactions and regulation by non-coding RNAs. Pharmacol Res 2023; 194:106775. [PMID: 37075872 DOI: 10.1016/j.phrs.2023.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Prostate carcinoma is a malignant situation that arises from genomic alterations in the prostate, leading to changes in tumorigenesis. The NF-κB pathway modulates various biological mechanisms, including inflammation and immune responses. Dysregulation of NF-κB promotes carcinogenesis, including increased proliferation, invasion, and therapy resistance. As an incurable disease globally, prostate cancer is a significant health concern, and research into genetic mutations and NF-κB function has the efficacy to facilitate the introduction of novel therapies. NF-κB upregulation is observed during prostate cancer progression, resulting in increased cell cycle progression and proliferation rates. Additionally, NF-κB endorses resistance to cell death and enhances the capacity for metastasis, particularly bone metastasis. Overexpression of NF-κB triggers chemoresistance and radio-resistance, and inhibition of NF-κB by anti-tumor compounds can reduce cancer progression. Interestingly, non-coding RNA transcripts can regulate NF-κB level and its nuclear transfer, offering a potential avenue for modulating prostate cancer progression.
Collapse
Affiliation(s)
| | | | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Iraq
| | | | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut 52001, Wasit, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; University of Palermo, Buenos Aires, Argentina; Epidemiology and Biostatistics Research Group, CES University, Colombia
| | - Acim Heri Iswanto
- Department of Public Health, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Research Institute, V5Z1L3 Vancouver, BC, Canada.
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
7
|
Afonso GJM, Cavaleiro C, Valero J, Mota SI, Ferreiro E. Recent Advances in Extracellular Vesicles in Amyotrophic Lateral Sclerosis and Emergent Perspectives. Cells 2023; 12:1763. [PMID: 37443797 PMCID: PMC10340215 DOI: 10.3390/cells12131763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe and incurable neurodegenerative disease characterized by the progressive death of motor neurons, leading to paralysis and death. It is a rare disease characterized by high patient-to-patient heterogeneity, which makes its study arduous and complex. Extracellular vesicles (EVs) have emerged as important players in the development of ALS. Thus, ALS phenotype-expressing cells can spread their abnormal bioactive cargo through the secretion of EVs, even in distant tissues. Importantly, owing to their nature and composition, EVs' formation and cargo can be exploited for better comprehension of this elusive disease and identification of novel biomarkers, as well as for potential therapeutic applications, such as those based on stem cell-derived exosomes. This review highlights recent advances in the identification of the role of EVs in ALS etiopathology and how EVs can be promising new therapeutic strategies.
Collapse
Affiliation(s)
- Gonçalo J. M. Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Carla Cavaleiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Jorge Valero
- Instituto de Neurociencias de Castilla y León, University of Salamanca, 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Department of Cell Biology and Pathology, University of Salamanca, 37007 Salamanca, Spain
| | - Sandra I. Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
8
|
Wang K, Chen Z, Qiao X, Zheng J. LncRNA NORAD regulates the mechanism of the miR-532-3p/Nectin-4 axis in pancreatic cancer cell proliferation and angiogenesis. Toxicol Res (Camb) 2023; 12:425-432. [PMID: 37397924 PMCID: PMC10311138 DOI: 10.1093/toxres/tfad026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/15/2023] [Accepted: 03/30/2023] [Indexed: 07/04/2023] Open
Abstract
Backgound Pancreatic cancer (PC) is one of the deadliest cancers worldwide, and cell proliferation and angiogenesis play an important role in its occurrence and development. High levels of lncRNANORAD have been detected in many tumors, including PC, yet the effect and mechanism of lncRNA NORAD on PC cell angiogenesis are unexplored. Methods qRT.PCR was applied to quantify lncRNA NORAD and miR-532-3p expression in PC cells, and a dual luciferase reporter gene was used to verify the targeting effects of NORAD, miR-532-3p and Nectin-4. Then, we regulated NORAD and miR-532-3p expression in PC cells and detected their effects on PC cell proliferation and angiogenesis using cloning experiments and HUVEC tube formation experiments. Results LncRNA NORAD was upregulated and miR-532-3p was downregulated in PC cells compared with normal cells. Knockdown of NORAD inhibited PC cell proliferation and angiogenesis. LncRNA NORAD and miR-532-3p competitively bound to promote the expression of the miR-532-3p target gene Nectin-4, thereby promoting proliferation and angiogenesis of PC cells in vitro. Conclusion LncRNA NORAD promotes the proliferation and angiogenesis of PC cells by regulating the miR-532-3p/Nectin-4 axis, which may be a potential biological target in the diagnosis and treatment of clinical PC.
Collapse
Affiliation(s)
- Kaiqiong Wang
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, No.19, Xiuhua Road, Haikou, Hainan Province 570311, China
| | - Zhiju Chen
- Department of Gastrointestinal Surgery, Hainan Provincial People’s Hospital, No.19, Xiuhua Road, Haikou, Hainan Province 570311, China
| | - Xin Qiao
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, No.19, Xiuhua Road, Haikou, Hainan Province 570311, China
| | - Jinfang Zheng
- Department of Hepatobiliary Surgery, Hainan Provincial People's Hospital, No.19, Xiuhua Road, Haikou, Hainan Province 570311, China
| |
Collapse
|
9
|
Wang K, Gong D, Qiao X, Zheng J. MiR-532-3p inhibited the methylation of SOCS2 to suppress the progression of PC by targeting DNMT3A. Life Sci Alliance 2023; 6:e202201703. [PMID: 37085288 PMCID: PMC10128082 DOI: 10.26508/lsa.202201703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 04/23/2023] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies, with poor diagnosis and prognosis. miR-532-3p has been reported to be a tumor suppressor in various cancers, whereas the mechanism of miR-532-3p in the progression of PC remains poorly understood. In this study, it was found that miR-532-3p and SOCS2 were down-regulated, whereas DNMT3A was up-regulated in PC. Knockdown of DNMT3A or overexpression of miR-532-3p suppressed PC cell proliferation, invasion, and migration, as well as tumor formation in nude mice. DNMT3A induced the methylation of SOCS2 promoter. SOCS2 knockdown reversed the inhibiting effect of DNMT3A silencing on PC cell growth. miR-532-3p directly bound to DNMT3A and negatively regulated its expression while up-regulating SOCS2 levels. DNMT3A overexpression reversed the inhibiting effect of miR-532-3p overexpression on PC cell growth. In conclusion, the overexpression of miR-532-3p could suppress proliferation, invasion, and migration of PC cells, as well as tumor formation in nude mice through inhibiting the methylation of SOCS2 by targeting DNMT3A.
Collapse
Affiliation(s)
- Kaiqiong Wang
- Department of Hepatobiliary Surgery, Hainan General Hospital http://dx.doi.org/10.13039/501100001665, Haikou, P.R. China
| | - Dongwei Gong
- Department of Hepatobiliary Surgery, Hainan General Hospital http://dx.doi.org/10.13039/501100001665, Haikou, P.R. China
| | - Xin Qiao
- Department of Hepatobiliary Surgery, Hainan General Hospital http://dx.doi.org/10.13039/501100001665, Haikou, P.R. China
| | - Jinfang Zheng
- Department of Hepatobiliary Surgery, Hainan General Hospital http://dx.doi.org/10.13039/501100001665, Haikou, P.R. China
| |
Collapse
|
10
|
Overexpression of Laminin 5γ2 Chain Correlates with Tumor Cell Proliferation, Invasion, and Poor Prognosis in Laryngeal Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:7248064. [PMID: 36284634 PMCID: PMC9588344 DOI: 10.1155/2022/7248064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022]
Abstract
Objective Laryngeal squamous cell carcinoma (LSCC) is a common malignant tumor. Laminin 5γ2 chain (LAMC2) was reported to be associated with tumorigenesis. This study explored the role of LAMC2 on LSCC progression by regulating the integrinβ1/FAK/Src/AKT pathway. Methods The level of LAMC2 in 46 LSCC patients was detected by qRT-PCR and western blot. Then the relationship between LAMC2 expression and LSCC malignancy as well as prognosis was analyzed, and the effect of LAMC2 expression on LSCC patient survival was also analyzed using the Kaplan–Meier survival curves. Afterwards, the LSCC cells were transfected with LAMC2 overexpression and knockdown vectors, the effect of LAMC2 on LSCC cell viability, proliferation ability, cell cycle, cell migration, and invasion were detected by CCK-8, colony formation, flow cytometry, wound healing, and Transwell assays. The expression of EMT-related biomarkers and integrin β1/FAK/Src/AKT signaling-related proteins was detected by western blot. Moreover, the effect of LAMC2 on LSCC tumor growth was evaluated by in vivo xenograft experiments and western blot. Results LAMC2 was expressed at high level in LSCC tissues and associated with poor prognosis. LAMC2 overexpression increased TU177 cell viability, proliferation ability, promoted cell cycle, cell migration, and invasion capacity. The expression of N-cadherin, vimentin, and integrinβ1/FAK/Src/AKT related proteins was increased, while the expression of E-cadherin protein was decreased. When the LAMC2 knockdown in AMC-HN-8 cells had opposite effects. Furthermore, shLAMC2 decreased tumor volume and the expression of LAMC2, Ki-67 and integrinβ1, but increased the expression of E-cadherin in LSCC tumor-bearing mice. Conclusion The findings suggested that LAMC2 was overexpressed in LSCC and correlated with poor prognosis. LAMC2 knockdown inhibited LSCC progression by regulating the integrinβ1/FAK/Src/AKT signaling pathway. Therefore, LAMC2 could be a target for LSCC therapy.
Collapse
|
11
|
Jiang S, Yin C, Dang K, Zhang W, Huai Y, Qian A. Comprehensive ceRNA network for MACF1 regulates osteoblast proliferation. BMC Genomics 2022; 23:695. [PMID: 36207684 PMCID: PMC9541005 DOI: 10.1186/s12864-022-08910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies have shown that microtubule actin crosslinking factor 1 (MACF1) can regulate osteoblast proliferation and differentiation through non-coding RNA (ncRNA) in bone-forming osteoblasts. However, the role of MACF1 in targeting the competing endogenous RNA (ceRNA) network to regulate osteoblast differentiation remains poorly understood. Here, we profiled messenger RNA (mRNA), microRNA (miRNA), and long ncRNA (lncRNA) expression in MACF1 knockdown MC3TC‑E1 pre‑osteoblast cells. RESULTS In total, 547 lncRNAs, 107 miRNAs, and 376 mRNAs were differentially expressed. Significantly altered lncRNAs, miRNAs, and mRNAs were primarily found on chromosome 2. A lncRNA-miRNA-mRNA network was constructed using a bioinformatics computational approach. The network indicated that mir-7063 and mir-7646 were the most potent ncRNA regulators and mef2c was the most potent target gene. Pathway enrichment analysis showed that the fluid shear stress and atherosclerosis, p53 signaling, and focal adhesion pathways were highly enriched and contributed to osteoblast proliferation. Importantly, the fluid shear stress and atherosclerosis pathway was co-regulated by lncRNAs and miRNAs. In this pathway, Dusp1 was regulated by AK079370, while Arhgef2 was regulated by mir-5101. Furthermore, Map3k5 was regulated by AK154638 and mir-466q simultaneously. AK003142 and mir-3082-5p as well as Ak141402 and mir-446 m-3p were identified as interacting pairs that regulate target genes. CONCLUSION This study revealed the global expression profile of ceRNAs involved in the differentiation of MC3TC‑E1 osteoblasts induced by MACF1 deletion. These results indicate that loss of MACF1 activates a comprehensive ceRNA network to regulate osteoblast proliferation.
Collapse
Affiliation(s)
- Shanfeng Jiang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
| | - Chong Yin
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- Department of Clinical Laboratory, Academician (expert) workstation, Lab of epigenetics and RNA therapy, Affiliated Hospital of North Sichuan Medical College, 637000, Nanchong, China
| | - Kai Dang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
| | - Wenjuan Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
| | - Ying Huai
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China.
| |
Collapse
|
12
|
Souza OF, Popi AF. Role of microRNAs in B-Cell Compartment: Development, Proliferation and Hematological Diseases. Biomedicines 2022; 10:biomedicines10082004. [PMID: 36009551 PMCID: PMC9405569 DOI: 10.3390/biomedicines10082004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022] Open
Abstract
B-cell development is a very orchestrated pathway that involves several molecules, such as transcription factors, cytokines, microRNAs, and also different cells. All these components maintain the ideal microenvironment and control B-cell differentiation. MicroRNAs are small non-coding RNAs that bind to target mRNA to control gene expression. These molecules could circulate in the body in a free form, protein-bounded, or encapsulated into extracellular vesicles, such as exosomes. The comprehension of the role of microRNAs in the B-cell development was possible based on microRNA profile of each B-cell stage and functional studies. Herein, we report the knowledge about microRNAs in the B-cell the differentiation, proliferation, and also in hematological malignancies.
Collapse
|
13
|
Functional Screen for microRNAs Suppressing Anchorage-Independent Growth in Human Cervical Cancer Cells. Int J Mol Sci 2022; 23:ijms23094791. [PMID: 35563182 PMCID: PMC9100801 DOI: 10.3390/ijms23094791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
The progression of anchorage-dependent epithelial cells to anchorage-independent growth represents a critical hallmark of malignant transformation. Using an in vitro model of human papillomavirus (HPV)-induced transformation, we previously showed that acquisition of anchorage-independent growth is associated with marked (epi)genetic changes, including altered expression of microRNAs. However, the laborious nature of the conventional growth method in soft agar to measure this phenotype hampers a high-throughput analysis. We developed alternative functional screening methods using 96- and 384-well ultra-low attachment plates to systematically investigate microRNAs regulating anchorage-independent growth. SiHa cervical cancer cells were transfected with a microRNA mimic library (n = 2019) and evaluated for cell viability. We identified 84 microRNAs that consistently suppressed growth in three independent experiments. Further validation in three cell lines and comparison of growth in adherent and ultra-low attachment plates yielded 40 microRNAs that specifically reduced anchorage-independent growth. In conclusion, ultra-low attachment plates are a promising alternative for soft-agar assays to study anchorage-independent growth and are suitable for high-throughput functional screening. Anchorage independence suppressing microRNAs identified through our screen were successfully validated in three cell lines. These microRNAs may provide specific biomarkers for detecting and treating HPV-induced precancerous lesions progressing to invasive cancer, the most critical stage during cervical cancer development.
Collapse
|
14
|
Pei J, Dou H, Deng X. CircFAM53B promotes the proliferation and metastasis of glioma through activating the c-MET/PI3K/AKT pathway via sponging miR-532-3p. Cell Cycle 2022; 21:462-476. [PMID: 35100091 PMCID: PMC8942547 DOI: 10.1080/15384101.2021.2014738] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Increasing evidence reveals that circular RNAs (circRNAs) regulate multiple biological functions in glioma. Previously, several reports have illustrated that circFAM53B contributes to cancer development. However, the functions and mechanisms of circFAM53B in glioma remain elusive. Here, we gauged the circFAM53B profile in glioma tissues and cell lines and conducted gain-of-function assays of circFAM53B to verify circFAM53B's influence on the proliferation and metastasis of glioma cells (including A172 and LN18). As a result, circFAM53B was up-regulated in glioma tissues (vs. the matched non-tumor tissues). Higher levels of circFAM53B predicted poorer survival of glioma patients. Functionally, circFAM53B up-regulation accelerated cell proliferation, colony formation, invasion and epithelial-mesenchymal transition (EMT), and heightened Bax/Bcl2 ratio. By contrast, circFAM53B down-regulation repressed glioma development in vitro. Mechanistically, bioinformatics analysis suggested that circFAM53B served as a competitive endogenous RNA (ceRNA) by sponging miR-532-3p, which targeted proto-oncogene (MET) and receptor tyrosine kinase (c-MET). miR-532-3p up-regulation delayed glioma development and inactivated the PI3K/AKT axis. Moreover, the treatment of the c-MET inhibitor SGX523, the PI3K inhibitor LY294002, and the Akt inhibitor MK-2206 reduced circFAM53B-mediated oncogenic effects. Conclusively, circFAM53B aggravated glioma progression by up-regulating the c-MET/PI3K/AKT pathway and down-regulating miR-532-3p. Thus, the circFAM53B/miR-532-3p/c-MET/PI3K/AKT axis is a potential treatment target for glioma.
Collapse
Affiliation(s)
- Jiaping Pei
- Huadong Research Institute for Medicine and Biotechnics, Nanjing, China
| | - Hui Dou
- Department of Clinical Laboratory Medicine, The First People’s Hospital of Suzhou, Suzhou, China
| | - Xiaozhao Deng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China,CONTACT Xiaozhao Deng School of Life Science and Technology, China Pharmaceutical University, Nanjing210009, China
| |
Collapse
|
15
|
miR-532-3p inhibits the progression of tongue squamous cell carcinoma by targeting podoplanin. Chin Med J (Engl) 2021; 134:2999-3008. [PMID: 34939978 PMCID: PMC8710329 DOI: 10.1097/cm9.0000000000001563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The association between miR-532-3p and tongue squamous cell carcinoma (TSCC) has been examined in the literature to improve the survival rate of patients with this tumor. However, further studies are needed to confirm the regulatory roles of this microRNA (miRNA) in TSCC. The objective of this study was to investigate the roles played by and the underlying mechanism used by the miR-532-3p/podoplanin (PDPN) axis in TSCC development. METHODS Western blotting and quantitative real-time reverse transcription-polymerase chain reaction (RT-qPCR) were performed to evaluate the PDPN expression level in TSCC tissues and cells. The proliferative, adhesive, and migratory capabilities of TSCC cells (CAL-27 and CTSC-3) were examined using cell counting kit-8 (CCK-8), cell adhesion, and wound-healing assays, respectively. The dual-luciferase reporter (DLR) assay was later conducted to confirm the relationship between miR-532-3p and PDPN. RESULTS The results indicated that PDPN expression was enriched in TSCC tissues and cells, and that the expression of PDPN was associated with some clinicopathological parameters of TSCC, including lymph node metastasis (P = 0.001), tumor-node-metastasis (TNM) staging (P = 0.010), and grading (P = 0.010). Further analysis also showed that PDPN knockdown inhibited the viability, adhesive ability, and migratory capacity of CAL-27 and CTSC-3 cells, effects that could be reversed by the application of a miR-532-3p inhibitor. Additionally, PDPN was found to be a direct target of miR-532-3p. CONCLUSIONS This research suggested that by targeting PDPN, miR-532-3p could inhibit cell proliferation viability, adhesion, and migration in TSCC. Findings also revealed that the miR-532-3p/PDPN axis might provide more insights into the prognosis and treatment of TSCC.
Collapse
|
16
|
Kalushkova A, Nylund P, Párraga AA, Lennartsson A, Jernberg-Wiklund H. One Omics Approach Does Not Rule Them All: The Metabolome and the Epigenome Join Forces in Haematological Malignancies. EPIGENOMES 2021; 5:epigenomes5040022. [PMID: 34968247 PMCID: PMC8715477 DOI: 10.3390/epigenomes5040022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 02/01/2023] Open
Abstract
Aberrant DNA methylation, dysregulation of chromatin-modifying enzymes, and microRNAs (miRNAs) play a crucial role in haematological malignancies. These epimutations, with an impact on chromatin accessibility and transcriptional output, are often associated with genomic instability and the emergence of drug resistance, disease progression, and poor survival. In order to exert their functions, epigenetic enzymes utilize cellular metabolites as co-factors and are highly dependent on their availability. By affecting the expression of metabolic enzymes, epigenetic modifiers may aid the generation of metabolite signatures that could be utilized as targets and biomarkers in cancer. This interdependency remains often neglected and poorly represented in studies, despite well-established methods to study the cellular metabolome. This review critically summarizes the current knowledge in the field to provide an integral picture of the interplay between epigenomic alterations and the cellular metabolome in haematological malignancies. Our recent findings defining a distinct metabolic signature upon response to enhancer of zeste homolog 2 (EZH2) inhibition in multiple myeloma (MM) highlight how a shift of preferred metabolic pathways may potentiate novel treatments. The suggested link between the epigenome and the metabolome in haematopoietic tumours holds promise for the use of metabolic signatures as possible biomarkers of response to treatment.
Collapse
Affiliation(s)
- Antonia Kalushkova
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
- Correspondence:
| | - Patrick Nylund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| | - Alba Atienza Párraga
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, NEO, Karolinska Institutet, 14157 Huddinge, Sweden;
| | - Helena Jernberg-Wiklund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| |
Collapse
|
17
|
Gao B, Wang L, Zhang Y, Zhang N, Han M, Liu H, Sun D, Liu Y. MiR-532-3p suppresses cell viability, migration and invasion of clear cell renal cell carcinoma through targeting TROAP. Cell Cycle 2021; 20:1578-1588. [PMID: 34287099 DOI: 10.1080/15384101.2021.1953767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a subtype of renal cell cancer with the highest mortality, infiltration, and metastasis rate, threatening human health. Despite oncogenic role of TROAP in various cancers, its function in ccRCC remains to be unraveled. The differentially expressed mRNAs (DEmRNAs) and miRNAs (DEmiRNAs) were obtained by analyzing the related data sets of ccRCC in TCGA. The expression levels of mRNAs and miRNAs in the cell were detected by qRT-PCR, while the protein levels were characterized by western blot. The viability, migratory and invasive abilities of ccRCC cells were determined by MTT, wound healing and cell invasion assays. The combination of miRNA target site prediction and dual-luciferase reporter gene assay verified the binding relationship between miR-532-3p and TROAP. Research on ccRCC displayed that TROAP expression was upregulated, while miR-532-3p was down-regulated. Besides, upregulation of TROAP could accelerate viability, migratory and invasive potentials of ccRCC cells. On the contrary, miR-532-3p could downregulate TROAP level, but TROAP upregulation reversed the viability, migration, and invasion of ccRCC cells. MiR-532-3p could attenuate the viability, migration and invasion of ccRCC cells by targeting TROAP. This may generate novel insights into molecular therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Bin Gao
- Department of Urology, Tangshan Central Hospital, Tangshan, Hebei, P.R. China
| | - Lijuan Wang
- Department of Urology, Tangshan Central Hospital, Tangshan, Hebei, P.R. China
| | - Yubo Zhang
- Department of Urology, Tangshan Central Hospital, Tangshan, Hebei, P.R. China
| | - Na Zhang
- Department of Urology, Tangshan Central Hospital, Tangshan, Hebei, P.R. China
| | - Miaomiao Han
- Department of Urology, Tangshan Central Hospital, Tangshan, Hebei, P.R. China
| | - Huancai Liu
- Department of Urology, Tangshan Central Hospital, Tangshan, Hebei, P.R. China
| | - Dongli Sun
- Department of Urology, Tangshan Central Hospital, Tangshan, Hebei, P.R. China
| | - Yifei Liu
- Department of Urology, Tangshan Central Hospital, Tangshan, Hebei, P.R. China
| |
Collapse
|
18
|
Biagioni A, Chillà A, Del Rosso M, Fibbi G, Scavone F, Andreucci E, Peppicelli S, Bianchini F, Calorini L, Li Santi A, Ragno P, Margheri F, Laurenzana A. CRISPR/Cas9 uPAR Gene Knockout Results in Tumor Growth Inhibition, EGFR Downregulation and Induction of Stemness Markers in Melanoma and Colon Carcinoma Cell Lines. Front Oncol 2021; 11:663225. [PMID: 34055629 PMCID: PMC8163229 DOI: 10.3389/fonc.2021.663225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
uPAR is a globular protein, tethered to the cell membrane by a GPI-anchor involved in several cancer-related properties and its overexpression commonly correlates with poor prognosis and metastasis. We investigated the consequences of uPAR irreversible loss in human melanoma and colon cancer cell lines, knocking out its expression by CRISPR/Cas9. We analyzed through flow cytometry, western blotting and qPCR, the modulation of the most known cancer stem cells-associated genes and the EGFR while we observed the proliferation rate exploiting 2D and 3D cellular models. We also generated uPAR “rescue” expression cell lines as well as we promoted the expression of only its 3’UTR to demonstrate the involvement of uPAR mRNA in tumor progression. Knocking out PLAUR, uPAR-encoding gene, we observed an inhibited growth ratio unexpectedly coupled with a significant percentage of cells acquiring a stem-like phenotype. In vivo experiments demonstrated that uPAR loss completely abrogates tumorigenesis despite the gained stem-like profile. Nonetheless, we proved that the reintroduction of the 3’UTR of PLAUR gene was sufficient to restore the wild-type status validating the hypothesis that such a region may act as a “molecular sponge”. In particular miR146a, by binding PLAUR 3’ UTR region might be responsible for uPAR-dependent inhibition of EGFR expression.
Collapse
Affiliation(s)
- Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Anastasia Chillà
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Francesca Scavone
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Anna Li Santi
- Department of Chemistry and Biology, University of Salerno, Fisciano, Italy
| | - Pia Ragno
- Department of Chemistry and Biology, University of Salerno, Fisciano, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| |
Collapse
|