1
|
Rashid AAA, Musa M, Nafi SNM, Majid NA, Sulong S. The potential role of PAX5 and PAX8 in regulating telomerase activity: a narrative mini-review. Mol Biol Rep 2025; 52:594. [PMID: 40515947 DOI: 10.1007/s11033-025-10704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 06/09/2025] [Indexed: 06/16/2025]
Abstract
The ability to express replicative immortality is one of the hallmarks of cancer. Most of these cells attain this feature by expressing the enzyme telomerase. This enzyme is responsible for maintaining the telomeres, a repeating structure at the ends of chromosomes, protecting the chromosomes from degradation. The Paired Box (PAX) genes are a family of highly conserved genes involved in various functions, including the development of diseases like cancer, in which most of them express telomerase as the mechanism to maintain telomere length. This study seeks to investigate PAX genes as potential telomerase activators and explore emerging research areas. Related literature was retrieved from PubMed, Web of Science and Scopus databases using a keyword search, where 119 records were identified. However, upon further filtering, only four reports were relevant to this topic, which addresses the role of PAX5 and PAX8 genes and their proteins' role in telomerase regulation. More studies are needed to elucidate the complex mechanism of action between the PAX genes and telomerase regulation.
Collapse
Affiliation(s)
- Amin Abdurrahman Abdul Rashid
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Siti Norasikin Mohd Nafi
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nazia Abdul Majid
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Sarina Sulong
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
2
|
Ye J, Huang X, Qin W, Liang P, Zhao J, Ye Y, Ji H, Peng X, Liang Y, Cai Y. Paired Box 5 (PAX5) Gene Has Diagnostic and Prognostic Potential in Nasopharyngeal Carcinoma. Int J Gen Med 2024; 17:487-501. [PMID: 38348125 PMCID: PMC10860600 DOI: 10.2147/ijgm.s442835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose Paired Box 5 (PAX5) is a transcription factor that is widely associated with carcinogenesis. PAX5 can maintain Epstein-Barr virus (EBV) latency in B cells, while a close association exists between EBV infection and nasopharyngeal carcinoma (NPC). However, there are very few reports on the correlation between PAX5 and NPC development. The aim of this study was to investigate the role of PAX5 in NPC. Patients and Methods The clinical value and prognostic significance of PAX5 in NPC and the association with PAX5 expression and immune cell infiltration were analyzed by multiple GEO datasets. In vivo and in vitro experiments including real-time PCR, Western blot, CCK-8 assay, and methylation sequencing were used to validate the results of bioinformatics analysis. Results The expression of PAX5 was significantly reduced in NPC tissues, with the low expression being correlated with advanced clinical stage, low tumor mutation burden and immune activation, high relative expression of EBV, poor survival for NPC patients. PAX5 exhibited excellent diagnostic performance and had potential as a predictive factor for response to the immune checkpoint inhibitors therapy. Enrichment analysis suggested that the low expression of PAX5 was associated with the dysregulation of Hippo and Wnt signaling pathways. The promoter of PAX5 gene was hypermethylated in NPC tissues. Furthermore, the in vitro and in vivo experiments revealed that NPC tissue and cell lines had low mRNA expression levels of PAX5, the PAX5 promoter was hypermethylated in NPC cell lines, and PAX5 overexpression inhibited NPC cell proliferation and tumor growth in nude mice. Conclusion PAX5 may be a tumor suppressor and serve as a novel potential diagnostic and prognostic marker for NPC.
Collapse
Affiliation(s)
- Jiemei Ye
- Guangxi Health Commission Key Laboratory of Molecular Epidemiology of Nasopharyngeal Carcinoma, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
- Department of Clinical Laboratory, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
| | - Xiaoying Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Weiling Qin
- Guangxi Health Commission Key Laboratory of Molecular Epidemiology of Nasopharyngeal Carcinoma, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
- Department of Clinical Laboratory, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
| | - Pan Liang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Jun Zhao
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Yinxin Ye
- Guangxi Health Commission Key Laboratory of Molecular Epidemiology of Nasopharyngeal Carcinoma, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
- Department of Clinical Laboratory, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
| | - Huojin Ji
- Guangxi Health Commission Key Laboratory of Molecular Epidemiology of Nasopharyngeal Carcinoma, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
- Department of Clinical Laboratory, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
| | - Xinyun Peng
- Guangxi Health Commission Key Laboratory of Molecular Epidemiology of Nasopharyngeal Carcinoma, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
- Department of Clinical Laboratory, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
| | - Yushan Liang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Yonglin Cai
- Guangxi Health Commission Key Laboratory of Molecular Epidemiology of Nasopharyngeal Carcinoma, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, People’s Republic of China
- Department of Preventive Medicine, Wuzhou Cancer Center, Wuzhou, Guangxi, People’s Republic of China
| |
Collapse
|
3
|
Shi H, Zou Y, Zhong W, Li Z, Wang X, Yin Y, Li D, Liu Y, Li M. Complex roles of Hippo-YAP/TAZ signaling in hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:15311-15322. [PMID: 37608027 DOI: 10.1007/s00432-023-05272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND The Hippo signaling pathway is an evolutionarily conserved signaling module that controls organ size in different species, and the disorder of the Hippo pathway can induce liver cancer in organisms, especially hepatocellular carcinoma (HCC). The exact mechanism that causes cancer is still unknown. Recent studies have shown that it is a classical kinase cascade that phosphorylates the Mst1/2-sav1 complex and activates the phosphorylation of the Lats1/2-mob1A/B complex for inactivating Yap and Taz. These kinases and scaffolds are regarded as primary regulators of the Hippo pathway, and help in activating a variety of carcinogenic processes. Among them, Yap/Taz is seen to be the main effector molecule, which is downstream of the Hippo pathway, and its abnormal activation is related to a variety of human cancers including liver cancer. Currently, since Yap/Taz plays a variety of roles in cancer promotion and tumor regeneration, the Hippo pathway has emerged as an attractive target in recent drug development research. METHODS We collect and review relevant literature in web of Science and Pubmed. CONCLUSION This review highlights the important roles of Yap/Taz in activating Hippo pathway in liver cancer. The recent findings on the crosstalks between the Hippo and other cancer associated pathways and moleculars are also discussed. In this review, we summarized and discussed recent breakthroughs in our understanding of how key components of the Hippo-YAP/TAZ pathway influence the hepatocellular carcinoma, including their effects on tumor occurrence and development, their roles in regulating metastasis, and their function in chemotherapy resistance. Further, the molecular mechanism and roles in regulating cross talk between Hippo-YAP/TAZ pathway and other cancer-associated pathways or oncogenes/cancer suppressor genes were summarized and discussed. More, many other inducers and inhibitors of this signaling cascade and available experimental therapies against the YAP/TAZ/TEAD axis were discussed. Targeting this pathway for cancer therapy may have great significance in the treatment of hepatocellular carcinoma. Graphical summary of the complex role of Hippo-YAP/TAZ signaling in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hewen Shi
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Ying Zou
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Weiwei Zhong
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Zhaoying Li
- Traditional Chinese Medicine Research Center, Shandong Public Health Clinical Center, Jinan, 250102, People's Republic of China
| | - Xiaoxue Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Yancun Yin
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Ying Liu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| | - Minjing Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Takashima Y, Komatsu S, Ohashi T, Kiuchi J, Nishibeppu K, Kamiya H, Arakawa H, Ishida R, Shimizu H, Arita T, Konishi H, Shiozaki A, Kubota T, Fujiwara H, Otsuji E. Plasma miR-1254 as a predictive biomarker of chemosensitivity and a target of nucleic acid therapy in esophageal cancer. Cancer Sci 2023; 114:3027-3040. [PMID: 37190912 PMCID: PMC10323105 DOI: 10.1111/cas.15830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023] Open
Abstract
This study investigated novel tumor suppressor microRNAs (miRNAs) that decrease in plasma and predict chemosensitivity to neoadjuvant chemotherapy (NAC) for esophageal squamous cell carcinoma (ESCC) and revealed their usefulness as novel therapeutic agents. We selected four miRNA candidates (miR-323, 345, 409, and 1254) based on the microRNA microarray comparing pre-treatment plasma levels in ESCC patients with high and low histopathological responses to NAC and an NCBI database review. Among these miRNA candidates, miR-1254 was more highly elevated in pre-treatment plasma of ESCC patients with a high histopathological response than in those with a low histopathological response (P = 0.0021, area under the receiver-operating characteristic curve 0.7621). High plasma miR-1254 levels tended to correlate with the absence of venous invasion (P = 0.0710) and were an independent factor predicting a higher response to chemotherapy (P = 0.0022, odds ratio 7.86) and better prognosis (P = 0.0235, hazard ratio 0.23). Overexpressing miR-1254 in ESCC cells significantly enhanced chemosensitivity to cisplatin through the transcriptional regulation of ABCC1 in vitro. Moreover, increased plasma miR-1254 levels by subcutaneous injection significantly improved responses to cisplatin in mice. Plasma miR-1254 might be a useful biomarker for predicting responses to NAC, and the restoration of plasma miR-1254 levels might improve chemosensitivity in ESCC.
Collapse
Affiliation(s)
- Yusuke Takashima
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Shuhei Komatsu
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Takuma Ohashi
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Jun Kiuchi
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Keiji Nishibeppu
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Hajime Kamiya
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Hiroshi Arakawa
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Ryo Ishida
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Hiroki Shimizu
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Tomohiro Arita
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Hirotaka Konishi
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Atsushi Shiozaki
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Takeshi Kubota
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Hitoshi Fujiwara
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| | - Eigo Otsuji
- Department of Surgery, Division of Digestive SurgeryKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
5
|
Chen WC, Chang TC, Chou HH, Cheng MH, Hong JJ, Hsieh YS, Cheng CM. Peritoneal Fluid Analysis of Advanced Ovarian Cancers after Hyperthermic Intraperitoneal Chemotherapy. Int J Mol Sci 2023; 24:ijms24119748. [PMID: 37298699 DOI: 10.3390/ijms24119748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
This study investigated miRNA and cytokine expression changes in peritoneal fluid samples of patients with advanced ovarian cancer (OVCA) after receiving hyperthermic intraperitoneal chemotherapy (HIPEC) during cytoreduction surgery (CRS). We collected samples prior to HIPEC, immediately after HIPEC, and 24/48/72 h after CRS from a total of 6 patients. Cytokine levels were assessed using a multiplex cytokine array, and a miRNA PanelChip Analysis System was used for miRNA detection. Following HIPEC, miR-320a-3p, and miR-663-a were found to be immediately down-regulated but increased after 24 h. Further, significant upregulation post-HIPEC and sustained increases in expression were detected in six other miRNAs, including miR-1290, miR-1972, miR-1254, miR-483-5p, miR-574-3p, and miR-574-5p. We also found significantly increased expression of cytokines, including MCP-1, IL-6, IL-6sR, TIMP-1, RANTES, and G-CSF. The changing expression pattern throughout the study duration included a negative correlation in miR-320a-3p and miR-663-a to cytokines including RANTES, TIMP-1, and IL-6 but a positive correlation in miRNAs to cytokines including MCP-1, IL-6sR, and G-CSF. Our study found miRNAs and cytokines in the peritoneal fluid of OVCA patients demonstrated different expression characteristics following CRS and HIPEC. Both changes in expression demonstrated correlations, but the role of HIPEC remains unknown, prompting the need for research in the future.
Collapse
Affiliation(s)
- Wei-Chun Chen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Obstetrics and Gynecology, New Taipei City Municipal Tucheng Hospital, New Taipei City 236, Taiwan
- International Intercollegiate Ph.D. Program & Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ting-Chang Chang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hung-Hsueh Chou
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Mei-Hsiu Cheng
- Taiwan Business Development Department, Inti Taiwan, Inc., Hsinchu 302, Taiwan
| | - Jun-Jie Hong
- Taiwan Business Development Department, Inti Taiwan, Inc., Hsinchu 302, Taiwan
| | - Yi-Shan Hsieh
- Taiwan Business Development Department, Inti Taiwan, Inc., Hsinchu 302, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
6
|
Mranda GM, Xiang ZP, Liu JJ, Wei T, Ding Y. Advances in prognostic and therapeutic targets for hepatocellular carcinoma and intrahepatic cholangiocarcinoma: The hippo signaling pathway. Front Oncol 2022; 12:937957. [PMID: 36033517 PMCID: PMC9411807 DOI: 10.3389/fonc.2022.937957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/13/2022] [Indexed: 01/07/2023] Open
Abstract
Primary liver cancer is the sixth most frequently diagnosed cancer worldwide and the third leading cause of cancer-related death. The majority of the primary liver cancer cases are hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Worldwide, there is an increasing incidence of primary liver cancer cases due to multiple risk factors ranging from parasites and viruses to metabolic diseases and lifestyles. Often, patients are diagnosed at advanced stages, depriving them of surgical curability benefits. Moreover, the efficacy of the available chemotherapeutics is limited in advanced stages. Furthermore, tumor metastases and recurrence make primary liver cancer management exceptionally challenging. Thus, exploring the molecular mechanisms for the development and progression of primary liver cancer is critical in improving diagnostic, treatment, prognostication, and surveillance modalities. These mechanisms facilitate the discovery of specific targets that are critical for novel and more efficient treatments. Consequently, the Hippo signaling pathway executing a pivotal role in organogenesis, hemostasis, and regeneration of tissues, regulates liver cells proliferation, and apoptosis. Cell polarity or adhesion molecules and cellular metabolic status are some of the biological activators of the pathway. Thus, understanding the mechanisms exhibited by the Hippo pathway is critical to the development of novel targeted therapies. This study reviews the advances in identifying therapeutic targets and prognostic markers of the Hippo pathway for primary liver cancer in the past six years.
Collapse
|
7
|
Hu H, Zhang T, Wu Y, Deng M, Deng H, Yang X. Cross-regulation between microRNAs and key proteins of signaling pathways in hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2022; 16:753-765. [PMID: 35833844 DOI: 10.1080/17474124.2022.2101994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a subtype of primary liver cancer and a major cause of death. Although miRNA plays an important role in hepatocellular carcinoma, the specific regulatory network remains unclear. Therefore, this paper comprehensively describes the miRNA-related signaling pathways in HCC and the possible interactions among different signaling pathways. The aim is to lay the foundation for the discovery of new molecular targets and multi-target therapy. AREAS COVERED Based on miRNA, HCC, and signaling pathways, the literature was searched on Web of Science and PubMed. Then, common targets between different signaling pathways were found from KEGG database, and possible cross-regulation mechanisms were further studied. In this review, we elaborated from two aspects, respectively, laying a foundation for studying the regulatory mechanism and potential targets of miRNA in HCC. EXPERT OPINION Non-coding RNAs have become notable molecules in cancer research in recent years, and many types of targeted drugs have emerged. From the outset, molecular targets and signal pathways are interlinked, which suggests that signal pathways and regulatory networks should be concerned in basic research, which also provides a strong direction for future mechanism research.
Collapse
Affiliation(s)
- Haihong Hu
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Taolan Zhang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China.,The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yiwen Wu
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Meina Deng
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Huiling Deng
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xiaoyan Yang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, Hunan, China.,The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, China
| |
Collapse
|
8
|
Akrida I, Bravou V, Papadaki H. The deadly cross-talk between Hippo pathway and epithelial–mesenchymal transition (EMT) in cancer. Mol Biol Rep 2022; 49:10065-10076. [DOI: 10.1007/s11033-022-07590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
|
9
|
Tang HX, Yi FZ, Huang ZS, Huang GL. Role of Hippo signaling pathway in occurrence, development, and treatment of primary hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2022; 30:34-42. [DOI: 10.11569/wcjd.v30.i1.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Hippo signal transduction pathway, first discovered in drosophila, is a highly conserved signaling pathway that inhibits cell growth. Its core molecules include Hpo, Sav, Wts, Mats, and downstream effector factor YAP/TAZ. Corresponding homologous analogs in humans are STE20 protein-like kinase 1/2, Salvatore family 1, large tumor suppressor gene 1/2 kinase, and MOB kinase activator 1A/1B. Inactivation of this pathway promotes the survival, proliferation, invasive migration, and metastasis of cancer cells. This process can be seen in liver cancer, lung cancer, colorectal cancer, breast cancer, pancreatic cancer, melanoma, glioma, and other cancers, which can lead to the occurrence of resistance to chemotherapy, radiotherapy, or immunotherapy. This paper aims to review the role of the Hippo signaling pathway in the occurrence, development, and treatment of liver cancer, in order to provide reference for new targeted therapies for liver cancer.
Collapse
Affiliation(s)
- Hui-Xian Tang
- Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Fu-Zhen Yi
- Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Zan-Song Huang
- Department of Gastroenter-ology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China,Guangxi Clinical Research Center for Hepatobiliary Diseases, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Gui-Liu Huang
- Department of Gastroenter-ology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
10
|
Li H, Wang N, Xu Y, Chang X, Ke J, Yin J. Upregulating microRNA-373-3p promotes apoptosis and inhibits metastasis of hepatocellular carcinoma cells. Bioengineered 2022; 13:1304-1319. [PMID: 34983307 PMCID: PMC8805941 DOI: 10.1080/21655979.2021.2014616] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies in the digestive system. Abnormal miR-373-3p and TFAP4 expressions are critical in many malignant tumors, but it is unclear whether they work in the context of HCC. qRT-PCR measured miR-373-3p expression in HCC tissues and adjacent normal tissues. Flow cytometry and Western blot analyzed cell apoptosis. EMT, Transwell, and wound healing assay examined HCC cell migration and EMT, respectively. Western blot determined the profile of TFAP4/PI3K/AKT. IHC detected Ki67, E-cadherin, and vimentin in the tumor tissues. Moreover, the downstream target of miR-373-3p was predicted using the database. Dual luciferase activity assay and RIP verified the binding correlation between TFAP4 and miR-373-3p. In HCC tissues and cell lines, miR-373-3p was downregulated, and its overexpression stepped up HCC cell apoptosis and suppressed migration and EMT. Furthermore, miR-373-3p overexpression elevated Bax and caspase 3 expressions and attenuated Bcl2’s level. A xenograft tumor experiment in nude mice unveiled that miR-373-3p overexpression dampened tumor growth and proliferation. miR-373-3p cramped PI3K/AKT pathway activation. miR-373-3p negatively modulated TFAP4, and TFAP4 overexpression inverted miR-373-3p-mediated anti-tumor effects. Additionally, TFAP4 enhanced IGF1 expression, and promoted IGF1R-PI3K/AKT pathway activation. Collectively, miR-373-3p functions as an anti-tumor gene in HCC by inhibiting TFAP4/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Hongbin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Nan Wang
- Emergency Internal Medicine, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuntian Xu
- Emergency Internal Medicine, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao Chang
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing Ke
- Department of Infectious Diseases, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun Yin
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
11
|
Nie X, Liu H, Wei X, Li L, Lan L, Fan L, Ma H, Liu L, Zhou Y, Hou R, Chen WD. miRNA-382-5p Suppresses the Expression of Farnesoid X Receptor to Promote Progression of Liver Cancer. Cancer Manag Res 2021; 13:8025-8035. [PMID: 34712060 PMCID: PMC8547345 DOI: 10.2147/cmar.s324072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
Background The dysregulation of microRNAs (miRNAs) and hepatotoxicity due to the aberrant accumulation of bile acids (BAs) are notorious causes that predispose an individual to the development of hepatocellular carcinoma (HCC). Farnesoid X receptor (FXR), encoded by NR1H4 gene, has been identified as a crucial BA receptor to maintain the homeostasis of BA pool and its expression is decreased in HCC. miR-382-5p plays an important role in the pathogenesis of many human malignancies and was reported to promote the proliferation and differentiation of normal liver cells and liver regeneration. However, there is still some controversy about its role in HCC microenvironment. This study aims to explore the expression pattern of miR-382-5p in HCC and its role in regulating FXR during the development of HCC. Methods Tissues collected from 30 HCC patients were subjected to extraction of total RNA and quantitative real-time PCR (qRT-PCR) for the analyses of miR-382-5p expression and NR1H4 mRNA levels, and their expressions were verified by analyzing the online HCC-related GSE datasets. The role of miR-382-5p in regulating cellular proliferation and expression of FXR in different HCC cell lines was analyzed by qRT-PCR, Western Blot, real-time cellular analysis (RTCA) and luciferase reporter assays. The role of miR-382-5p in regulating downstream genes of FXR in HCC cells was also analyzed. Results miR-382-5p was upregulated in HCC tissues and inversely associated with the downregulation of NR1H4 mRNA levels. The luciferase reporter assay proved that miR-382-5p directly targeted the 3ʹ-untranslated region (3ʹ-UTR) of human NR1H4 mRNA. Overexpression of miR-382-5p led to a malignant proliferation of HCC cells by suppressing the expression of FXR. In contrast, blocking the endogenous miR-382-5p was sufficient to suppress the cellular proliferation rate of HCC through increasing FXR expression. Additionally, miR-382-5p inhibited the expression of some target genes of FXR, including SHP, FGF19 and SLC51A, and this inhibitory effect was FXR-dependent. Conclusion Therefore, miR-382-5p promotes the progression of HCC in vitro by suppressing FXR and could serve as a valuable therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Huiyang Liu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Xiaoyun Wei
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Lanqing Li
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lili Fan
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Han Ma
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Lei Liu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Yun Zhou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Ruifang Hou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, People's Hospital of Hebi, Henan University, Kaifeng, People's Republic of China.,Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, People's Republic of China
| |
Collapse
|
12
|
Liang M, Gong D, Wang L, Liang X, Meng J, Huang W, Zhou J. PAX5 haploinsufficiency induced CD8+ T cells dysfunction or exhaustion by high expression of immune inhibitory-related molecules. Cancer Treat Res Commun 2021; 28:100437. [PMID: 34425470 DOI: 10.1016/j.ctarc.2021.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/11/2021] [Accepted: 07/09/2021] [Indexed: 11/15/2022]
Abstract
PURPOSE PAX5 haploinsufficiency promoting tumorigenesis is related to immune escape. But the mechanisms of PAX5 mutations inducing tumor immune escape have not been clarified. Our aim was to study how PAX5 haploinsufficiency influences effector CD8 + T cells in tumor microenvironment. METHODS We estimated the proportions of 22 immune cell types and the expressions of immune inhibitory-related molecules based on gene expression profiles (GEPs) from children's B- acute lymphoblastic leukemia(B-ALL) with PAX5 mutations by CIBERSORT, an established algorithm. We constructed the PAX5 haplodeletion A20 cell lines, built allografted A20 tumor models and evaluated the effect of PAX5 haplodeletion on immune inhibitory-related molecules in the tumor microenvironment (TME). RESULTS Our results indicated the percentages of T cells in bone marrow of children's B-ALL with PAX5 mutations were not statistically different from that in bone marrow of B-ALL without PAX5 mutations, except for T follicular helper (Tfh) cells. But a variety of up-regulated immune inhibitory-related molecules in bone marrow of children's B- ALL with PAX5 mutations were identified. By different approaches, we found that several immune inhibitory-related molecules of CD8+ T cells in TME of PAX5 haplodeletion clones such as TIM3, NR4A1 and BATF, were increased significantly compared with that of PAX5 wild type control. The IFN-ɤ of CD8+ T cells in TME of PAX5 haplodeletion tumors was decreased significantly compared with that of PAX5 wild type control. CONCLUSION Our study showed that PAX5 haploinsufficiency induced CD8+ T cells dysfunction or exhaustion by high expression of TIM3, NR4A1 and BATF in the CD8+ T cells of TME.
Collapse
Affiliation(s)
- Mi Liang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wu Han, Hubei, China
| | - Duanhao Gong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wu Han, Hubei, China
| | - Lei Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wu Han, Hubei, China
| | - Xue Liang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wu Han, Hubei, China
| | - Jiao Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wu Han, Hubei, China
| | - Wei Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wu Han, Hubei, China.
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wu Han, Hubei, China
| |
Collapse
|
13
|
The Effect of RBP4 on microRNA Expression Profiles in Porcine Granulosa Cells. Animals (Basel) 2021; 11:ani11051391. [PMID: 34068244 PMCID: PMC8153112 DOI: 10.3390/ani11051391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Retinol binding protein 4 (RBP4), mainly secreted by the liver and adipocytes, is a transporter of vitamin A. RBP4 has been shown to be involved in several pathophysiological processes, such as polycystic ovary syndrome (PCOS), obesity, insulin resistance, and cardiovascular risk. However, the role of RBP4 in mammalian follicular granulosa cells (GCs) remains largely unknown. To characterize the molecular pathways associated with the effects of RBP4 on GCs, we used sRNA deep sequencing to detect differential microRNA (miRNA) expression in GCs overexpressing RBP4. A total of 17 miRNAs were significantly different between the experimental and control groups. Our results support the notion that several miRNAs are involved in important biological processes associated with folliculogenesis and pathogenesis. These results will be useful for further studies investigating the role of RBP4 in porcine GCs. Abstract Retinol binding protein 4 (RBP4) is a transporter of vitamin A that is secreted mainly by hepatocytes and adipocytes. It affects diverse pathophysiological processes, such as obesity, insulin resistance, and cardiovascular diseases. MicroRNAs (miRNAs) have been reported to play indispensable roles in regulating various developmental processes via the post-transcriptional repression of target genes in mammals. However, the functional link between RBP4 and changes in miRNA expression in porcine granulosa cells (GCs) remains to be investigated. To examine how increased expression of RBP4 affects miRNA expression, porcine GCs were infected with RBP4-targeted lentivirus for 72 h, and whole-genome miRNA profiling (miRNA sequencing) was performed. The sequencing data were validated using real-time quantitative polymerase chain reaction (RT-qPCR) analysis. As a result, we obtained 2783 known and 776 novel miRNAs. In the experimental group, 10 and seven miRNAs were significantly downregulated and upregulated, respectively, compared with the control group. Ontology analysis of the biological processes of these miRNAs indicated their involvement in a variety of biological functions. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that these miRNAs were involved mainly in the chemokine signaling pathway, peroxisome proliferators-activated receptors (PPAR) signaling pathway, insulin resistance pathway, nuclear factor-kappa B(NF-kappa B) signaling pathway, and steroid hormone biosynthesis. Our results indicate that RBP4 can regulate the expression of miRNAs in porcine GCs, with consequent physiological effects. In summary, this study profiling miRNA expression in RBP4-overexpressing porcine GCs provides an important reference point for future studies on the regulatory roles of miRNAs in the porcine reproductive system.
Collapse
|
14
|
Huang Y, Duanmu J, Liu Y, Yan M, Li T, Jiang Q. Analysis of multi-omics differences in left-side and right-side colon cancer. PeerJ 2021; 9:e11433. [PMID: 34026368 PMCID: PMC8123232 DOI: 10.7717/peerj.11433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/20/2021] [Indexed: 12/22/2022] Open
Abstract
Background Colon cancer is one of the most common tumors in the digestive tract. Studies of left-side colon cancer (LCC) and right-side colon cancer (RCC) show that these two subtypes have different prognoses, outcomes, and clinical responses to chemotherapy. Therefore, a better understanding of the importance of the clinical classifications of the anatomic subtypes of colon cancer is needed. Methods We collected colon cancer patients’ transcriptome data, clinical information, and somatic mutation data from the Cancer Genome Atlas (TCGA) database portal. The transcriptome data were taken from 390 colon cancer patients (172 LCC samples and 218 RCC samples); the somatic mutation data included 142 LCC samples and 187 RCC samples. We compared the expression and prognostic differences of LCC and RCC by conducting a multi-omics analysis of each using the clinical characteristics, immune microenvironment, transcriptomic differences, and mutation differences. The prognostic signatures was validated using the internal testing set, complete set, and external testing set (GSE39582). We also verified the independent prognostic value of the signature. Results The results of our clinical characteristic analysis showed that RCC had a significantly worse prognosis than LCC. The analysis of the immune microenvironment showed that immune infiltration was more common in RCC than LCC. The results of differential gene analysis showed that there were 360 differentially expressed genes, with 142 upregulated genes in LCC and 218 upregulated genes in RCC. The mutation frequency of RCC was generally higher than that of LCC. BRAF and KRAS gene mutations were the dominant genes mutations in RCC, and they had a strong mutual exclusion with APC, while APC gene mutation was the dominant gene mutation in LCC. This suggests that the molecular mechanisms of RCC and LCC differed. The 4-mRNA and 6-mRNA in the prognostic signatures of LCC and RCC, respectively, were highly predictive and may be used as independent prognostic factors. Conclusion The clinical classification of the anatomic subtypes of colon cancer is of great significance for early diagnosis and prognostic risk assessment. Our study provides directions for individualized treatment of left and right colon cancer.
Collapse
Affiliation(s)
- Yanyi Huang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Nanchang University, The Second Clinical Medicine College, Nanchang, Jiangxi, China
| | - Jinzhong Duanmu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yushu Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Nanchang University, The Second Clinical Medicine College, Nanchang, Jiangxi, China
| | - Mengyun Yan
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Nanchang University, The First Clinical Medicine College, Nanchang, Jiangxi, China
| | - Taiyuan Li
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qunguang Jiang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
MicroRNAs Regulating Hippo-YAP Signaling in Liver Cancer. Biomedicines 2021; 9:biomedicines9040347. [PMID: 33808155 PMCID: PMC8067275 DOI: 10.3390/biomedicines9040347] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
Liver cancer is one of the most common cancers worldwide, and its prevalence and mortality rate are increasing due to the lack of biomarkers and effective treatments. The Hippo signaling pathway has long been known to control liver size, and genetic depletion of Hippo kinases leads to liver cancer in mice through activation of the downstream effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Both YAP and TAZ not only reprogram tumor cells but also alter the tumor microenvironment to exert carcinogenic effects. Therefore, understanding the mechanisms of YAP/TAZ-mediated liver tumorigenesis will help overcome liver cancer. For decades, small noncoding RNAs, microRNAs (miRNAs), have been reported to play critical roles in the pathogenesis of many cancers, including liver cancer. However, the interactions between miRNAs and Hippo-YAP/TAZ signaling in the liver are still largely unknown. Here, we review miRNAs that influence the proliferation, migration and apoptosis of tumor cells by modulating Hippo-YAP/TAZ signaling during hepatic tumorigenesis. Previous findings suggest that these miRNAs are potential biomarkers and therapeutic targets for the diagnosis, prognosis, and treatment of liver cancer.
Collapse
|