1
|
Gupta G, Samuel VP, M RM, Rani B, Sasikumar Y, Nayak PP, Sudan P, Goyal K, Oliver BG, Chakraborty A, Dua K. Caspase-independent cell death in lung cancer: from mechanisms to clinical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04149-0. [PMID: 40257494 DOI: 10.1007/s00210-025-04149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/05/2025] [Indexed: 04/22/2025]
Abstract
Caspase-independent cell death (CICD) has recently become a very important mechanism in lung cancer, in particular, to overcome a critical failure in apoptotic cell death that is common to disease progression and treatment failures. The pathways involved in CICD span from necroptosis, ferroptosis, mitochondrial dysfunction, and autophagy-mediated cell death. Its potential therapeutic applications have been recently highlighted. Glutathione peroxidase 4 (GPX4) inhibition-driven ferroptosis has overcome drug resistance in non-small cell lung cancer (NSCLC). In addition, necroptosis involving RIPK1 and RIPK3 causes tumor cell death and modulation of immune responses in the tumor microenvironment (TME). Mitochondrial pathways are critical for CICD through modulation of metabolic and redox homeostasis. Ferroptosis is amplified by mitochondrial reactive oxygen species (ROS) and lipid peroxidation in lung cancer cells, and mitochondrial depolarization induces oxidative stress and leads to cell death. In addition, mitochondria-mediated autophagy, or mitophagy, results in the clearance of damaged organelles under stress conditions, while this function is also linked to CICD when dysregulated. The role of cell death through autophagy regulated by ATG proteins and PI3K/AKT/mTOR pathway is dual: to suppress tumor and to sensitize cells to therapy. A promising approach to enhancing therapeutic outcomes involves targeting mechanisms of CICD, including inducing ferroptosis by SLC7A11 inhibition, modulating mitochondrial ROS generation, or combining inhibition of autophagy with chemotherapy. Here, we review the molecular underpinnings of CICD, particularly on mitochondrial pathways and their potential to transform lung cancer treatment.
Collapse
Affiliation(s)
- Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Y Sasikumar
- Department of CHEMISTRY, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Priya Priyadarshini Nayak
- Department of Medical Oncology IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Puneet Sudan
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - Brian G Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amlan Chakraborty
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Kamal Dua
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
2
|
Dong Q, Tan M, Zhou Y, Zhang Y, Li J. Causal Inference and Annotation of Phosphoproteomics Data in Multiomics Cancer Studies. Mol Cell Proteomics 2025; 24:100905. [PMID: 39793886 PMCID: PMC11889353 DOI: 10.1016/j.mcpro.2025.100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
Protein phosphorylation plays a crucial role in regulating diverse biological processes. Perturbations in protein phosphorylation are closely associated with downstream pathway dysfunctions, whereas alterations in protein expression could serve as sensitive indicators of pathological status. However, there are currently few methods that can accurately identify the regulatory links between protein phosphorylation and expression, given issues like reverse causation and confounders. Here, we present Phoslink, a causal inference model to infer causal effects between protein phosphorylation and expression, integrating prior evidence and multiomics data. We demonstrated the feasibility and advantages of our method under various simulation scenarios. Phoslink exhibited more robust estimates and lower false discovery rate than commonly used Pearson and Spearman correlations, with better performance than canonical instrumental variable selection methods for Mendelian randomization. Applying this approach, we identified 345 causal links involving 109 phosphosites and 310 proteins in 79 lung adenocarcinoma (LUAD) samples. Based on these links, we constructed a causal regulatory network and identified 26 key regulatory phosphosites as regulators strongly associated with LUAD. Notably, 16 of these regulators were exclusively identified through phosphosite-protein causal regulatory relationships, highlighting the significance of causal inference. We explored potentially druggable phosphoproteins and provided critical clues for drug repurposing in LUAD. We also identified significant mediation between protein phosphorylation and LUAD through protein expression. In summary, our study introduces a new approach for causal inference in phosphoproteomics studies. Phoslink demonstrates its utility in potential drug target identification, thereby accelerating the clinical translation of cancer proteomics and phosphoproteomic data.
Collapse
Affiliation(s)
- Qun Dong
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China
| | - Yingchun Zhou
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE, School of Statistics, East China Normal University, Shanghai, China
| | - Yue Zhang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Wang Y, Zhao D, Nong X. Artesunate alleviates radiation-induced submandibular gland epithelial cell damage in rats by reducing inflammation and apoptosis. Cell Biol Int 2025; 49:250-261. [PMID: 39607036 DOI: 10.1002/cbin.12261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/09/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Salivary hypofunction is a common complication in patients with head and neck cancers following radiotherapy (RT). RT-induced inflammation in salivary gland cells leads to apoptosis and fibrosis. Artesunate (ART) is a bioactive compound with anti-inflammatory and anti-fibrosis properties. This study aimed to investigate the protective effects of ART on X-ray-induced injury of submandibular gland (SMG) epithelial cells in rats. Second-generation SMG epithelial cells were randomly divided into five groups: natural control group (NC), irradiated group (IR), and irradiated groups treated with ART at concentrations of 5, 10, and 20 μM. Cells were harvested 48 h postirradiation for analysis. The results demonstrated that ART attenuated the damage to AQP5, a crucial indicator of salivary gland function, as evidenced by the decreased expression of AQP5 at both mRNA and protein levels. Additionally, ART decreased the expression of inflammatory cytokines: IL-6 and TNF-α. TUNEL staining revealed reduced apoptosis in the ART groups, particularly the IR + 10 μM group. RT-PCR and Western blot analysis of apoptosis cytokines Bax/Bcl-2 and Caspase-3 confirmed these findings. Furthermore, ART inhibited the expression of NF-κB at both mRNA and protein levels. In conclusion, these results suggest that ART may reduce inflammation and apoptosis in SMG epithelial cells following radiation by inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Yuchen Wang
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Danni Zhao
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolin Nong
- College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, Guangxi, China
| |
Collapse
|
4
|
Utpal BK, Bouenni H, Zehravi M, Sweilam SH, Mortuza MR, Arjun UVNV, Shanmugarajan TS, Mahesh PG, Roja P, Dodda RK, Thilagam E, Almahjari MS, Rab SO, Koula D, Emran TB. Exploring natural products as apoptosis modulators in cancers: insights into natural product-based therapeutic strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03876-8. [PMID: 40014131 DOI: 10.1007/s00210-025-03876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/02/2025] [Indexed: 02/28/2025]
Abstract
Cancer remains a leading cause of mortality globally, necessitating ongoing research and development of innovative therapeutic strategies. Natural products from plants, herbs, and marine species have shown great promise as anti-cancer therapies due to their bioactive components that alter cellular pathways, particularly apoptosis. This review explores the mechanism by which natural chemicals trigger the apoptosis of cancerous cells, which is crucial for eliminating them and halting tumor growth. These can affect the mitochondrial process by controlling the Bcl-2 protein family, increasing cytochrome c release, and activating caspases. They also activate death receptors like Fas and TRAIL to enhance the extrinsic apoptotic pathway. We focus on the main signaling channels involved, such as the endoplasmic reticulum (ER) stress-mediated apoptosis, extrinsic death receptor, and intrinsic mitochondrial pathways. The review explores the role of natural substances such as polyphenols, terpenoids, alkaloids, and flavonoids in promoting apoptotic cell death and increasing cancer cell susceptibility, potentially aiding in cancer treatments and the potential of combining natural products with traditional chemotherapeutic medicines to combat medication resistance and enhance therapeutic efficacy. Understanding cancer development involves inhibiting cell proliferation, regulating it, targeting apoptosis pathways, and using plant and marine extracts as apoptotic inducers.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Hasna Bouenni
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Cairo, Egypt
| | | | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Ponnammal Ganesan Mahesh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Pathakota Roja
- Department of Pharmacology, Sree Dattha Institute of Pharmacy, Sheriguda, Ibrahimpatnam, Hyderabad, Telangana, 501510, India
| | - Ravi Kalyan Dodda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - E Thilagam
- Department of Pharmacognosy, JKKMMRF'S-ANNAI JKK Sampooorani Ammal College of Pharmacy, Ethirmedu, Komarapalayam (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chennai), India
| | - Mohammed Saeed Almahjari
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Doukani Koula
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
- Laboratory of Animal Production Sciences and Techniques, University of Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| |
Collapse
|
5
|
Lu Z, Jiang J, Yao X, Hou G. Network pharmacological mechanism and molecular experimental validation of artemisinin in the treatment of lung adenocarcinoma. Toxicol Appl Pharmacol 2025; 495:117226. [PMID: 39778717 DOI: 10.1016/j.taap.2025.117226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
BACKGROUND Lung cancer is a medical ailment with high mortality and prevalence rates. Artemisinin (ART) and its derivatives exhibit anti-cancer properties against various malignancies, including lung cancer. However, further research is required to determine the precise anti-cancer mechanisms of ART. Hence, this study aimed to utilize network pharmacology to preliminarily investigate the therapeutic effectiveness and mode of action of this medication. METHODS Using a bioinformatics approach, five target proteins with the strongest connections were selected for docking. Gene enrichment analysis was performed, and the ART target proteins were predicted. Various methods, including methyl thiazolyl tetrazolium (MTT) assays, colony formation assays, microsphere formation assays, flow cytometry, and western blotting analysis, were employed to assess the impact of ART on the malignant characteristics of lung cancer cells. RESULTS Bioinformatic analysis identified 51 ART target genes in lung adenocarcinoma for further analysis. Pathway enrichment analysis of target genes revealed 639 enriched Gene Ontology-Biological Process (GO BP) and 17 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. These findings imply that ART may control the IL-6 signaling pathway by focusing on important molecules such as CDK4 and IL-6. The ART-treated group experienced apoptosis induction, cell cycle arrest, and inhibition of cell proliferation and microsphere formation compared with the control group (p < 0.05, p < 0.01). Additionally, ART reduced the protein expression of CDK4, COX2, ERBB2, CD44, and EpCAM while increasing that of caspase 3, IL-6, p53, and SRC (p < 0.01). CONCLUSION ART inhibited the growth and stemness of HCC827 cells.
Collapse
Affiliation(s)
- Zhimin Lu
- Department of Outpatient, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Jialu Jiang
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Xuming Yao
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Guoxin Hou
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China.
| |
Collapse
|
6
|
Ma L, Zhang J, Dai Z, Liao P, Guan J, Luo Z. Top 100 most-cited articles on apoptosis of non-small cell lung cancer over the past two decades: a bibliometrics analysis. Front Immunol 2025; 15:1512349. [PMID: 39872524 PMCID: PMC11770037 DOI: 10.3389/fimmu.2024.1512349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
Background Recently there has been an increasing number of studies have explored apoptosis mechanisms in lung cancer (LC). However, no researchers have conducted a bibliometric analysis of the most cited articles in this field. Objective To examine the top 100 most influential and cited publications on apoptosis in non-small cell lung cancer (NSCLC) from 2004 to 2023, summarizing research trends and key focus areas. Methods This study utilized the Web of Science Core Database (WOSCC) to research NSCLC apoptosis from 2004 to 2023, using keyword selection and manual screening for article searches. Bibliometrix package of R software 4.3.1 was used to generate distribution statistics for the top ten institutions, journals and authors. Citespace6.2. R6 was used to create the visualization maps for keyword co-occurrence and clustering. VOSviewer1.6.19 was used to conduct cluster analysis of publishing countries (regions), with data exported to SCImago Graphica for geographic visualization and cooperation analysis. VOSviewer1.6.19 was used to produced co-citation maps of institutions, journals, authors, and references. Results From 2004 to 2023, 13316 articles were retrieved, and the top 100 most cited were chosen. These were authored by 934 individuals from 269 institutions across 18 countries and appeared in 45 journals. Citations ranged from 150 to 1,389, with a median of 209.5. The most influential articles appeared in 2005 and 2007 (n=13). The leading countries (regions), institutions, journals and authors were identified as the United States (n=60), Harvard University (n=64), CANCER RESEARCH (n=15), SUN M and YANG JS (n=6). The top five keywords were "expression", "activation", "apoptosis", "pathway" and "gefitinib". This study indicates that enhancing apoptosis through circular RNA regulation and targeting the Nrf2 signaling pathway could become a key research focus in recent years. Conclusion Apoptosis has been the subject of extensive research over many years, particularly in relation to its role in the pathogenesis, diagnosis, and treatment of NSCLC. This study aims to identify highly influential articles and forecast emerging research trends, thereby offering insights into novel therapeutic targets and strategies to overcome drug resistance. The findings are intended to serve as a valuable reference for scholars engaged in this field of study.
Collapse
Affiliation(s)
- Leshi Ma
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Zhang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zi Dai
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pei Liao
- Department of Oncology, Chongqing Hospital, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Chongqing, China
| | - Jieshan Guan
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Oncology, Shenshan Hospital, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Shanwei, China
| | - Zhijie Luo
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Wei Y, Liu F, Zhu X, Liu X, Li H, Hou L, Ma X, Li F, Liu H. Artesunate disrupts ribosome RNA biogenesis and inhibits ovarian cancer growth by targeting FANCA. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156333. [PMID: 39731835 DOI: 10.1016/j.phymed.2024.156333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/22/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND The dysregulation of ribosome biogenesis has been extensively identified in various cancers, making it emerge as a hallmark of malignant cells. This highlights the potential of targeting ribosome biogenesis as an effective approach for treating cancer patients. Although chemotherapy drugs including doxorubicin and cisplatin often target ribosome biogenesis to induce DNA damage or inhibit tumor cell proliferation, they are associated with significant side effects. PURPOSE This study aims to reveal the novel role of artesunate (ART), a well-known antimalarial drug, in suppressing ribosome RNA biogenesis in ovarian cancer. METHODS In this study, the inhibitory effects of ART on ovarian cancer were studied both in vitro and in vivo. The effects of ART on ribosome RNA biogenesis were detected by 5-ethynyl uridine staining, RT-qPCR, and western blotting. Drug affinity responsive target stability, mass spectrometry, molecular docking and western blotting were combined to identify ART molecular targets. RESULTS Ovarian cancer cells treated with ART exhibited significant reduction in nascent rRNA synthesis, accompanied by a remarkable down-regulation of pre-rRNA and mature rRNA expression. The inhibitory effect of ART on ribosome biogenesis subsequently impaired cell proliferation, cell migration and invasion, and induced apoptosis. In eukaryotes, ribosome RNA synthesis primarily occurs in the nucleus, involving processes such as rDNA transcription, pre-rRNA splicing and the assembly of ribosome precursors with ribosomal proteins, other closely-related proteins and small nucleolar RNAs. We observed that ART inhibited the nuclear translocation of FANCA through binding to FANCA protein, consequently leading to the inhibition of ribosome RNA synthesis. Moreover, knockdown of FANCA in ovarian tumor cells resulted in reduced rRNA transcription, suppressed cell proliferation and migration, and induced apoptosis which might be mediated through the inhibition of mTOR/RPS6 activity. In vivo studies using xenograft tumors in nude mice demonstrated that ART repressed the growth of established ovarian cancer tumors. Additionally, ART treatment significantly altered FANCA protein level in these tumors, especially suppressed its nuclear localization. CONCLUSION These findings establish ART as a potent inhibitor of ribosome biogenesis, presenting a promising therapeutic avenue for ovarian tumors with high FANCA expression or for cancer patients exhibiting abnormal activation of the mTOR-RPS6 pathway.
Collapse
Affiliation(s)
- Yuyan Wei
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, Shandong, China
| | - Fengying Liu
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, Shandong, China
| | - Xialin Zhu
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, Shandong, China
| | - Xiaoting Liu
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, Shandong, China
| | - Hongxing Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Liujing Hou
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, Shandong, China
| | - Xiaoli Ma
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, Shandong, China
| | - Fei Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hongyan Liu
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, Shandong, China.
| |
Collapse
|
8
|
Jhade SK, Kalidoss K, Pathak PK, Shrivastava R. Artemisinin's molecular symphony: illuminating pathways for cancer therapy. Mol Biol Rep 2024; 52:95. [PMID: 39739138 DOI: 10.1007/s11033-024-10202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
Artemisinin (ART), a sesquiterpene lactone derived from the sweet wormwood plant (Artemisia annua), exhibits potent anti-malarial and anti-microbial properties, with emerging evidence suggesting its anticancer potential. This review delves into the molecular intricacies underlying ART's anticancer effects, elucidating its modulation of cell signaling pathways, induction of apoptosis and autophagy, and inhibition of angiogenesis crucial for cancer progression. Additionally, the review highlights ART's impact on oxidative stress and DNA damage within cancer cells, along with its potential synergistic effects with conventional cancer drugs to mitigate side effects. Despite notable strides, further elucidation of ART's mechanisms and clinical validation across diverse cancer types are necessary. Conclusively, this review provides a brief overview of the molecular foundation that makes ART a promising candidate for future cancer therapeutic strategies and emphasises the need for further research to fully comprehend the molecular complexity of ART-mediated cancer therapies.
Collapse
Affiliation(s)
- Sandeep Kumar Jhade
- Metabolomics and Proteomics Laboratory, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Karthik Kalidoss
- Metabolomics and Proteomics Laboratory, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Poonam Kumari Pathak
- Metabolomics and Proteomics Laboratory, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Rahul Shrivastava
- Metabolomics and Proteomics Laboratory, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
9
|
Xu L, Liu H, Kong Y, Li L, Li J, Li K, Liang S, Chen B. Illuminating cisplatin-induced ferroptosis in non-small-cell lung cancer with biothiol-activatable fluorescent/photoacoustic bimodal probes. J Mater Chem B 2024; 13:239-248. [PMID: 39530521 DOI: 10.1039/d4tb01656d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Ferroptosis modulation represents a pioneering therapeutic approach for non-small-cell lung cancer (NSCLC), where precise monitoring and regulation of ferroptosis levels are pivotal for achieving optimal therapeutic outcomes. Cisplatin (Cis), a widely used chemotherapy drug for NSCLC, demonstrates remarkable therapeutic efficacy, potentially through its ability to induce ferroptosis and synergize with other treatments. However, in vivo studies of ferroptosis face challenges due to the scarcity of validated biomarkers and the absence of reliable tools for real-time visualization. Biothiols emerge as suitable biomarkers for ferroptosis, as their concentrations decrease significantly during this process. To address these challenges, fluorescence/photoacoustic (PA) bimodal imaging offers a promising solution by providing more accurate in vivo information on ferroptosis. Therefore, the development of methods to detect biothiols using fluorescence/PA bimodal imaging is highly desirable for visualizing ferroptosis in NSCLC. In this study, we designed and constructed two activatable near-infrared (NIR) fluorescent/PA bimodal imaging probes specifically for visualizing ferroptosis by monitoring the fluctuations in biothiol levels. These probes exhibited excellent bimodal response performance in solution, cells, and tumors. Furthermore, they were successfully applied for real-time monitoring of biothiol changes during the ferroptosis process in NSCLC cells and tumors. Importantly, our findings revealed that the combined use of erastin and cisplatin exacerbates the consumption of biothiols, suggesting an enhancement of ferroptosis in NSCLC. This work not only provides powerful tools for monitoring in vivo ferroptosis but also facilitates the study of ferroptosis mechanisms and holds the potential to further advance the treatment of NSCLC.
Collapse
Affiliation(s)
- Li Xu
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Hongwen Liu
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Yi Kong
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Lingyun Li
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Jia Li
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Kang Li
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Shuzhi Liang
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Bolin Chen
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, P. R. China.
| |
Collapse
|
10
|
Fan X, Yan Y, Li Y, Song Y, Li B. Anti-tumor mechanism of artesunate. Front Pharmacol 2024; 15:1483049. [PMID: 39525639 PMCID: PMC11549674 DOI: 10.3389/fphar.2024.1483049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Artesunate (ART) is a classic antimalarial drug with high efficiency, low toxicity and tolerance. It has been shown to be safe and has good anti-tumor effect. Existing clinical studies have shown that the anti-tumor mechanisms of ART mainly include inducing apoptosis and autophagy of tumor cells, affecting tumor microenvironment, regulating immune response, overcoming drug resistance, as well as inhibiting tumor cell proliferation, migration, invasion, and angiogenesis. ART has been proven to fight against lung cancer, hepatocarcinoma, lymphoma, multiple myeloma, leukemia, colorectal cancer, ovarian cancer, cervical cancer, malignant melanoma, oral squamous cell carcinoma, bladder cancer, prostate cancer and other neoplasms. In this review, we highlight the effects of ART on various tumors with an emphasis on its anti-tumor mechanism, which is helpful to propose the potential research directions of ART and expand its clinical application.
Collapse
Affiliation(s)
| | | | | | | | - Bo Li
- Department of Oral Anatomy and Physiology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
11
|
Fan H, Xu P, Zou B, Wang H, Li C, Huang J. Isoquercitrin Inhibits Lung Cancer Cell Growth Through Triggering Pyroptosis and Ferroptosis. Nutr Cancer 2024; 77:299-310. [PMID: 39427296 DOI: 10.1080/01635581.2024.2416246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Isoquercitrin possesses anti-tumor activity in several types of cancers, however, its effects and underlying mechanisms on lung cancer have not been reported. Human lung cancer cell lines as well as normal lung epithelial BEAS-2B cells were treated with isoquercitrin. The influences of isoquercitrin in vitro were evaluated by determining cell viability, apoptosis, pyroptosis, and ferroptosis. Additionally, A549 tumor-bearing mice were generated to explore the anti-cancer effect of isoquercitrin in vivo. We found that isoquercitrin dose-dependently reduced lung cancer cells' viability, with no toxicity against BEAS-2B cells. Isoquercitrin at 40 μM and 80 μM was used in vitro. Isoquercitrin increased apoptosis, elevated NLRP3 inflammasome activation-mediated pyroptosis, and promoted ferroptosis in lung cancer cells. NLRP3 knockdown and caspase-1 selective inhibitor VX-765 attenuated isoquercitrin-induced pyroptosis and ferroptosis, but not apoptosis. Furthermore, isoquercitrin accelerated ROS generation, while ROS inhibitor N-acetylcysteine abrogated isoquercitrin-induced apoptosis, NLRP3 related-pyroptosis and ferroptosis. In vivo, isoquercitrin (1 mg/kg and 5 mg/kg) inhibited tumor growth, increased apoptosis, NLRP3-related pyroptosis, ferroptosis and ROS generation in tumors. Taken together, isoquercitrin inhibits lung cancer growth by triggering ROS/NLRP3-mediated pyroptosis and ferroptosis, with ROS also directly inducing apoptosis. This suggests that isoquercitrin might be a potential therapeutic agent for lung cancer.
Collapse
Affiliation(s)
- Haiyin Fan
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi Province, China
| | - Pengfei Xu
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi Province, China
| | - Bin Zou
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi Province, China
| | - Huanyuan Wang
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi Province, China
| | - Chao Li
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi Province, China
| | - Jian Huang
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, Nanchang, Jiangxi Province, China
| |
Collapse
|
12
|
Xia S, He Y, Yang S, Zhang L, Yu X, Zhen L, Wang C, Lv H. Licochalcone A mitigates aflatoxin B1-induced immunotoxicity via ferroptosis in bursa of broilers and macrophages. Poult Sci 2024; 103:104080. [PMID: 39106705 PMCID: PMC11343056 DOI: 10.1016/j.psj.2024.104080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 08/09/2024] Open
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin which is responsible for severe damage to the immune system of humans and livestock. Licochalcone A (Lico A), a polyphenol derived from turmeric, has attracted great attention due to its wonderful antioxidant properties. Ferroptosis, an iron-dependent cell death related to oxidative stress, which plays a crucial role in the resistance of phytochemical to immune-associated injury. Nevertheless, effects of Lico A on the bursa of broilers exposed to AFB1 remain unclear. In this work, broilers were fed diets supplemented with 2 mg/kg of AFB1 and 50 mg/kg of Lico A. Meanwhile, various concentrations of Lico A and AFB1 (15 μM) were used to stimulate macrophages. These results revealed that AFB1 resulted in more severe bursa atrophy and relative weight reduction; the expression of pro-ferroptosis protein ACSL4 and the content of malondialdehyde (MDA) were significantly elevated, while the expression of anti-ferroptosis proteins GPX4, xCT, FSP1 and the content of Glutathione (GSH) was obviously reduced. However, Lico A treatment effectively reversed these effects in the bursa of broilers. Meanwhile, in bursa and macrophages, Lico A mitigated the expression of AFB1-induced apoptosis-associated protein (Caspase-3, Bax, Bcl-2) as well as antioxidant protein (Nrf2, GCLM, HO-1). Importantly, ferroptosis was also observed in macrophages induced by AFB1. Lico A efficaciously alleviated AFB1-induced mitochondrial membrane potential decrease and reactive oxygen species (ROS) production in macrophages; in contrast, Lico A evidently inhibited AFB1-triggered ROS generation and cytotoxicity, which was disabled by the addition of Erastin. Moreover, Liproxstatin-1 significantly inhibited ROS generation induced by AFB1. In summary, the present study elucidates that the main mechanism by which Lico A attenuates AFB1-induced immunotoxicity is through the suppression of ferroptosis, apoptosis, mitochondrial damage and oxidative stress, which is promising for the improvement of immunotoxic effects of AFB1.
Collapse
Affiliation(s)
- Shijie Xia
- Key Laboratory of Bovine Disease Control in Northeast China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases; College of Animal Science and Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yuxi He
- Key Laboratory of Bovine Disease Control in Northeast China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases; College of Animal Science and Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Songya Yang
- Key Laboratory of Bovine Disease Control in Northeast China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases; College of Animal Science and Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Lihan Zhang
- Key Laboratory of Bovine Disease Control in Northeast China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases; College of Animal Science and Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Xiaoqing Yu
- Key Laboratory of Bovine Disease Control in Northeast China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases; College of Animal Science and Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Li Zhen
- Key Laboratory of Bovine Disease Control in Northeast China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases; College of Animal Science and Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Chunren Wang
- Key Laboratory of Bovine Disease Control in Northeast China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases; College of Animal Science and Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hongming Lv
- Key Laboratory of Bovine Disease Control in Northeast China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases; College of Animal Science and Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
13
|
Guo P, Li Q, Wang S, Jiang X, Yang Q, Yu W, Al-Mutairi KA, Tang Z, Han Q, Liao J. Hesperidin alleviates terbuthylazine-induced ferroptosis via maintenance of mitochondria-associated endoplasmic reticulum membrane integrity in chicken hepatocytes. Comp Biochem Physiol C Toxicol Pharmacol 2024; 284:109989. [PMID: 39089429 DOI: 10.1016/j.cbpc.2024.109989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Terbuthylazine (TBA) is a common triazine herbicide used in agricultural production, which causes toxic damage in multiple tissues. Hesperidin (HSP) is a flavonoid derivative that has anti-inflammatory, antioxidant and cytoprotective effects, but its role in reducing toxic damage caused by pesticides is still unclear. In this study, we aimed to investigate the toxic effect of TBA exposure on chicken hepatocytes and the therapeutic effect of HSP on the TBA-induced hepatotoxicity. Our results demonstrated that HSP could alleviate TBA exposure-induced endoplasmic reticulum (ER) stress. Interestingly, TBA significantly disrupted the integrity of mitochondria-associated endoplasmic reticulum membrane (MAM), while HSP treatment showed the opposite tendency. In addition, TBA could significantly trigger ferroptosis in liver, and HSP treatment reversed ferroptosis under TBA exposure. These results suggested that HSP could inhibit ER stress and alleviate ferroptosis under TBA exposure via maintaining MAM integrity, which provided a novel strategy to take precautions against TBA toxicity.
Collapse
Affiliation(s)
- Pan Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Shaofeng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Xinyue Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Qingwen Yang
- Laboratory of Veterinary Pharmacology, Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, PR China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | | | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
14
|
Yong Y, Yan L, Wei J, Feng C, Yu L, Wu J, Guo M, Fan D, Yu C, Qin D, Zhou X, Wu A. A novel ferroptosis inhibitor, Thonningianin A, improves Alzheimer's disease by activating GPX4. Theranostics 2024; 14:6161-6184. [PMID: 39431016 PMCID: PMC11488096 DOI: 10.7150/thno.98172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/02/2024] [Indexed: 10/22/2024] Open
Abstract
Background: Ferroptosis, a recently unveiled iron-dependent form of cellular demise, has emerged as a pivotal process contributing to the pathology of Alzheimer's Disease (AD). Glutathione Peroxidase 4 (GPX4), a vital defense mechanism countering ferroptosis by nullifying lipid peroxides and maintaining cellular redox equilibrium, has garnered significant attention in AD. Thus, identifying ferroptosis inhibitors to target GPX4 activation may help mitigate neuronal damage and impede AD progression. Objectives: We aimed to screen potent ferroptosis inhibitors and investigate their mechanism of action and therapeutic potential in AD, as well as lay the groundwork for future research in this promising area of study. Methods: This study employed a natural compound library to screen potential ferroptosis inhibitors in RAS-selective lethal compounds 3 (RSL-3)-induced PC-12 cells. Ferroptosis was evaluated by examining the mitochondrial morphology and function, reactive oxygen species (ROS) production, and lipid peroxide levels. The ability to chelate iron and intracellular iron levels was determined by UHPLC-Q/TOF-MS/MS and PGSK staining, respectively. APP Swe/ind- or Tau P301L-overexpressing PC-12 cells, and Amyloid-β transgenic CL4176 and Tau transgenic BR5270 Caenorhabditis elegans were employed as cellular and animal models of AD. Results: Thonningianin A (ThA) was identified as a novel ferroptosis inhibitor, as demonstrated by augmented cellular viability, mitigated mitochondrial impairment, diminished lipid peroxides, iron levels, and ROS generation. Mechanistically, ThA binds with GPX4 and enhances the AMPK/Nrf2 signaling pathway to stimulate GPX4 activation, effectively inhibiting ferroptosis. Moreover, in cellular and Caenorhabditis elegans AD models, ThA substantially inhibits ferroptosis by reducing ROS, lipid peroxide generation, and iron accumulation. Furthermore, ThA significantly delays paralysis, ameliorates food-sensing deficits and increases worms' antioxidative capacity. Conclusion: ThA ameliorates AD by inhibiting neuronal ferroptosis mediated by GPX4 activation through its binding with GPX4 and the upregulation of the AMPK/Nrf2/GPX4 pathway.
Collapse
Affiliation(s)
- Yuanyuan Yong
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China, 646000
| | - Lu Yan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China, 646000
| | - Jing Wei
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, China, 610075
| | - Chi Feng
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China, 646000
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China, 646000
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China, 646000
| | - Minsong Guo
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China, 646000
| | - Dongsheng Fan
- Department of Pharmacy, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Gui Yang, China, 550000
| | - Chonglin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China, 646000
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China, 646000
| | - Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China, 646000
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China, 646000
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China, 646000
| |
Collapse
|
15
|
Cheng C, Katoch P, Zhong YP, Higgins CT, Moredock M, Chang MEK, Flory MR, Randell SH, Streeter PR. Identification of a Novel Subset of Human Airway Epithelial Basal Stem Cells. Int J Mol Sci 2024; 25:9863. [PMID: 39337350 PMCID: PMC11432080 DOI: 10.3390/ijms25189863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
The basal cell maintains the airway's respiratory epithelium as the putative resident stem cell. Basal cells are known to self-renew and differentiate into airway ciliated and secretory cells. However, it is not clear if every basal cell functions as a stem cell. To address functional heterogeneity amongst the basal cell population, we developed a novel monoclonal antibody, HLO1-6H5, that identifies a subset of KRT5+ (cytokeratin 5) basal cells. We used HLO1-6H5 and other known basal cell-reactive reagents to isolate viable airway subsets from primary human airway epithelium by Fluorescence Activated Cell Sorting. Isolated primary cell subsets were assessed for the stem cell capabilities of self-renewal and differentiation in the bronchosphere assay, which revealed that bipotent stem cells were, at minimum 3-fold enriched in the HLO1-6H5+ cell subset. Crosslinking-mass spectrometry identified the HLO1-6H5 target as a glycosylated TFRC/CD71 (transferrin receptor) proteoform. The HLO1-6H5 antibody provides a valuable new tool for identifying and isolating a subset of primary human airway basal cells that are substantially enriched for bipotent stem/progenitor cells and reveals TFRC as a defining surface marker for this novel cell subset.
Collapse
Affiliation(s)
- Christopher Cheng
- Oregon Stem Cell Center, Papè Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Parul Katoch
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Yong-Ping Zhong
- Oregon Stem Cell Center, Papè Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Claire T. Higgins
- Oregon Stem Cell Center, Papè Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Maria Moredock
- Oregon Stem Cell Center, Papè Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Matthew E. K. Chang
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Mark R. Flory
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Scott H. Randell
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7248, USA
| | - Philip R. Streeter
- Oregon Stem Cell Center, Papè Family Pediatric Research Institute, Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239-3098, USA
| |
Collapse
|
16
|
Sun Y, Li Q, Huang Y, Yang Z, Li G, Sun X, Gu X, Qiao Y, Wu Q, Xie T, Sui X. Natural products for enhancing the sensitivity or decreasing the adverse effects of anticancer drugs through regulating the redox balance. Chin Med 2024; 19:110. [PMID: 39164783 PMCID: PMC11334420 DOI: 10.1186/s13020-024-00982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
Redox imbalance is reported to play a pivotal role in tumorigenesis, cancer development, and drug resistance. Severe oxidative damage is a general consequence of cancer cell responses to treatment and may cause cancer cell death or severe adverse effects. To maintain their longevity, cancer cells can rescue redox balance and enter a state of resistance to anticancer drugs. Therefore, targeting redox signalling pathways has emerged as an attractive and prospective strategy for enhancing the efficacy of anticancer drugs and decreasing their adverse effects. Over the past few decades, natural products (NPs) have become an invaluable source for developing new anticancer drugs due to their high efficacy and low toxicity. Increasing evidence has demonstrated that many NPs exhibit remarkable antitumour effects, whether used alone or as adjuvants, and are emerging as effective approaches to enhance sensitivity and decrease the adverse effects of conventional cancer therapies by regulating redox balance. Among them are several novel anticancer drugs based on NPs that have entered clinical trials. In this review, we summarize the synergistic anticancer effects and related redox mechanisms of the combination of NPs with conventional anticancer drugs. We believe that NPs targeting redox regulation will represent promising novel candidates and provide prospects for cancer treatment in the future.
Collapse
Affiliation(s)
- Yitian Sun
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qinyi Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yufei Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Zijing Yang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Guohua Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoyu Sun
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiaoqing Gu
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yunhao Qiao
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Tian Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Xinbing Sui
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
17
|
Wen L, Chan BCL, Qiu MH, Leung PC, Wong CK. Artemisinin and Its Derivatives as Potential Anticancer Agents. Molecules 2024; 29:3886. [PMID: 39202965 PMCID: PMC11356986 DOI: 10.3390/molecules29163886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Artemisinin is a natural sesquiterpene lactone obtained from the traditional Chinese medicinal herb Artemisia annua L. (qinghao). Artemisinin and its derivatives share an unusual endoperoxide bridge and are extensively used for malaria treatment worldwide. In addition to antimalarial activities, artemisinin and its derivatives have been reported to exhibit promising anticancer effects in recent decades. In this review, we focused on the research progress of artemisinin and its derivatives with potential anticancer activities. The pharmacological effects, potential mechanisms, and clinical trials in cancer therapy of artemisinin and its derivatives were discussed. This review may facilitate the future exploration of artemisinin and its derivatives as effective anticancer agents.
Collapse
Affiliation(s)
- Luan Wen
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (P.-C.L.); (C.-K.W.)
| | - Ben Chung-Lap Chan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (P.-C.L.); (C.-K.W.)
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Ping-Chung Leung
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (P.-C.L.); (C.-K.W.)
| | - Chun-Kwok Wong
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (P.-C.L.); (C.-K.W.)
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Tian X, Fu K, Huang X, Zou H, Shi N, Li J, Bao Y, He S, Lv J. Ferroptosis in the adjuvant treatment of lung cancer-the potential of selected botanical drugs and isolated metabolites. Front Pharmacol 2024; 15:1430561. [PMID: 39193342 PMCID: PMC11347298 DOI: 10.3389/fphar.2024.1430561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Ferroptosis represents a distinct form of cell death that is not associated with necrosis, autophagy, apoptosis, or pyroptosis. It is characterised by intracellular iron-dependent lipid peroxidation. The current literature indicates that a number of botanical drugs and isolated metabolites can modulate ferroptosis, thereby exerting inhibitory effects on lung cancer cells or animal models. The aim of this review is to elucidate the mechanisms through which botanical drugs and isolated metabolites regulate ferroptosis in the context of lung cancer, thereby providing potential insights into lung cancer treatment. It is crucial to highlight that these preclinical findings should not be interpreted as evidence that these treatments can be immediately translated into clinical applications. In the future, we will continue to study the pharmacology, pharmacokinetics and toxicology of these drugs, as well as evaluating their efficacy and safety in clinical trials, with the aim of providing new approaches to the development of new agents for the treatment of lung cancer.
Collapse
Affiliation(s)
- Xiaoyan Tian
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Kunling Fu
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xuemin Huang
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Haiyan Zou
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nianmei Shi
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiayang Li
- Office of Drug Clinical Trial Institution, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuxiang Bao
- Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Sisi He
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junyuan Lv
- The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
- Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
19
|
Ma QY, Liu YC, Zhang Q, Yi WD, Sun Y, Gao XD, Zhao XT, Wang HW, Lei K, Luo WJ. Integrating network pharmacology, molecular docking and experimental verification to reveal the mechanism of artesunate in inhibiting choroidal melanoma. Front Pharmacol 2024; 15:1448381. [PMID: 39185308 PMCID: PMC11341487 DOI: 10.3389/fphar.2024.1448381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Background Artesunate (ART), a natural compound derived from Artemisia annua, has shown promising clinical potentials in the treatment of various tumors, but the exact mechanism is unclear. Choroidal melanoma (CM) is a major malignant ocular tumor in adults, known for its significant malignancy and poor prognosis, with limited efficacy in current treatments. This study explored the anti-CM effects and mechanisms of ART using a combination of network pharmacology, molecular docking and experimental validation. Methods Potential targets of ART were screened in PubChem, Swiss Target Prediction and Traditional Chinese Medicine Systems Pharmacology (TCMSP) Database Analysis Platform databases, while target genes related to CM prognosis were selected from Online Mendelian Inheritance in Man (OMIM), GeneCards and DisGeNET databases. The intersection of these two groups of datasets yielded the target genes of ART involved in CM. Protein-protein interaction (PPI) network analysis of the intersecting targets, as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, were conducted to identify core targets and critical pathways. Molecular docking methods were performed to predict the binding interactions between ART and core targets. The effects of ART on CM were evaluated through CCK8, colony formation, transwell, as well as flow cytometry assays to detect apoptosis, cell cycle, reactive oxygen species (ROS). Western blot (WB) assays were conducted to investigate the impact of ART on key proteins and pathways associated with CM. Finally, in vivo assays were conducted to further validate the effects of ART on subcutaneous tumors in nude mice. Results Research has shown that key pathways and core targets for ART in treating CM were identified through a network pharmacology approach. Molecular docking results verified the strong binding affinity between ART and these core targets. The analysis and predicted results indicated that ART primarily exerted its effects on CM through various tumor-related pathways like apoptosis. The assays in vitro confirmed that ART significantly inhibited the proliferation and migration of CM cells. This was achieved by promoting apoptosis through activation of the p53 signaling pathway, causing cell cycle arrest at the G0/G1 phase by inhibiting the PI3K/AKT/mTOR signaling pathway and increasing the intracellular level of ROS by activating the NRF2/HO-1 signaling pathway. Additionally, the assays in vivo further validated the significant proliferation-inhibitory effect of ART on CM. Conclusion This study, making the initial exploration, illustrated through network pharmacology combined with molecular docking and in vitro/in vivo assays, confirmed that ART exerted potential anti-cancer effects on CM by promoting apoptosis, inducing cell cycle arrest and increasing intracellular levels of ROS. These findings suggested that ART held significant therapeutic potential for CM.
Collapse
Affiliation(s)
- Qing-yue Ma
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi-chong Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wen-dan Yi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Sun
- Ophthalmology Department, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Xiao-di Gao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin-tong Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao-wen Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ke Lei
- Tumor Immunology and Cytotherapy of Medical Research Center and Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wen-juan Luo
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Sinha BK, Murphy C, Brown SM, Silver BB, Tokar EJ, Bortner CD. Mechanisms of Cell Death Induced by Erastin in Human Ovarian Tumor Cells. Int J Mol Sci 2024; 25:8666. [PMID: 39201357 PMCID: PMC11355013 DOI: 10.3390/ijms25168666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Erastin (ER) induces cell death through the formation of reactive oxygen species (ROS), resulting in ferroptosis. Ferroptosis is characterized by an accumulation of ROS within the cell, leading to an iron-dependent oxidative damage-mediated cell death. ER-induced ferroptosis may have potential as an alternative for ovarian cancers that have become resistant due to the presence of Ras mutation or multi-drug resistance1 (MDR1) gene expression. We used K-Ras mutant human ovarian tumor OVCAR-8 and NCI/ADR-RES, P-glycoprotein-expressing cells, to study the mechanisms of ER-induced cell death. We used these cell lines as NCI/ADR-RES cells also overexpresses superoxide dismutase, catalase, glutathione peroxidase, and transferase compared to OVCAR-8 cells, leading to the detoxification of reactive oxygen species. We found that ER was similarly cytotoxic to both cells. Ferrostatin, an inhibitor of ferroptosis, reduced ER cytotoxicity. In contrast, RSL3 (RAS-Selective Ligand3), an inducer of ferroptosis, markedly enhanced ER cytotoxicity in both cells. More ROS was detected in OVCAR-8 cells than NCI/ADR-RES cells, causing more malondialdehyde (MDA) formation in OVCAR-8 cells than in NCI/ADR-RES cells. RSL3, which was more cytotoxic to NCI/ADR-RES cells, significantly enhanced MDA formation in both cells, suggesting that glutathione peroxidase 4 (GPX4) was involved in ER-mediated ferroptosis. ER treatment modulated several ferroptosis-related genes (e.g., CHAC1, GSR, and HMOX1/OX1) in both cells. Our study indicates that ER-induced ferroptotic cell death may be mediated similarly in both NCI/ADR-RES and OVCAR-8 cells. Additionally, our results indicate that ER is not a substrate of P-gp and that combinations of ER and RSL3 may hold promise as more effective treatment routes for ovarian cancers, including those that are resistant to other current therapeutic agents.
Collapse
Affiliation(s)
- Birandra K. Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC 27709, USA; (C.M.); (S.M.B.); (B.B.S.); (E.J.T.)
| | - Carri Murphy
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC 27709, USA; (C.M.); (S.M.B.); (B.B.S.); (E.J.T.)
| | - Shalyn M. Brown
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC 27709, USA; (C.M.); (S.M.B.); (B.B.S.); (E.J.T.)
| | - Brian B. Silver
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC 27709, USA; (C.M.); (S.M.B.); (B.B.S.); (E.J.T.)
| | - Erik J. Tokar
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health, NIH, Research Triangle Park, NC 27709, USA; (C.M.); (S.M.B.); (B.B.S.); (E.J.T.)
| | - Carl D. Bortner
- Laboratory of Signal Transduction, National Institutes of Environmental Health, NIH, Research Triangle Park, NC 27709, USA;
| |
Collapse
|
21
|
Li Y, Ma P, Li J, Wu F, Guo M, Zhou E, Song S, Wang S, Zhang S, Jin Y. Dihydroartemisinin restores the immunogenicity and enhances the anticancer immunosurveillance of cisplatin by activating the PERK/eIF2α pathway. Cell Biosci 2024; 14:100. [PMID: 39090653 PMCID: PMC11295430 DOI: 10.1186/s13578-024-01254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Immunosurveillance is pivotal in the effectiveness of anticancer therapies and tumor control. The ineffectiveness of cisplatin in activating the immunosurveillance is attributed to its lack of adjuvanticity resulting from its inability to stimulate endoplasmic reticulum stress. Dihydroartemisinin demonstrates the anti-tumor effects through various mechanisms, including the activation of the endoplasmic reticulum stress. This study aimed to develop a novel strategy to enhance the immunogenicity of dying tumor cells by combining cisplatin with dihydroartemisinin, thereby triggering effective anti-tumor immunosurveillance and improving the efficacy of cisplatin in clinical practice. METHODS Lewis lung carcinoma (LLC) and CT26 colon cancer cell lines and subcutaneous tumor models were used in this study. The importance of immunosurveillance was validated in both immunocompetent and immunodeficient mouse models. The ability of dihydroartemisinin and cisplatin therapy to induce immunogenic cell death and tumor growth control in vivo was validated by prophylactic tumor vaccination and therapeutic tumor models. The underlying mechanism was elucidated through the pharmaceutical or genetic intervention of the PERK/eIF2α pathway in vitro and in vivo. RESULTS Dihydroartemisinin enhanced the generation of reactive oxygen species in cisplatin-treated LLC and CT26 cancer cells. The combination treatment of dihydroartemisinin with cisplatin promoted cell death and ensured an optimal release of damage-associated molecular patterns from dying cancer cells, promoting the phagocytosis of dendritic cells. In the tumor vaccination model, we confirmed that dihydroartemisinin plus cisplatin treatment induced immunogenic cell death. Utilizing immunocompetent and immunodeficient mouse models, we further demonstrated that the combination treatment suppressed the tumor growth of CT26 colon cancer and LLC lung cancer, leading to an improved prognosis through the restoration of cytotoxic T lymphocyte responses and reinstatement of anti-cancer immunosurveillance in vivo. Mechanistically, dihydroartemisinin restored the immunogenicity of cisplatin by activating the adjuvanticity of damage-associated molecular patterns, such as calreticulin exposure, through the PERK/eIF2α pathway. Additionally, the inhibition of eIF2α phosphorylation attenuated the anti-tumor efficiency of C + D in vivo. CONCLUSIONS We highlighted that dihydroartemisinin acts as an immunogenic cell death rescuer for cisplatin, activating anticancer immunosurveillance in a PERK/eIF2α-dependent manner and offering a strategy to enhance the anti-tumor efficacy of cisplatin in clinical practice.
Collapse
Affiliation(s)
- Yumei Li
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Ma
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingxia Li
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wu
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - E Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siwei Song
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Zhang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
22
|
Yuhao W, Shenghua C, Jueying C, Shate X, Rongrong S, Xiangfeng S. Targeting ferroptosis regulators in lung cancer: Exploring natural products. Heliyon 2024; 10:e33934. [PMID: 39104501 PMCID: PMC11298827 DOI: 10.1016/j.heliyon.2024.e33934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Lung cancer remains a formidable global health challenge, necessitating innovative therapeutic strategies for improved efficacy. This review explores the untapped potential of natural products and Traditional Chinese Medicine (TCM) in lung cancer therapy, focusing on targeting ferroptosis regulators. Natural compounds, such as curcumin and resveratrol, exhibit diverse anti-cancer mechanisms, complemented by TCM's holistic approach rooted in a 3500-year history. Emphasizing the induction of cell death, particularly ferroptosis, the review highlights its significance in overcoming challenges like resistance to conventional therapies. Key ferroptosis regulators are explored in the context of natural products and TCM. The impact of these treatments on crucial pathways, such as antioxidant mechanisms (GPX4, SLC7A11, and NRF2), iron metabolism regulators, and lipid and mitochondria pathways, is examined. The findings provide a comprehensive overview of how natural products and TCM modulate ferroptosis in lung cancer, offering valuable insights for the development of innovative, side-effect-reduced therapeutic strategies. This work holds promise for transforming the landscape of lung cancer treatment by integrating the rich resources of nature into conventional therapeutic paradigms.
Collapse
Affiliation(s)
- Wang Yuhao
- Graduated College, Jiangxi University of Chinese Medicine, Nanchang, 330000, Jiangxi, China
| | - Cheng Shenghua
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310053, Zhejiang, China
| | - Chen Jueying
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, 321017, Zhejiang, China
| | - Xiang Shate
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310053, Zhejiang, China
| | - Song Rongrong
- First Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou, 310053, Zhejiang, China
| | - Shen Xiangfeng
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, 321017, Zhejiang, China
| |
Collapse
|
23
|
Lu J, Guo Q, Zhao H, Liu H. Hederagenin promotes lung cancer cell death by activating CHAC1-dependent ferroptosis pathway. Biochem Biophys Res Commun 2024; 718:150085. [PMID: 38735142 DOI: 10.1016/j.bbrc.2024.150085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Lung cancer poses a significant threat globally, especially in China. This puts higher demands on the treatment methods and drugs for lung cancer. Natural plants provide valuable resources for the development of anti-cancer drugs. Hederagenin (Hed) is a triterpenoid compound extracted from ivy leaves and has anti-tumor activity against multifarious cancers, including lung cancer. However, the regulatory mechanism of Hed in lung cancer remains unclear. In this study, we used Hed to treat lung cancer cells, and observed the effect of Hed on cell proliferation (including CCK-8 and colony formation experiments), apoptosis (including flow cytometry and apoptosis gene detection (BAX and Bcl-2)). The results showed that Hed induced lung cancer cell death (inhibiting proliferation and promoting apoptosis). Next, we performed bioinformatics analysis of the expression profile GSE186218 and found that Hed treatment significantly increased the expression of CHAC1 gene. CHAC1 is a ferroptosis-inducing gene. RT-qPCR detection of lung cancer clinical tissues and related cell lines also showed that CHAC1 was lowly expressed in lung cancer. Therefore, we knocked down and overexpressed CHAC1 in lung cancer cells, respectively. Subsequently, cell phenotype experiments showed that down-regulating CHAC1 expression inhibited lung cancer cell death (promoting proliferation and inhibiting apoptosis); on the contrary, up-regulating CHAC1 expression promoted lung cancer cell death. To further verify that Hed exerts anti-tumor effects in lung cancer by promoting CHAC1 expression, we performed functional rescue experiments. The results showed that down-regulating CHAC1 expression reversed the promoting effect of Hed on lung cancer cell death. Mechanistically, in vitro and in vivo experiments jointly demonstrated that Hed exerts anti-cancer effects by promoting CHAC1-induced ferroptosis. In summary, our study further enriches the regulatory mechanism of Hed in lung cancer.
Collapse
Affiliation(s)
- Jiayan Lu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China; Department of Pulmonary and Critical Care Medicine, Rugao Boai Hospital, No. 468 Qingyu Road, Rugao Economic and Technological Development Zone, 226500, Jiangsu Province, People's Republic of China
| | - Qixia Guo
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China; Department of Pulmonary and Critical Care Medicine, Rugao Boai Hospital, No. 468 Qingyu Road, Rugao Economic and Technological Development Zone, 226500, Jiangsu Province, People's Republic of China
| | - Hui Zhao
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Hua Liu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China.
| |
Collapse
|
24
|
Kaur R, Suresh PK. Chemoresistance Mechanisms in Non-Small Cell Lung Cancer-Opportunities for Drug Repurposing. Appl Biochem Biotechnol 2024; 196:4382-4438. [PMID: 37721630 DOI: 10.1007/s12010-023-04595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 09/19/2023]
Abstract
Globally, lung cancer contributes significantly to the public health burden-associated mortality. As this form of cancer is insidious in nature, there is an inevitable diagnostic delay leading to chronic tumor development. Non-small cell lung cancer (NSCLC) constitutes 80-85% of all lung cancer cases, making this neoplasia form a prevalent subset of lung carcinoma. One of the most vital aspects for proper diagnosis, prognosis, and adequate therapy is the precise classification of non-small cell lung cancer based on biomarker expression profiling. This form of biomarker profiling has provided opportunities for improvements in patient stratification, mechanistic insights, and probable druggable targets. However, numerous patients have exhibited numerous toxic side effects, tumor relapse, and development of therapy-based chemoresistance. As a result of these exacting situations, there is a dire need for efficient and effective new cancer therapeutics. De novo drug development approach is a costly and tedious endeavor, with an increased attrition rate, attributed, in part, to toxicity-related issues. Drug repurposing, on the other hand, when combined with computer-assisted systems biology approach, provides alternatives to the discovery of new, efficacious, and safe drugs. Therefore, in this review, we focus on a comparison of the conventional therapy-based chemoresistance mechanisms with the repurposed anti-cancer drugs from three different classes-anti-parasitic, anti-depressants, and anti-psychotics for cancer treatment with a primary focus on NSCLC therapeutics. Certainly, amalgamating these novel therapeutic approaches with that of the conventional drug regimen in NSCLC-affected patients will possibly complement/synergize the existing therapeutic modalities. This approach has tremendous translational significance, since it can combat drug resistance and cytotoxicity-based side effects and provides a relatively new strategy for possible application in therapy of individuals with NSCLC.
Collapse
Affiliation(s)
- Rajdeep Kaur
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - P K Suresh
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
25
|
Zeng Q, Chen B, Wang W. Identification of tumor antigens for mRNA vaccines and ferroptosis-related landscape in esophageal squamous cell carcinoma. Transl Cancer Res 2024; 13:2860-2876. [PMID: 38988947 PMCID: PMC11231762 DOI: 10.21037/tcr-23-2027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/28/2024] [Indexed: 07/12/2024]
Abstract
Background Ferroptosis, an iron-dependent form of cell death that is characterized by lipid peroxidation, has been implicated in conferring resistance to cancer therapies and may contribute to the pathogenesis of esophageal squamous cell carcinoma (ESCC). Furthermore, messenger RNA (mRNA) vaccines have emerged as a promising modality in the treatment arsenal against diverse malignancies. The aim of the study was to investigate the role of ferroptosis subtypes in ESCC and the immune microenvironment, as well as to identify key genes that could serve as targets for mRNA vaccine development. Methods Gene expression profiles and clinical data from 79 and 358 ESCC patients were collected from The Cancer Genome Atlas and Gene Expression Omnibus databases. Subsequently, we identified tumor mutational burden (TMB), immune microenvironment scores, and immune checkpoint and immune cell dysfunction genes for each ferroptosis subtype. Furthermore, we utilized weighted gene co-expression network analysis (WGCNA) to describe the immune landscape of ESCC and identify key genes for mRNA vaccine development. Results Our analysis revealed that MMD, MTDH, and TRFC were overexpressed ferroptosis genes in ESCC. In addition, ESCC was categorized into two ferroptosis subtypes, namely FS1 and FS2. Notably, FS2 exhibited a poorer prognosis, higher TMB, and increased immune cell infiltration when compared to FS1. The ferroptosis landscape analysis further revealed the presence of three distinct states. WGCNA analysis identified different modules of interest emerging as an independent prognostic factor and enriched with hub genes that could serve as targets for mRNA vaccine development. Conclusions The ferroptosis subtypes demonstrated significant associations with both prognosis and the immune microenvironment in ESCC. Additionally, the module of interest identified through immune landscape analysis represented an independent prognostic factor, with its contained genome offering promising targets for mRNA vaccine development.
Collapse
Affiliation(s)
- Qin Zeng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Liu D, Hu Z, Lu J, Yi C. Redox-Regulated Iron Metabolism and Ferroptosis in Ovarian Cancer: Molecular Insights and Therapeutic Opportunities. Antioxidants (Basel) 2024; 13:791. [PMID: 39061859 PMCID: PMC11274267 DOI: 10.3390/antiox13070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Ovarian cancer (OC), known for its lethality and resistance to chemotherapy, is closely associated with iron metabolism and ferroptosis-an iron-dependent cell death process, distinct from both autophagy and apoptosis. Emerging evidence suggests that dysregulation of iron metabolism could play a crucial role in OC by inducing an imbalance in the redox system, which leads to ferroptosis, offering a novel therapeutic approach. This review examines how disruptions in iron metabolism, which affect redox balance, impact OC progression, focusing on its essential cellular functions and potential as a therapeutic target. It highlights the molecular interplay, including the role of non-coding RNAs (ncRNAs), between iron metabolism and ferroptosis, and explores their interactions with key immune cells such as macrophages and T cells, as well as inflammation within the tumor microenvironment. The review also discusses how glycolysis-related iron metabolism influences ferroptosis via reactive oxygen species. Targeting these pathways, especially through agents that modulate iron metabolism and ferroptosis, presents promising therapeutic prospects. The review emphasizes the need for deeper insights into iron metabolism and ferroptosis within the redox-regulated system to enhance OC therapy and advocates for continued research into these mechanisms as potential strategies to combat OC.
Collapse
Affiliation(s)
- Dan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| | - Zewen Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| | - Jinzhi Lu
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
- Department of Laboratory Medicine, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China
| | - Cunjian Yi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Yangtze University, Jingzhou 434000, China; (D.L.); (Z.H.)
- Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, Jingzhou 434000, China
| |
Collapse
|
27
|
Abdulkareem SJ, Jafari-Gharabaghlou D, Farhoudi-Sefidan-Jadid M, Salmani-Javan E, Toroghi F, Zarghami N. Co-delivery of artemisinin and metformin via PEGylated niosomal nanoparticles: potential anti-cancer effect in treatment of lung cancer cells. Daru 2024; 32:133-144. [PMID: 38168007 PMCID: PMC11087397 DOI: 10.1007/s40199-023-00495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE Despite the advances in treatment, lung cancer is a global concern and necessitates the development of new treatments. Biguanides like metformin (MET) and artemisinin (ART) have recently been discovered to have anti-cancer properties. As a consequence, in the current study, the anti-cancer effect of MET and ART co-encapsulated in niosomal nanoparticles on lung cancer cells was examined to establish an innovative therapy technique. METHODS Niosomal nanoparticles (Nio-NPs) were synthesized by thin-film hydration method, and their physicochemical properties were assessed by FTIR. The morphology of Nio-NPs was evaluated with FE-SEM and AFM. The MTT assay was applied to evaluate the cytotoxic effects of free MET, free ART, their encapsulated form with Nio-NPs, as well as their combination, on A549 cells. Apoptosis assay was utilized to detect the biological processes involved with programmed cell death. The arrest of cell cycle in response to drugs was assessed using a cell cycle assay. Following a 48-h drug treatment, the expression level of hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and 7 genes were assessed using the qRT-PCR method. RESULTS Both MET and ART reduced the survival rate of lung cancer cells in the dose-dependent manner. The IC50 values of pure ART and MET were 195.2 μM and 14.6 mM, respectively while in nano formulated form their IC50 values decreased to 56.7 μM and 78.3 μM, respectively. The combination of MET and ART synergistically decreased the proliferation of lung cancer cells, compared to the single treatments. Importantly, the combination of MET and ART had a higher anti-proliferative impact against A549 lung cancer cells, with lower IC50 values. According to the result of Real-time PCR, hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and Caspase 7 genes expression were considerably altered in treated with combination of nano formulated MET and ART compared to single therapies. CONCLUSION The results of this study showed that the combination of MET and ART encapsulated in Nio-NPs could be useful for the treatment of lung cancer and can increase the efficiency of lung cancer treatment.
Collapse
Affiliation(s)
- Salah Jaafar Abdulkareem
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Farhoudi-Sefidan-Jadid
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Salmani-Javan
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Toroghi
- Research Center for Molecular Medicine, Hamedan University of Medical Science, Hamedan, Iran
| | - Nosratollah Zarghami
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
28
|
Zamarioli LDS, Santos MRM, Erustes AG, Meccatti VM, Pereira TC, Smaili SS, Marcucci MC, Oliveira CR, Pereira GJS, Bincoletto C. Artemisia vulgaris Induces Tumor-Selective Ferroptosis and Necroptosis via Lysosomal Ca 2+ Signaling. Chin J Integr Med 2024; 30:525-533. [PMID: 38040876 DOI: 10.1007/s11655-023-3712-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVE To evaluate the chemical composition and effects of Artemisia vulgaris (AV) hydroalcoholic extract (HEAV) on breast cancer cells (MCF-7 and SKBR-3), chronic myeloid leukemia (K562) and NIH/3T3 fibroblasts. METHODS Phytochemical analysis of HEAV was done by high-performance liquid chromatography-mass (HPLC) spectrometry. Viability and cell death studies were performed using trypan blue and Annexin/FITC-7AAD, respectively. Ferrostatin-1 (Fer-1) and necrostatin-1 (Nec-1) were used to assess the mode of HEAV-induced cell death and acetoxymethylester (BAPTA-AM) was used to verify the involvement of cytosolic calcium in this event. Cytosolic calcium measurements were made using Fura-2-AM. RESULTS HEAV decreased the viability of MCF-7, SKBR-3 and K562 cells (P<0.05). The viability of HEAV-treated K562 cells was reduced compared to HEAV-exposed fibroblasts (P<0.05). Treatment of K562 cells with HEAV induced cell death primarily by late apoptosis and necrosis in assays using annexin V-FITC/7-AAD (P<0.05). The use of Nec-1 and Fer-1 increased the viability of K562 cells treated with HEAV relative to cells exposed to HEAV alone (P<0.01). HEAV-induced Ca2+ release mainly from lysosomes in K562 cells (P<0.01). Furthermore, BAPTA-AM, an intracellular Ca2+ chelator, decreased the number of non-viable cells treated with HEAV (P<0.05). CONCLUSIONS HEAV is cytotoxic and activates several modalities of cell death, which are partially dependent on lysosomal release of Ca2+. These effects may be related to artemisinin and caffeoylquinic acids, the main compounds identified in HEAV.
Collapse
Affiliation(s)
- Lucas Dos Santos Zamarioli
- Department of Pharmacology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, 04044-020, Brazil
| | - Michele Rosana Maia Santos
- Department of Pharmacology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, 04044-020, Brazil
| | - Adolfo Garcia Erustes
- Department of Pharmacology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, 04044-020, Brazil
| | - Vanessa Marques Meccatti
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São Paulo, SP, 12231-280, Brazil
| | - Thaís Cristine Pereira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São Paulo, SP, 12231-280, Brazil
| | - Soraya S Smaili
- Department of Pharmacology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, 04044-020, Brazil
| | - Maria Cristina Marcucci
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (ICT-UNESP), São Paulo, SP, 12231-280, Brazil
| | - Carlos Rocha Oliveira
- Research Group on Phytocomplexes and Cell Signaling, School of Health Sciences, Anhembi Morumbi University, São Paulo, SP, 03164-000, Brazil
| | - Gustavo J S Pereira
- Department of Pharmacology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, 04044-020, Brazil
| | - Claudia Bincoletto
- Department of Pharmacology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, 04044-020, Brazil.
| |
Collapse
|
29
|
Liang Q, Wang Y, Li Y, Wang J, Liu C, Li Y. Ferroptosis: emerging roles in lung cancer and potential implications in biological compounds. Front Pharmacol 2024; 15:1374182. [PMID: 38783959 PMCID: PMC11111967 DOI: 10.3389/fphar.2024.1374182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Lung cancer has high metastasis and drug resistance. The prognosis of lung cancer patients is poor and the patients' survival chances are easily neglected. Ferroptosis is a programmed cell death proposed in 2012, which differs from apoptosis, necrosis and autophagy. Ferroptosis is a novel type of regulated cell death which is driven by iron-dependent lipid peroxidation and subsequent plasma membrane ruptures. It has broad prospects in the field of tumor disease treatment. At present, multiple studies have shown that biological compounds can induce ferroptosis in lung cancer cells, which exhibits significant anti-cancer effects, and they have the advantages in high safety, minimal side effects, and less possibility to drug resistance. In this review, we summarize the biological compounds used for the treatment of lung cancer by focusing on ferroptosis and its mechanism. In addition, we systematically review the current research status of combining nanotechnology with biological compounds for tumor treatment, shed new light for targeting ferroptosis pathways and applying biological compounds-based therapies.
Collapse
Affiliation(s)
- Qiuran Liang
- The Second Clinical Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yuehui Wang
- The Second Clinical Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yili Li
- The Second Clinical Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jinyan Wang
- The Second Clinical Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Chuanbo Liu
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yicong Li
- Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
30
|
Zhang Q, Xia Y, Wang F, Yang D, Liang Z. Induction of ferroptosis by natural products in non-small cell lung cancer: a comprehensive systematic review. Front Pharmacol 2024; 15:1385565. [PMID: 38751790 PMCID: PMC11094314 DOI: 10.3389/fphar.2024.1385565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide that presents a substantial peril to human health. Non-Small Cell Lung Cancer (NSCLC) is a main subtype of lung cancer with heightened metastasis and invasion ability. The predominant treatment approaches currently comprise surgical interventions, chemotherapy regimens, and radiotherapeutic procedures. However, it poses significant clinical challenges due to its tumor heterogeneity and drug resistance, resulting in diminished patient survival rates. Therefore, the development of novel treatment strategies for NSCLC is necessary. Ferroptosis was characterized by iron-dependent lipid peroxidation and the accumulation of lipid reactive oxygen species (ROS), leading to oxidative damage of cells and eventually cell death. An increasing number of studies have found that exploiting the induction of ferroptosis may be a potential therapeutic approach in NSCLC. Recent investigations have underscored the remarkable potential of natural products in the cancer treatment, owing to their potent activity and high safety profiles. Notably, accumulating evidences have shown that targeting ferroptosis through natural compounds as a novel strategy for combating NSCLC holds considerable promise. Nevertheless, the existing literature on comprehensive reviews elucidating the role of natural products inducing the ferroptosis for NSCLC therapy remains relatively sparse. In order to furnish a valuable reference and support for the identification of natural products inducing ferroptosis in anti-NSCLC therapeutics, this article provided a comprehensive review explaining the mechanisms by which natural products selectively target ferroptosis and modulate the pathogenesis of NSCLC.
Collapse
Affiliation(s)
| | | | | | | | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
31
|
Li Q, Song Q, Pei H, Chen Y. Emerging mechanisms of ferroptosis and its implications in lung cancer. Chin Med J (Engl) 2024; 137:818-829. [PMID: 38494343 PMCID: PMC10997236 DOI: 10.1097/cm9.0000000000003048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Indexed: 03/19/2024] Open
Abstract
ABSTRACT Lung cancer is one of the most common malignancies and has the highest number of deaths among all cancers. Despite continuous advances in medical strategies, the overall survival of lung cancer patients is still low, probably due to disease progression or drug resistance. Ferroptosis is an iron-dependent form of regulated cell death triggered by the lethal accumulation of lipid peroxides, and its dysregulation is implicated in cancer development. Preclinical evidence has shown that targeting the ferroptosis pathway could be a potential strategy for improving lung cancer treatment outcomes. In this review, we summarize the underlying mechanisms and regulatory networks of ferroptosis in lung cancer and highlight ferroptosis-targeting preclinical attempts to provide new insights for lung cancer treatment.
Collapse
Affiliation(s)
- Qian Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington D.C. 20057, USA
| | - Yali Chen
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
32
|
Yu S, Tong L, Shen J, Li C, Hu Y, Feng K, Shao J. Recent research progress based on ferroptosis-related signaling pathways and the tumor microenvironment on it effects. Eur J Med Chem 2024; 269:116290. [PMID: 38518522 DOI: 10.1016/j.ejmech.2024.116290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/24/2024]
Abstract
The existing therapies for cancer are not remote satisfactory due to drug-resistance in tumors that are malignant. There is a pressing necessity to take a step forward to develop innovative therapies that can complement current ones. Multiple investigations have demonstrated that ferroptosis therapy, a non-apoptotic modality of programmed cell death, has tremendous potential in face of multiple crucial events, such as drug resistance and toxicity in aggressive malignancies. Recently, ferroptosis at the crosswalk of chemotherapy, materials science, immunotherapy, tumor microenvironment, and bionanotechnology has been presented to elucidate its therapeutic feasibility. Given the burgeoning progression of ferroptosis-based nanomedicine, the newest advancements in this field at the confluence of ferroptosis-inducers, nanotherapeutics, along with tumor microenvironment are given an overview. Here, the signaling pathways of ferroptosis-related were first talked about briefly. The emphasis discussion was placed on the pharmacological mechanisms and the nanodrugs design of ferroptosis inducing agents based on multiple distinct metabolism pathways. Additionally, a comprehensive overview of the action mechanisms by which the tumor microenvironment influences ferroptosis was elaborately descripted. Finally, some limitations of current researches and future research directions were also deliberately discussed to provide details about therapeutic avenues for ferroptosis-related diseases along with the design of anti-drugs.
Collapse
Affiliation(s)
- Shijing Yu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lingwu Tong
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiangwen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chenglei Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yongshan Hu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Keke Feng
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
33
|
Qin P, Li Q, Zu Q, Dong R, Qi Y. Natural products targeting autophagy and apoptosis in NSCLC: a novel therapeutic strategy. Front Oncol 2024; 14:1379698. [PMID: 38628670 PMCID: PMC11019012 DOI: 10.3389/fonc.2024.1379698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) being the predominant type. The roles of autophagy and apoptosis in NSCLC present a dual and intricate nature. Additionally, autophagy and apoptosis interconnect through diverse crosstalk molecules. Owing to their multitargeting nature, safety, and efficacy, natural products have emerged as principal sources for NSCLC therapeutic candidates. This review begins with an exploration of the mechanisms of autophagy and apoptosis, proceeds to examine the crosstalk molecules between these processes, and outlines their implications and interactions in NSCLC. Finally, the paper reviews natural products that have been intensively studied against NSCLC targeting autophagy and apoptosis, and summarizes in detail the four most retrieved representative drugs. This paper clarifies good therapeutic effects of natural products in NSCLC by targeting autophagy and apoptosis and aims to promote greater consideration by researchers of natural products as candidates for anti-NSCLC drug discovery.
Collapse
Affiliation(s)
- Peiyi Qin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Qingchen Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Zu
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Ruxue Dong
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Yuanfu Qi
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
34
|
Chen T, Ding L, Zhao M, Song S, Hou J, Li X, Li M, Yin K, Li X, Wang Z. Recent advances in the potential effects of natural products from traditional Chinese medicine against respiratory diseases targeting ferroptosis. Chin Med 2024; 19:49. [PMID: 38519984 PMCID: PMC10958864 DOI: 10.1186/s13020-024-00918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Respiratory diseases, marked by structural changes in the airways and lung tissues, can lead to reduced respiratory function and, in severe cases, respiratory failure. The side effects of current treatments, such as hormone therapy, drugs, and radiotherapy, highlight the need for new therapeutic strategies. Traditional Chinese Medicine (TCM) offers a promising alternative, leveraging its ability to target multiple pathways and mechanisms. Active compounds from Chinese herbs and other natural sources exhibit anti-inflammatory, antioxidant, antitumor, and immunomodulatory effects, making them valuable in preventing and treating respiratory conditions. Ferroptosis, a unique form of programmed cell death (PCD) distinct from apoptosis, necrosis, and others, has emerged as a key area of interest. However, comprehensive reviews on how natural products influence ferroptosis in respiratory diseases are lacking. This review will explore the therapeutic potential and mechanisms of natural products from TCM in modulating ferroptosis for respiratory diseases like acute lung injury (ALI), asthma, pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), lung ischemia-reperfusion injury (LIRI), pulmonary hypertension (PH), and lung cancer, aiming to provide new insights for research and clinical application in TCM for respiratory health.
Collapse
Affiliation(s)
- Tian Chen
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Ding
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Meiru Zhao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Siyu Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Juan Hou
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyan Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Kai Yin
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| |
Collapse
|
35
|
GUO X, WANG T, XIA J, ZENG H, SHI W. [Role of Ferroptosis in Non-small Cell Lung Cancer and Progress
of Traditional Chinese Medicine Intervention]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:216-230. [PMID: 38590196 PMCID: PMC11002191 DOI: 10.3779/j.issn.1009-3419.2024.101.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 04/10/2024]
Abstract
Non-small cell lung cancer (NSCLC) is one of the malignant tumors with high morbidity and mortality worldwide. Ferroptosis is a new type of programmed cell death caused by abnormal accumulation of iron-dependent reactive oxygen species (ROS) leading to lipid peroxidation. It involves the balance between iron metabolism, lipid metabolism, oxygen free radical reaction and lipid peroxidation. Recent studies have found that ferroptosis is closely related to the occurrence and development of NSCLC. Due to the emergence of chemotherapy resistance and radiotherapy resistance in the treatment of NSCLC, there is an urgent need to develop new effective drugs and treatment strategies. Traditional Chinese medicine has unique advantages in the prevention and treatment of NSCLC due to its multi-targets and minimal side effects. In this review, we summarize the mechanism of ferroptosis in NSCLC, and discuss the research status of active ingredients of traditional Chinese medicine, single-herb traditional Chinese medicine and Chinese herbal compounds in the intervention of NSCLC through ferroptosis, in order to provide a new theoretical basis for the research of ferroptosis pathway and the prevention and treatment of NSCLC by targeted ferroptosis of traditional Chinese medicine.
.
Collapse
|
36
|
Li Y, Li X, Li J. Ferroptosis in lung cancer: dual role, multi-level regulation, and new therapeutic strategies. Front Oncol 2024; 14:1360638. [PMID: 38515565 PMCID: PMC10955378 DOI: 10.3389/fonc.2024.1360638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Lung cancer is a highly prevalent malignant tumor worldwide, with high incidence and death rates. Recently, there has been increasing recognition of the role of ferroptosis, a unique cell death mechanism, in lung cancer. This review aims to summarize the current research progress on the relationship between ferroptosis and lung cancer. It also provides a comprehensive analysis of the regulatory processes of ferroptosis in various stages, including epigenetics, transcription, post-transcription, translation, and post-translation. Additionally, the review explores the dual nature of ferroptosis in lung cancer progression, which presents interesting therapeutic possibilities. On one hand, ferroptosis can promote the escape of immune surveillance and reduce the efficacy of treatment in the early stages of tumors. On the other hand, it can counter drug resistance, enhance radiosensitivity, and promote immunotherapy. The article also discusses various combination treatment strategies based on the mechanism of ferroptosis. Overall, this review offers a holistic perspective on the role of ferroptosis in the onset, progression, and treatment of lung cancer. It aims to contribute to future research and clinical interventions in this field.
Collapse
Affiliation(s)
| | | | - Jian Li
- Department of Thoracic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
37
|
Zhang CH, Yan YJ, Luo Q. The molecular mechanisms and potential drug targets of ferroptosis in myocardial ischemia-reperfusion injury. Life Sci 2024; 340:122439. [PMID: 38278348 DOI: 10.1016/j.lfs.2024.122439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI), caused by the initial interruption and subsequent restoration of coronary artery blood, results in further damage to cardiac function, affecting the prognosis of patients with acute myocardial infarction. Ferroptosis is an iron-dependent, superoxide-driven, non-apoptotic form of regulated cell death that is involved in the pathogenesis of MIRI. Ferroptosis is characterized by the accumulation of lipid peroxides (LOOH) and redox disequilibrium. Free iron ions can induce lipid oxidative stress as a substrate of the Fenton reaction and lipoxygenase (LOX) and participate in the inactivation of a variety of lipid antioxidants including CoQ10 and GPX4, destroying the redox balance and causing cell death. The metabolism of amino acid, iron, and lipids, including associated pathways, is considered as a specific hallmark of ferroptosis. This review systematically summarizes the latest research progress on the mechanisms of ferroptosis and discusses and analyzes the therapeutic approaches targeting ferroptosis to alleviate MIRI.
Collapse
Affiliation(s)
- Chen-Hua Zhang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yu-Jie Yan
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Qi Luo
- School of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
38
|
Jin W, Sun Y, Wang J, Wang Y, Chen D, Fang M, He J, Zhong L, Ren H, Zhang Y, Yin H, Wu S, Chen R, Yan W. Arsenic trioxide suppresses lung adenocarcinoma stem cell stemness by inhibiting m6A modification to promote ferroptosis. Am J Cancer Res 2024; 14:507-525. [PMID: 38455419 PMCID: PMC10915325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
Arsenic trioxide (ATO) is well known for its inhibitory effects on cancer progression, including lung adenocarcinoma (LUAD), but the molecular mechanism remains elusive. This study aimed to investigate the roles of ATO in regulating LUAD stem cells (LASCs) and the underlying mechanisms. To induce LASCs, cells cultured in an F12 medium, containing B27, epidermal growth factor, and basic fibroblast growth factor, induced LASCs. LASCs stemness was assessed through tumor sphere formation assay, and percentages of CD133+ cells were detected by flow cytometry. The Cell Counting Kit-8 method was used to assess LASCs viability, while reactive oxygen species (ROS) and iron ion levels were quantitated by fluorescence microscopy and spectrophotometry, respectively, and total m6A levels were measured by dot blot. Additionally, LASCs mitochondrial alterations were analyzed via transmission electron microscopy. Finally, the tumorigenicity of LASCs was assessed using a cancer cell line-based xenograft model. Tumor sphere formation and CD133 expression were used to validate the successful induction of LASCs from A549 and NCI-H1975 cells. ATO significantly inhibited proliferation, reduced ZC3H13 expression and total m6A modification levels, and increased ROS and iron ion content, but repressed sphere formation and CD133 expression in LASCs. ZC3H13 overexpression or ferrostatin-1 treatment abrogated LASCs stemness inhibition caused by ATO treatment, and interference with ZC3H13 inhibited LASCs stemness. Furthermore, the promotion of LASCs ferroptosis by ATO was effectively mitigated by ZC3H13 overexpression, while interference with ZC3H13 further promoted ferroptosis. Moreover, si-ZC3H13 promoted ferroptosis and impaired stemness in LASCs, which ferrostatin-1 abrogated. Finally, ZC3H13 overexpression alleviated the inhibitory effects of ATO on LASCs tumorigenicity. Taken together, ATO treatment substantially impaired the stemness of LUAD stem cells by promoting the ferroptosis program, which was mediated by its ZC3H13 gene expression inhibition to suppress m6A medication.
Collapse
Affiliation(s)
- Wen Jin
- Department of Cardiac Intensive Care Unit, The Cardiovascular Hospital, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Yu Sun
- Department of Cardiac Intensive Care Unit, The Cardiovascular Hospital, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Jiaqi Wang
- Department of Oncology, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Yan Wang
- Department of Cardiac Intensive Care Unit, The Cardiovascular Hospital, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Dan Chen
- Department of Oncology, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Ming Fang
- Department of Cardiac Intensive Care Unit, The Cardiovascular Hospital, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Jie He
- Department of Cardiac Intensive Care Unit, The Cardiovascular Hospital, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Linsheng Zhong
- Department of Cardiac Intensive Care Unit, The Cardiovascular Hospital, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Hao Ren
- Department of Cardiac Intensive Care Unit, The Cardiovascular Hospital, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Yuanmei Zhang
- Department of Ultrasound, The First Affiliate Hospital of Guangzhou Medical UniversityGuangzhou 510120, Guangdong, China
| | - Hao Yin
- Department of Cardiac Intensive Care Unit, The Cardiovascular Hospital, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Shijia Wu
- Department of Cardiac Intensive Care Unit, The Cardiovascular Hospital, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Ruqin Chen
- Department of Traditional Chinese Medicine, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| | - Wen Yan
- Department of Oncology, The Second People’s Hospital of Guangdong ProvinceGuangzhou 510310, Guangdong, China
| |
Collapse
|
39
|
Wang Y, Yuan X, Ren M, Wang Z. Ferroptosis: A New Research Direction of Artemisinin and Its Derivatives in Anti-Cancer Treatment. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:161-181. [PMID: 38328829 DOI: 10.1142/s0192415x24500071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Ferroptosis, an iron-dependent cell death mechanism driven by an accumulation of lipid peroxides on cellular membranes, has emerged as a promising strategy to treat various diseases, including cancer. Ferroptosis inducers not only exhibit cytotoxic effects on multiple cancer cells, including drug-resistant cancer variants, but also hold potential as adjuncts to enhance the efficacy of other anti-cancer therapies, such as immunotherapy. In addition to synthetic inducers, natural compounds, such as artemisinin, can be considered ferroptosis inducers. Artemisinin, extracted from Artemisia annua L., is a poorly water-soluble antimalarial drug. For clinical applications, researchers have synthesized various water-soluble artemisinin derivatives such as dihydroartemisinin, artesunate, and artemether. Artemisinin and artemisinin derivatives (ARTEs) upregulate intracellular free iron levels and promote the accumulation of intracellular lipid peroxides to induce cancer cell ferroptosis, alleviating cancer development and resulting in strong anti-cancer effects in vitro and in vivo. In this review, we introduce the mechanisms of ferroptosis, summarize the research on ARTEs-induced ferroptosis in cancer cells, and discuss the clinical research progress and current challenges of ARTEs in anti-cancer treatment. This review deepens the current understanding of the relationship between ARTEs and ferroptosis and provides a theoretical basis for the clinical anti-cancer application of ARTEs in the future.
Collapse
Affiliation(s)
- Youke Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, P. R. China
- Guangdong Provincial Key Laboratory of Clinical, Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, Guangdong, P. R. China
| | - Xiang Yuan
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, P. R. China
| | - Min Ren
- Abdominal Oncology Ward, Division of Radiation Oncology, Cancer Center West China Hospital, Sichuan University, Chengdu 610041 Sichuan, P. R. China
| | - Zhiyu Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Clinical, Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou 510006, Guangdong, P. R. China
- Integrative Research Laboratory of Breast Cancer, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, P. R. China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, P. R. China
| |
Collapse
|
40
|
Zhu J, Shen P, Xu Y, Zhang X, Chen Q, Gu K, Ji S, Yang B, Zhao Y. Ferroptosis: a new mechanism of traditional Chinese medicine for cancer treatment. Front Pharmacol 2024; 15:1290120. [PMID: 38292937 PMCID: PMC10824936 DOI: 10.3389/fphar.2024.1290120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
Ferroptosis, distinct from apoptosis, is a novel cellular death pathway characterized by the build-up of lipid peroxidation and reactive oxygen species (ROS) derived from lipids within cells. Recent studies demonstrated the efficacy of ferroptosis inducers in targeting malignant cells, thereby establishing a promising avenue for combating cancer. Traditional Chinese medicine (TCM) has a long history of use and is widely used in cancer treatment. TCM takes a holistic approach, viewing the patient as a system and utilizing herbal formulas to address complex diseases such as cancer. Recent TCM studies have elucidated the molecular mechanisms underlying ferroptosis induction during cancer treatment. These studies have identified numerous plant metabolites and derivatives that target multiple pathways and molecular targets. TCM can induce ferroptosis in tumor cells through various regulatory mechanisms, such as amino acid, iron, and lipid metabolism pathways, which may provide novel therapeutic strategies for apoptosis-resistant cancer treatment. TCM also influence anticancer immunotherapy via ferroptosis. This review comprehensively elucidates the molecular mechanisms underlying ferroptosis, highlights the pivotal regulatory genes involved in orchestrating this process, evaluates the advancements made in TCM research pertaining to ferroptosis, and provides theoretical insights into the induction of ferroptosis in tumors using botanical drugs.
Collapse
Affiliation(s)
- Jiahao Zhu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Clinical Cancer Center, Wuxi, Jiangsu, China
| | - Peipei Shen
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Clinical Cancer Center, Wuxi, Jiangsu, China
| | - Yu Xu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Clinical Cancer Center, Wuxi, Jiangsu, China
| | - Xiaojun Zhang
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Clinical Cancer Center, Wuxi, Jiangsu, China
| | - Qingqing Chen
- Department of Radiotherapy and Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ke Gu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Clinical Cancer Center, Wuxi, Jiangsu, China
| | - Shengjun Ji
- Department of Radiotherapy and Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Bo Yang
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Clinical Cancer Center, Wuxi, Jiangsu, China
| | - Yutian Zhao
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Clinical Cancer Center, Wuxi, Jiangsu, China
| |
Collapse
|
41
|
Consoli V, Fallica AN, Sorrenti V, Pittalà V, Vanella L. Novel Insights on Ferroptosis Modulation as Potential Strategy for Cancer Treatment: When Nature Kills. Antioxid Redox Signal 2024; 40:40-85. [PMID: 37132605 PMCID: PMC10824235 DOI: 10.1089/ars.2022.0179] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Significance: The multifactorial nature of the mechanisms implicated in cancer development still represents a major issue for the success of established antitumor therapies. The discovery of ferroptosis, a novel form of programmed cell death distinct from apoptosis, along with the identification of the molecular pathways activated during its execution, has led to the uncovering of novel molecules characterized by ferroptosis-inducing properties. Recent advances: As of today, the ferroptosis-inducing properties of compounds derived from natural sources have been investigated and interesting findings have been reported both in vitro and in vivo. Critical Issues: Despite the efforts made so far, only a limited number of synthetic compounds have been identified as ferroptosis inducers, and their utilization is still limited to basic research. In this review, we analyzed the most important biochemical pathways involved in ferroptosis execution, with particular attention to the newest literature findings on canonical and non-canonical hallmarks, together with mechanisms of action of natural compounds identified as novel ferroptosis inducers. Compounds have been classified based on their chemical structure, and modulation of ferroptosis-related biochemical pathways has been reported. Future Directions: The outcomes herein collected represent a fascinating starting point from which to take hints for future drug discovery studies aimed at identifying ferroptosis-inducing natural compounds for anticancer therapies. Antioxid. Redox Signal. 40, 40-85.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| |
Collapse
|
42
|
Sharma K. Enhancement of Anticancer Potential of Artemisinin Derivatives through N-glycosylation. Curr Top Med Chem 2024; 24:2074-2091. [PMID: 39136507 DOI: 10.2174/0115680266322676240724114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 10/22/2024]
Abstract
Cancer cells have significantly higher intracellular free-metal ions levels than normal cells, and it is well known that artemisinin (ART) molecules or its derivatives sensitize cancer cells when its endoperoxide moiety combines with metal ions, resulting in the production of reactive oxygen species, lysosomal degradation of ferritin, or regulation of system Gpx4 leading to apoptosis, ferroptosis or cuproptosis. Artemisinin derivatives (ADs) are reported to interfere more efficiently with metal-regulatory-proteins (MRPs) controlling iron/copper homeostasis by interacting with cytoplasmic unbound metal ions and thereby promoting the association of MRP to mRNA molecules carrying the respective sequences. However, the simple artemisinin analogues are required to be administered in higher doses with repeated administration due to low solubility and smaller plasma half-lives. To overcome these problems, amino ARTs were introduced which are found to be more stable, and later on, a series of ARTs derivatives containing sugar moiety was developed in search of analogues having good water solubility and high pharmacological activity. This review focuses on the preparation of N-glycosylated amino-ART analogues with their application against cancer. The intrinsic capability of glycosylated ART compounds is to give sugar-- containing substrates, which can bind with lectin galectin-8 receptors on the cancer cells making these compounds more specific in targeting cancer. Various AD mechanism of action against cancer is also explored with clinical trials to facilitate the synthesis of newer derivatives. In the future, the latest nano-techniques can be used to create formulations of such compounds to make them more target-specific in cancer.
Collapse
Affiliation(s)
- Kiran Sharma
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, NSW, Australia
| |
Collapse
|
43
|
Li S, Wang A, Wu Y, He S, Shuai W, Zhao M, Zhu Y, Hu X, Luo Y, Wang G. Targeted therapy for non-small-cell lung cancer: New insights into regulated cell death combined with immunotherapy. Immunol Rev 2024; 321:300-334. [PMID: 37688394 DOI: 10.1111/imr.13274] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Non-small-cell lung cancer (NSCLC), which has a high rate of metastatic spread and drug resistance, is the most common subtype of lung cancer. Therefore, NSCLC patients have a very poor prognosis and a very low chance of survival. Human cancers are closely linked to regulated cell death (RCD), such as apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis. Currently, small-molecule compounds targeting various types of RCD have shown potential as anticancer treatments. Moreover, RCD appears to be a specific part of the antitumor immune response; hence, the combination of RCD and immunotherapy might increase the inhibitory effect of therapy on tumor growth. In this review, we summarize small-molecule compounds used for the treatment of NSCLC by focusing on RCD and pharmacological systems. In addition, we describe the current research status of an immunotherapy combined with an RCD-based regimen for NSCLC, providing new ideas for targeting RCD pathways in combination with immunotherapy for patients with NSCLC in the future.
Collapse
Affiliation(s)
- Shutong Li
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Aoxue Wang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yongya Wu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Shengyuan He
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wen Shuai
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Min Zhao
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yumeng Zhu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Xiuying Hu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Guan Wang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Huang R, Wu J, Ma Y, Kang K. Molecular Mechanisms of Ferroptosis and Its Role in Viral Pathogenesis. Viruses 2023; 15:2373. [PMID: 38140616 PMCID: PMC10747891 DOI: 10.3390/v15122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Ferroptosis is a novelty form of regulated cell death, and it is mainly characterized by iron accumulation and lipid peroxidation in the cells. Its underlying mechanism is related to the amino acid, iron, and lipid metabolisms. During viral infection, pathogenic microorganisms have evolved to interfere with ferroptosis, and ferroptosis is often manipulated by viruses to regulate host cell servicing for viral reproduction. Therefore, this review provides a comprehensive overview of the mechanisms underlying ferroptosis, elucidates the intricate signaling pathways involved, and explores the pivotal role of ferroptosis in the pathogenesis of viral infections. By enhancing our understanding of ferroptosis, novel therapeutic strategies can be devised to effectively prevent and treat diseases associated with this process. Furthermore, unraveling the developmental mechanisms through which viral infections exploit ferroptosis will facilitate development of innovative antiviral agents.
Collapse
Affiliation(s)
- Riwei Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.H.); (J.W.); (Y.M.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiang Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.H.); (J.W.); (Y.M.)
| | - Yaodan Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.H.); (J.W.); (Y.M.)
| | - Kai Kang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.H.); (J.W.); (Y.M.)
| |
Collapse
|
45
|
Su Q, Huang P, Luo X, Zhang P, Li H, Chen Y. Artesunate reverses cytarabine resistance in acute myeloid leukemia by blocking the JAK/STAT3 signaling. Hematology 2023; 28:2255802. [PMID: 37815490 DOI: 10.1080/16078454.2023.2255802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/01/2023] [Indexed: 10/11/2023] Open
Abstract
OBJECTIVES Although cytarabine (AraC) has greatly contributed to improving the prognosis of patients with acute myeloid leukemia (AML), many patients developed drug resistance and eventually succumbed to AML. Thus, resistance to AraC is a major obstacle to improve the efficacy of chemotherapy in AML. Hence, this study aimed to demonstrate that artesunate (ART) can reliably induce cell death in vitro and block AraC resistance. METHODS AML cell lines resistant to AraC were first constructed by repeated dosing for 5 months. Further, we analyzed whether ART intervention affected the sensitivity of AraC-resistant cells to AraC by cell function experiments, mainly including CCK-8 to assess cell viability, flow cytometry to examine apoptosis, and Western blotting to measure the Janus kinase (JAK)/signal transducers and activators of transcription 3 (STAT3) pathway protein expression. Furthermore, whether JAK/STAT3 pathway knockdown has a blocking effect on the efficacy of ART was also assessed. RESULTS Co-treatment of ART and AraC increased the sensitivity of AML cells to AraC. Also, it effectively reversed the resistance of AML cells to AraC that is shown by the significantly reduced proliferation and increased apoptosis rates. ART intervention suppressed the activation of the JAK/STAT3 signaling pathway in AraC-resistant AML cells, suggesting that the function of ART in reversing AraC resistance is indeed dependent on the JAK/STAT3 signaling pathway. CONCLUSIONS In summary, ART enhanced the sensitivity of AML/AraC-resistant cells to AraC by modulating the JAK/STAT3 pathway.
Collapse
Affiliation(s)
- Qiong Su
- Department of Clinical Medicine, Zunyi Medical and Pharmaceutical College, Zunyi, People's Republic of China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Pediatrics, Guizhou Children's Hospital, Guiyang, People's Republic of China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine, Zunyi Medical University, Zunyi, People's Republic of China
| | - Pei Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Pediatrics, Guizhou Children's Hospital, Guiyang, People's Republic of China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine, Zunyi Medical University, Zunyi, People's Republic of China
| | - Xi Luo
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Pediatrics, Guizhou Children's Hospital, Guiyang, People's Republic of China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine, Zunyi Medical University, Zunyi, People's Republic of China
| | - Ping Zhang
- Department of Clinical Medicine, Zunyi Medical and Pharmaceutical College, Zunyi, People's Republic of China
| | - Hang Li
- Department of Clinical Medicine, Zunyi Medical and Pharmaceutical College, Zunyi, People's Republic of China
| | - Yan Chen
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
- Department of Pediatrics, Guizhou Children's Hospital, Guiyang, People's Republic of China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine, Zunyi Medical University, Zunyi, People's Republic of China
| |
Collapse
|
46
|
Hu S, Chu Y, Zhou X, Wang X. Recent advances of ferroptosis in tumor: From biological function to clinical application. Biomed Pharmacother 2023; 166:115419. [PMID: 37666176 DOI: 10.1016/j.biopha.2023.115419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023] Open
Abstract
Ferroptosis is a recently recognized form of cell death with distinct features in terms of morphology, biochemistry, and molecular mechanisms. Unlike other types of cell death, ferroptosis is characterized by iron dependence, reactive oxygen species accumulation and lipid peroxidation. Recent studies have demonstrated that selective autophagy plays a vital role in the induction of ferroptosis, including ferritinophagy, lipophagy, clockophagy, and chaperone-mediated autophagy. Emerging evidence has indicated the involvement of ferroptosis in tumorigenesis through regulating various biological processes, including tumor growth, metastasis, stemness, drug resistance, and recurrence. Clinical and preclinical studies have found that novel therapies targeting ferroptosis exert great potential in the treatment of tumors. This review provides a comprehensive overview of the molecular mechanisms in ferroptosis, especially in autophagy-driven ferroptosis, discusses the recent advances in the biological roles of ferroptosis in tumorigenesis, and highlights the application of novel ferroptosis-targeted therapies in the clinical treatment of tumors.
Collapse
Affiliation(s)
- Shunfeng Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yurou Chu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Taishan Scholars Program of Shandong Province, Jinan, Shandong 250021, China; Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong 250021, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Taishan Scholars Program of Shandong Province, Jinan, Shandong 250021, China; Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong 250021, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 251006, China.
| |
Collapse
|
47
|
Aleksandrova Y, Neganova M. Deciphering the Mysterious Relationship between the Cross-Pathogenetic Mechanisms of Neurodegenerative and Oncological Diseases. Int J Mol Sci 2023; 24:14766. [PMID: 37834214 PMCID: PMC10573395 DOI: 10.3390/ijms241914766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The relationship between oncological pathologies and neurodegenerative disorders is extremely complex and is a topic of concern among a growing number of researchers around the world. In recent years, convincing scientific evidence has accumulated that indicates the contribution of a number of etiological factors and pathophysiological processes to the pathogenesis of these two fundamentally different diseases, thus demonstrating an intriguing relationship between oncology and neurodegeneration. In this review, we establish the general links between three intersecting aspects of oncological pathologies and neurodegenerative disorders, i.e., oxidative stress, epigenetic dysregulation, and metabolic dysfunction, examining each process in detail to establish an unusual epidemiological relationship. We also focus on reviewing the current trends in the research and the clinical application of the most promising chemical structures and therapeutic platforms that have a modulating effect on the above processes. Thus, our comprehensive analysis of the set of molecular determinants that have obvious cross-functional pathways in the pathogenesis of oncological and neurodegenerative diseases can help in the creation of advanced diagnostic tools and in the development of innovative pharmacological strategies.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| |
Collapse
|
48
|
Wang Z, Guo Z, Wang X, Liao H, Chen F, Liu Y, Wang Z. Reduning alleviates sepsis-induced acute lung injury by reducing apoptosis of pulmonary microvascular endothelial cells. Front Immunol 2023; 14:1196350. [PMID: 37465664 PMCID: PMC10350519 DOI: 10.3389/fimmu.2023.1196350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
Introduction Sepsis-induced acute lung injury (SALI) is a critical illness with high mortality, and pulmonary microvascular endothelial cells (PMECs) barrier dysfunction is a well-documented pathogenesis of SALI. The current study aimed to investigate the underlying mechanism of Reduning (RDN) in the treatment of SALI. Methods Network pharmacology and molecular dynamics simulation (MDS) were used to confirm the possibility of key active components of RDN combining with AKT1. Hematoxylin-eosin staining (HE) and immunohistochemistry (IHC) were used to investigate the effect of RDN in vivo. Immunofluorescence (IF) and co-immunoprecipitation (CoIP) were used to investigate the relationship between mammalian target of rapamycin (mTOR) and Bax in PMECs. ELISA was used to test the level of TNF-α. Flow cytometry was used to detect apoptosis. JC-1 and electron microscopy were used to evaluate mitochondrial damage. The results showed that RDN likely alleviated SALI via targeting AKT1. Results In vivo, RDN could evidently decrease the expression levels of apoptosis-related proteins, alleviate mitochondrial damage, reduce lung tissue edema, down-regulate the level of TNF-α in the serum, and improve the mortality of sepsis in mice. In vitro, RDN had a significant effect on reducing the level of apoptosis-related proteins and cell apoptosis rate, while also mitigated mitochondrial damage. Furthermore, RDN could effectively lower the level of Bax in PMECs and increase the level of mTOR both in vivo and in vitro. Notably, mTOR has the ability to directly bind to Bax, and RDN can enhance this binding capability. Discussion RDN could attenuate SALI through reducing apoptosis of PMECs, which is a promising therapeutic strategy for SALI prevention.
Collapse
Affiliation(s)
- Ziyi Wang
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhe Guo
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xuesong Wang
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Haiyan Liao
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Feng Chen
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yuxin Liu
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhong Wang
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
49
|
Ding W, Liao L, Liu J, Zhao J, Tang Q, Liao Y. Lower dose of metformin combined with artesunate induced autophagy-dependent apoptosis of glioblastoma by activating ROS-AMPK-mTOR axis. Exp Cell Res 2023:113691. [PMID: 37399981 DOI: 10.1016/j.yexcr.2023.113691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/09/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Glioblastoma multiform (GBM), one of the most common, aggressive primary brain tumours, demonstrates resistance to radiotherapy and chemotherapy after surgical resection and treatment failure. Metformin (MET) has been shown to suppress the proliferative capacity and invasion ability of GBM cells by activating AMPK and inhibiting mTOR, but the effective dose exceeded the maximum tolerated dose. Artesunate (ART) can exert certain anti-tumour effects by activating the AMPK-mTOR axis and inducing autophagy in tumour cells. Therefore, this study investigated the effects of MET combined with ART combination therapy on autophagy and apoptosis in GBM cells. MET combined with ART treatment effectively suppressed the viability, mono-cloning ability, migration and invasion capacities, as well as metastatic ability of GBM cells. The underlying mechanism involved modulation of the ROS-AMPK-mTOR axis, which was confirmed using 3-methyladenine and rapamycin to inhibit or promote the effects of MET combined with ART, respectively. The study findings suggest that MET used in combination with ART can induce autophagy-dependent apoptosis in GBM cells by activating the ROS-AMPK-mTOR pathway, providing a potential new treatment for GBM.
Collapse
Affiliation(s)
- Wencong Ding
- Department of Neurosurgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Lingxiao Liao
- Department of Pharmacy, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Jia Liu
- Clinical Research Institute, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Jiaxing Zhao
- Department of Neurosurgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China
| | - Qiongyan Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Yongshi Liao
- Department of Neurosurgery, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| |
Collapse
|
50
|
Mo X, Hu D, Yuan K, Luo J, Huang C, Xu M. Tetrandrine citrate suppresses lung adenocarcinoma growth via SLC7A11/GPX4-mediated ferroptosis. Discov Oncol 2023; 14:85. [PMID: 37266741 DOI: 10.1007/s12672-023-00691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/11/2023] [Indexed: 06/03/2023] Open
Abstract
Ferroptosis is a mode of programmed cell death that plays a crucial role in tumor biology processes. Although tetrandrine citrate (TetC) has been demonstrated to exert anti-tumor effects, it is still unclear whether TetC inhibits lung adenocarcinoma (LUAD) progression by inducing ferroptosis. The study showcased the inhibitory effect of TetC on the viability and progression of tumor cells, including intracellular iron overload, accumulation of reactive oxygen species (ROS), over-expression of malondial-dehyde (MDA), and depletion of glutathione (GSH). Notably, TetC-induced cell death was clearly reversed by three different ferroptosis-related inhibitors. TetC also induced changes in the mitochondrial morphology of LUAD cells, similar to those observed in typical ferroptosis. Further analysis through Western blot (WB) and Immunofluorescence (IF) assays identified that TetC inhibited the expression and fluorescence intensity of both solute carrier family 7 (SLC7A11) and glutathione peroxidase-4 (GPX4). More importantly, over-expression of SLC7A11 could rescue the TetC-induced ferroptosis. Finally, in our vivo experiment, we discovered that TetC significantly slowed the growth rate of subcutaneous transplanted A549 cells, ultimately proving to be biosafe. In conclusion, our study first identified the mechanism by which TetC-induced ferroptosis in LUAD via SLC7A11/GPX4 signaling.
Collapse
Affiliation(s)
- Xiaocong Mo
- Department of Oncology, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510000, Guangdong, China
| | - Di Hu
- Department of Neurology and Stroke Centre, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510000, Guangdong, China
| | - Kaisheng Yuan
- Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510000, Guangdong, China
| | - Juyu Luo
- Department of Neurology and Stroke Centre, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510000, Guangdong, China
| | - Cheng Huang
- Department of Neurology and Stroke Centre, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510000, Guangdong, China
| | - Meng Xu
- Department of Oncology, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|