1
|
Hervé P, Bringaud F, Rivière L. Trypanosoma equiperdum. Trends Parasitol 2025:S1471-4922(25)00002-9. [PMID: 39875229 DOI: 10.1016/j.pt.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/30/2025]
Affiliation(s)
- Perrine Hervé
- Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Université de Bordeaux, Bordeaux, France.
| | - Frédéric Bringaud
- Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Université de Bordeaux, Bordeaux, France
| | - Loïc Rivière
- Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
Kent RS, Briggs EM, Colon BL, Alvarez C, Silva Pereira S, De Niz M. Paving the Way: Contributions of Big Data to Apicomplexan and Kinetoplastid Research. Front Cell Infect Microbiol 2022; 12:900878. [PMID: 35734575 PMCID: PMC9207352 DOI: 10.3389/fcimb.2022.900878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the age of big data an important question is how to ensure we make the most out of the resources we generate. In this review, we discuss the major methods used in Apicomplexan and Kinetoplastid research to produce big datasets and advance our understanding of Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania biology. We debate the benefits and limitations of the current technologies, and propose future advancements that may be key to improving our use of these techniques. Finally, we consider the difficulties the field faces when trying to make the most of the abundance of data that has already been, and will continue to be, generated.
Collapse
Affiliation(s)
- Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, United States
| | - Emma M. Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University Edinburgh, Edinburgh, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Beatrice L. Colon
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Catalina Alvarez
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Sara Silva Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Institut Pasteur, Paris, France
| |
Collapse
|
3
|
Cloning, expression, solubilization, and purification of a functionally active recombinant cAMP-dependent protein kinase catalytic subunit-like protein PKAC1 from Trypanosoma equiperdum. Protein Expr Purif 2021; 192:106041. [PMID: 34953978 DOI: 10.1016/j.pep.2021.106041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
The gene encoding the cAMP-dependent protein kinase (PKA) catalytic subunit-like protein PKAC1 from the Venezuelan TeAp-N/D1 strain of Trypanosoma equiperdum was cloned, and the recombinant TeqPKAC1 protein was overexpressed in bacteria. A major polypeptide with an apparent molecular mass of ∼38 kDa was detected by SDS-polyacrylamide gel electrophoresis, and immunoblotting using antibodies against the human PKA catalytic subunit α. Unfortunately, most of the expressed TeqPKAC1 was highly insoluble. Polypeptides of 36-38 kDa and 45-50 kDa were predominantly seen by immunoblotting in the bacterial particulate and cytosolic fractions, respectively. Since the incorporation of either 4% Triton X-100 or 3% sarkosyl or a mixture of 10 mM MgCl2 and 1 mM ATP (MgATP) improved the solubilization of TeqPKAC1, we used a combination of Triton X-100, sarkosyl and MgATP to solubilize the recombinant protein. TeqPKAC1 was purified by first reconstituting a hybrid holoenzyme between the recombinant protein and a mammalian poly-His-tagged PKA regulatory subunit that was immobilized on a Ni2+-chelating affinity resin, and then by eluting TeqPKAC1 using cAMP. TeqPKAC1 was functional given that it was capable of phosphorylating PKA catalytic subunit substrates, such as kemptide (LRRASLG), histone type II-AS, and the peptide SP20 (TTYADFIASGRTGRRNSIHD), and was inhibited by the peptide IP20 (TTYADFIASGRTGRRNAIHD), which contains the inhibitory motif of the PKA-specific heat-stable inhibitor PKI-α. Optimal enzymatic activity was obtained at 37 °C and pH 8.0-9.0; and the order of effectiveness of nucleotide triphosphates and divalent cations was ATP » GTP ≅ ITP and Mg2+ ≅ Mn2+ ≅ Fe2+ » Ca2+ ≅ Zn2, respectively.
Collapse
|
4
|
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done? Pathogens 2021; 10:pathogens10091124. [PMID: 34578156 PMCID: PMC8472099 DOI: 10.3390/pathogens10091124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Trypanosomatids are easy to cultivate and they are (in many cases) amenable to genetic manipulation. Genome sequencing has become a standard tool routinely used in the study of these flagellates. In this review, we summarize the current state of the field and our vision of what needs to be done in order to achieve a more comprehensive picture of trypanosomatid evolution. This will also help to illuminate the lineage-specific proteins and pathways, which can be used as potential targets in treating diseases caused by these parasites.
Collapse
|
5
|
Draft Genome Sequence of Trypanosoma equiperdum Strain IVM-t1. Microbiol Resour Announc 2019; 8:MRA01119-18. [PMID: 30834384 PMCID: PMC6395869 DOI: 10.1128/mra.01119-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/30/2019] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma equiperdum primarily parasitizes the genital organs and causes dourine in equidae. We isolated a new T. equiperdum strain, T. equiperdum IVM-t1, from the urogenital tract of a horse definitively diagnosed as having dourine in Mongolia. Trypanosoma equiperdum primarily parasitizes the genital organs and causes dourine in equidae. We isolated a new T. equiperdum strain, T. equiperdum IVM-t1, from the urogenital tract of a horse definitively diagnosed as having dourine in Mongolia. Here, we report the whole-genome sequence, the predicted gene models, and their annotations.
Collapse
|
6
|
Glucose deprivation activates a cAMP-independent protein kinase from Trypanosoma equiperdum. Parasitology 2018; 146:643-652. [PMID: 30419978 DOI: 10.1017/s0031182018001920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Kemptide (sequence: LRRASLG) is a synthetic peptide holding the consensus recognition site for the catalytic subunit of the cAMP-dependent protein kinase (PKA). cAMP-independent protein kinases that phosphorylate kemptide were stimulated in Trypanosoma equiperdum following glucose deprivation. An enriched kemptide kinase-containing fraction was isolated from glucose-starved parasites using sedimentation throughout a sucrose gradient, followed by sequential chromatography on diethylaminoethyl-Sepharose and Sephacryl S-300. The trypanosome protein possesses a molecular mass of 39.07-51.73 kDa, a Stokes radius of 27.4 Ǻ, a sedimentation coefficient of 4.06 S and a globular shape with a frictional ratio f/fo = 1.22-1.25. Optimal enzymatic activity was achieved at 37 °C and pH 8.0, and kinetic studies showed Km values for ATP and kemptide of 11.8 ± 4.1 and 24.7 ± 3.8 µm, respectively. The parasite enzyme uses ATP and Mg2+ and was inhibited by other nucleotides and/or analogues of ATP, such as cAMP, AMP, ADP, GMP, GDP, GTP, CTP, β,γ-imidoadenosine 5'-triphosphate and 5'-[p-(fluorosulfonyl)benzoyl] adenosine, and by other divalent cations, such as Zn2+, Mn2+, Co2+, Cu2+, Ca2+ and Fe2+. Additionally, the trypanosome kinase was inhibited by the PKA-specific heat-stable peptide inhibitor PKI-α. This study is the first biochemical and enzymatic characterization of a protein kinase from T. equiperdum.
Collapse
|
7
|
Bonfini B, Tittarelli M, Luciani M, Di Pancrazio C, Rodomonti D, Iannetti L, Podaliri Vulpiani M, Di Febo T. Development of an indirect ELISA for the serological diagnosis of dourine. Vet Parasitol 2018; 261:86-90. [PMID: 30253855 DOI: 10.1016/j.vetpar.2018.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 12/01/2022]
Abstract
Dourine is a parasitic venereal disease of equines caused by T. equiperdum. Humoral antibodies are found in infected animals, but diagnosis of dourine must include history, clinical, and pathological findings in addition to serology. Complement Fixation Test (CFT) is the Office International des Epizooties (OIE) recommended test for international trade; however, some uninfected equines may give inconsistent or nonspecific reactions in CFT due to the anticomplementary effects of their sera. In this study an Indirect Enzyme Linked Immunosorbent Assay (iELISA) was developed. This test could be used to confirm positive serological cases of dourine or to solve inconclusive results obtained by CFT, in addition to Indirect Fluorescent Antibody Test (IFAT) and a Chemiluminescent Immunoblotting Assay (cIB). Six-hundred-and-six CFT negative sera and 140 sera positive to CFT and IFAT were tested by iELISA using OVI T. equiperdum as antigen. Results were expressed as percentage of positivity and the optimum cut-off value determined sensitivity and specificity of 100%. All positive sera, tested by cIB, were confirmed as positive. Additionally, twenty seven sera, low-positive at CFT and negative by IFAT, were tested with iELISA and cIB. All samples resulted negative by cIB and one of them was positive in ELISA. Our results suggest that iELISA and cIB may be used as alternative or supplementary confirmatory tests whenever other recommended serological methods are inconclusive or doubtful.
Collapse
Affiliation(s)
- Barbara Bonfini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100 Teramo, Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100 Teramo, Italy
| | - Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100 Teramo, Italy.
| | - Chiara Di Pancrazio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100 Teramo, Italy
| | - Diamante Rodomonti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100 Teramo, Italy
| | - Luigi Iannetti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100 Teramo, Italy
| | - Michele Podaliri Vulpiani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100 Teramo, Italy
| | - Tiziana Di Febo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario, 64100 Teramo, Italy
| |
Collapse
|
8
|
Perrone T, Sánchez E, Hidalgo L, Mijares A, Balzano-Nogueira L, Gonzatti MI, Aso PM. Infectivity and virulence of Trypanosoma evansi and Trypanosoma equiperdum Venezuelan strains from three different host species. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2018; 13:205-211. [PMID: 31014875 DOI: 10.1016/j.vprsr.2018.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/30/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
Abstract
The infectivity and virulence of seven Trypanosoma evansi and Trypanosoma equiperdum Venezuelan strains isolated from horses, donkeys and capybaras were compared in a mouse model up to 41 days, for parasitemia, animal weight, survival rates, packed cell volume, haemoglobin and erythrocyte count. Two T. equiperdum strains and three of the T. evansi strains resulted in 100% mice mortality, while the two T. evansi donkey strains exhibited lower infectivity and mortality. T. equiperdum strains had shorter pre-patent periods (4 days) than the T. evansi strains (4-12 days). In terms of pathogenicity, only the T. evansi horse strain and the two capybara strains produced a significant decrease of the packed cell volume, in haemoglobin concentration and in red blood cell count. In contrast, the T. evansi donkey strains did not show any changes in the hematological parameters. From the seven variables studied, only pre-patent period, day of maximum parasitemia, day of first parasitemia peak and number of parasitemia peaks were statistically significant. Weight decrease was only observed in mice infected with the T. evansi horse strain. T. equiperdum strains showed the highest mice lethality (7% survival by day 8 post-infection) with no change in the hematological parameters. The three T. evansi horse and capybara strains showed 80%, 87% and 97% survival rates, respectively by day 12 post-infection. However, by day 20 post-inoculation all the mice infected with the T. evansi horse strain died, while 53% and 27% capybara strains infected survived. Whereas by day 40 post-infection, 53 and 73% of the mice infected with the T. evansi donkey strains had survived. These results demonstrate striking infectivity and virulence differences between Venezuelan T. evansi and T. equiperdum strains in NMRI mice and open new possibilities to characterize inter and intra-species variations that may contribute to the pathogenicity of these two species.
Collapse
Affiliation(s)
- Trina Perrone
- Grupo de Bioquímica e Inmunología de Hemoparásitos, Departamento de Biología Celular, Universidad Simón Bolívar, Caracas 1080, Venezuela; Laboratorio de Fisiología de Parásitos, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Altos de Pipe 1020A, Venezuela
| | - Evangelina Sánchez
- Laboratorio de Fisiología de Parásitos, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Altos de Pipe 1020A, Venezuela.
| | - Luis Hidalgo
- Bioterio, Universidad Simón Bolívar, Caracas 1080, Venezuela
| | - Alfredo Mijares
- Laboratorio de Fisiología de Parásitos, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Altos de Pipe 1020A, Venezuela
| | - Leandro Balzano-Nogueira
- Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, USA
| | - Mary Isabel Gonzatti
- Grupo de Bioquímica e Inmunología de Hemoparásitos, Departamento de Biología Celular, Universidad Simón Bolívar, Caracas 1080, Venezuela.
| | - Pedro María Aso
- Grupo de Bioquímica e Inmunología de Hemoparásitos, Departamento de Biología Celular, Universidad Simón Bolívar, Caracas 1080, Venezuela.
| |
Collapse
|
9
|
Cuypers B, Van den Broeck F, Van Reet N, Meehan CJ, Cauchard J, Wilkes JM, Claes F, Goddeeris B, Birhanu H, Dujardin JC, Laukens K, Büscher P, Deborggraeve S. Genome-Wide SNP Analysis Reveals Distinct Origins of Trypanosoma evansi and Trypanosoma equiperdum. Genome Biol Evol 2018; 9:1990-1997. [PMID: 28541535 PMCID: PMC5566637 DOI: 10.1093/gbe/evx102] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 12/22/2022] Open
Abstract
Trypanosomes cause a variety of diseases in man and domestic animals in Africa, Latin America, and Asia. In the Trypanozoon subgenus, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense cause human African trypanosomiasis, whereas Trypanosoma brucei brucei, Trypanosoma evansi, and Trypanosoma equiperdum are responsible for nagana, surra, and dourine in domestic animals, respectively. The genetic relationships between T. evansi and T. equiperdum and other Trypanozoon species remain unclear because the majority of phylogenetic analyses has been based on only a few genes. In this study, we have conducted a phylogenetic analysis based on genome-wide SNP analysis comprising 56 genomes from the Trypanozoon subgenus. Our data reveal that T. equiperdum has emerged at least once in Eastern Africa and T. evansi at two independent occasions in Western Africa. The genomes within the T. equiperdum and T. evansi monophyletic clusters show extremely little variation, probably due to the clonal spread linked to the independence from tsetse flies for their transmission.
Collapse
Affiliation(s)
- Bart Cuypers
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Mathematics and Computer Sciences, University of Antwerp, Belgium
| | | | - Nick Van Reet
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Conor J Meehan
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Julien Cauchard
- Anses Dozulé Laboratory for Equine Diseases, Goustranville, France
| | - Jonathan M Wilkes
- Wellcome Trust Centre of Molecular Parasitology, University of Glasgow, United Kingdom
| | - Filip Claes
- Food and Agriculture Organization of the United Nations (FAO), Regional Office for Asia and the Pacific, Bangkok, Thailand
| | | | - Hadush Birhanu
- College of Veterinary Medicine, Mekelle University, Tigray, Ethiopia
| | - Jean-Claude Dujardin
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Department of Mathematics and Computer Sciences, University of Antwerp, Belgium
| | - Philippe Büscher
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Stijn Deborggraeve
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
10
|
Luciani M, Di Febo T, Orsini M, Krasteva I, Cattaneo A, Podaliri Vulpiani M, Di Pancrazio C, Bachi A, Tittarelli M. Trypanosoma equiperdum Low Molecular Weight Proteins As Candidates for Specific Serological Diagnosis of Dourine. Front Vet Sci 2018; 5:40. [PMID: 29556505 PMCID: PMC5844913 DOI: 10.3389/fvets.2018.00040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/19/2018] [Indexed: 11/25/2022] Open
Abstract
The diagnosis of dourine can be difficult because the clinical signs of this disease in horses are similar to those of surra, caused by Trypanosoma evansi. Moreover, T. equiperdum and T. evansi are closely related and, so far, they cannot be distinguished using serological tests. In a previous work, the T. equiperdum protein pattern recognized by antibodies from dourine-infected horses and the humoral immune response kinetics were investigated by immunoblotting assay; a total of 20 sera from naturally and experimentally infected horses and from healthy animals were tested. Immunoblotting analysis showed that antibodies from infected horses specifically bind T. equiperdum low molecular weight proteins (from 16 to 35 kDa), which are not recognized by antibodies from uninfected horses. In this work, we tested other 615 sera (7 from naturally infected horses and 608 sera from healthy horses and donkeys): results confirmed the data obtained previously. In addition, six SDS-PAGE bands with molecular weight ranging from 10 to 37 kDa were analyzed by mass spectrometry, in order to identify immunogenic proteins that could be used as biomarkers for the diagnosis of dourine. A total of 167 proteins were identified. Among them, 37 were found unique for T. equiperdum. Twenty-four of them could represent possible candidate diagnostic antigens for the development of serological tests specific for T. equiperdum.
Collapse
Affiliation(s)
- Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Tiziana Di Febo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Massimiliano Orsini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Ivanka Krasteva
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | | | | | - Chiara Di Pancrazio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Angela Bachi
- Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| |
Collapse
|
11
|
Bubis J, Martínez JC, Calabokis M, Ferreira J, Sanz-Rodríguez CE, Navas V, Escalona JL, Guo Y, Taylor SS. The gene product of a Trypanosoma equiperdum ortholog of the cAMP-dependent protein kinase regulatory subunit is a monomeric protein that is not capable of binding cyclic nucleotides. Biochimie 2017; 146:166-180. [PMID: 29288679 DOI: 10.1016/j.biochi.2017.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/23/2017] [Indexed: 02/03/2023]
Abstract
The full gene sequence encoding for the Trypanosoma equiperdum ortholog of the cAMP-dependent protein kinase (PKA) regulatory (R) subunits was cloned. A poly-His tagged construct was generated [TeqR-like(His)8], and the protein was expressed in bacteria and purified to homogeneity. The size of the purified TeqR-like(His)8 was determined to be ∼57,000 Da by molecular exclusion chromatography indicating that the parasite protein is a monomer. Limited proteolysis with various proteases showed that the T. equiperdum R-like protein possesses a hinge region very susceptible to proteolysis. The recombinant TeqR-like(His)8 did not bind either [3H] cAMP or [3H] cGMP up to concentrations of 0.40 and 0.65 μM, respectively, and neither the parasite protein nor its proteolytically generated carboxy-terminal large fragments were capable of binding to a cAMP-Sepharose affinity column. Bioinformatics analyses predicted that the carboxy-terminal region of the trypanosomal R-like protein appears to fold similarly to the analogous region of all known PKA R subunits. However, the protein amino-terminal portion seems to be unrelated and shows homology with proteins that contained Leu-rich repeats, a folding motif that is particularly appropriate for protein-protein interactions. In addition, the three-dimensional structure of the T. equiperdum protein was modeled using the crystal structure of the bovine PKA RIα subunit as template. Molecular docking experiments predicted critical changes in the environment of the two putative nucleotide binding clefts of the parasite protein, and the resulting binding energy differences support the lack of cyclic nucleotide binding in the trypanosomal R-like protein.
Collapse
Affiliation(s)
- José Bubis
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas 1081-A, Venezuela.
| | - Juan Carlos Martínez
- Dirección de Salud, Fundación Instituto de Estudios Avanzados IDEA, Caracas 1015-A, Venezuela.
| | - Maritza Calabokis
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas 1081-A, Venezuela.
| | - Joilyneth Ferreira
- Dirección de Salud, Fundación Instituto de Estudios Avanzados IDEA, Caracas 1015-A, Venezuela; Postgrado en Ciencias Biológicas, Universidad Simón Bolívar, Caracas 1081-A, Venezuela.
| | | | - Victoria Navas
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas 1081-A, Venezuela; Dirección de Salud, Fundación Instituto de Estudios Avanzados IDEA, Caracas 1015-A, Venezuela; Escuela de Biología, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1041-A, Venezuela.
| | | | - Yurong Guo
- Department of Chemistry, Biochemistry and Pharmacology, University of California San Diego, La Jolla, CA 92093-0654, USA.
| | - Susan S Taylor
- Department of Chemistry, Biochemistry and Pharmacology, University of California San Diego, La Jolla, CA 92093-0654, USA.
| |
Collapse
|
12
|
Abstract
Dourine is a venereal transmitted trypanosomosis causing a major health problem threatening equines worldwide. The origin and identification of Trypanosoma equiperdum within the subgenus Trypanozoon is still a subject of debate. Unlike other trypanosomal infections, dourine is transmitted almost exclusively by coitus. Diagnosis of dourine has continued to be a challenge, due to limited knowledge about the parasite and host-parasite interaction following infection. The pathological lesions caused by the diseases are poorly described and are observed mainly in the reproductive organs, in the nervous system, and on the skin. Dourine has been neglected by research and current knowledge on the disease, and the parasite is very deficient despite its considerably high burden. This paper looks in to the challenges in identification of T. equiperdum and diagnosis techniques with the aim to update our current knowledge of the disease.
Collapse
|