1
|
Jenkins SV, Jung S, Jamshidi-Parsian A, Borrelli MJ, Dings RPM, Griffin RJ. Morphological Effects and In Vitro Biological Mechanisms of Radiation-Induced Cell Killing by Gold Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58241-58250. [PMID: 38059477 DOI: 10.1021/acsami.3c15358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Gold nanomaterials have been shown to augment radiation therapy both in vitro and in vivo. However, studies on these materials are mostly phenomenological due to nanoparticle heterogeneity and the complexity of biological systems. Even accurate quantification of the particle dose still results in bulk average biases; the effect on individual cells is not measured but rather the effect on the overall population. To perform quantitative nanobiology, we coated glass coverslips uniformly at varying densities with Au nanoparticle preparations with different morphologies (45 nm cages, 25 nm spheres, and 30 nm rods). Consequently, the effect of a specific number of particles per unit area in contact with breast cancer cells growing on the coated surfaces was ascertained. Gold nanocages showed the highest degree of radiosensitization on a per particle basis, followed by gold nanospheres and gold nanorods, respectively. All three materials showed little cytotoxic effect at 0 Gy, but clonogenic survival decreased proportionally with the radiation dose and particle coverage density. A similar trend was seen in vivo in the combined treatment antitumor response in 4T1 tumor-bearing animals. The presence of gold affected the type and quantity of reactive oxygen species generated, specifically superoxide and hydroxyl radicals, and the concentration of nanocages correlated with the development of more numerous double-stranded DNA breaks and increased protein oxidation as measured by carbonylation. This work demonstrates the dependence on morphology and concentration of radiation enhancement by gold nanomaterials and may lead to a novel method to differentiate intra- and extracellular functionalities of gold nanomedicine treatment strategies. It further provides insights that can guide the rational development of gold nanomaterial-based radiosensitizers for clinical use.
Collapse
Affiliation(s)
- Samir V Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Seunghyun Jung
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Azemat Jamshidi-Parsian
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Michael J Borrelli
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| |
Collapse
|
2
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1282-1295. [DOI: 10.1093/jpp/rgac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022]
|
3
|
Jenkins SV, Alimohammadi M, Terry AS, Griffin RJ, Tackett AJ, Leung JW, Vang KB, Byrum SD, Dings RPM. Dysbiotic stress increases the sensitivity of the tumor vasculature to radiotherapy and c-Met inhibitors. Angiogenesis 2021; 24:597-611. [PMID: 33629198 PMCID: PMC8295215 DOI: 10.1007/s10456-021-09771-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Antibiotic-induced microbial imbalance, or dysbiosis, has systemic and long-lasting effects on the host and response to cancer therapies. However, the effects on tumor endothelial cells are largely unknown. Therefore, the goal of the current study was to generate matched B16-F10 melanoma associated endothelial cell lines isolated from mice with and without antibiotic-induced dysbiosis. After validating endothelial cell markers on a genomic and proteomic level, functional angiogenesis assays (i.e., migration and tube formation) also confirmed their vasculature origin. Subsequently, we found that tumor endothelial cells derived from dysbiotic mice (TEC-Dys) were more sensitive to ionizing radiotherapy in the range of clinically-relevant hypofractionated doses, as compared to tumor endothelial cells derived from orthobiotic mice (TEC-Ortho). In order to identify tumor vasculature-associated drug targets during dysbiosis, we used tandem mass tag mass spectroscopy and focused on the statistically significant cellular membrane proteins overexpressed in TEC-Dys. By these criteria c-Met was the most differentially expressed protein, which was validated histologically by comparing tumors with or without dysbiosis. Moreover, in vitro, c-Met inhibitors Foretinib, Crizotinib and Cabozantinib were significantly more effective against TEC-Dys than TEC-Ortho. In vivo, Foretinib inhibited tumor growth to a greater extent during dysbiosis as compared to orthobiotic conditions. Thus, we surmise that tumor response in dysbiotic patients may be greatly improved by targeting dysbiosis-induced pathways, such as c-Met, distinct from the many targets suppressed due to dysbiosis.
Collapse
Affiliation(s)
- Samir V Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mohammad Alimohammadi
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alexia S Terry
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR, 72202, USA
| | - Justin W Leung
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kieng B Vang
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR, 72202, USA
| | - Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Mail Slot #771, Little Rock, AR, 72205, USA.
| |
Collapse
|
4
|
Jung S, Harris N, Niyonshuti II, Jenkins SV, Hayar AM, Watanabe F, Jamshidi-Parsian A, Chen J, Borrelli MJ, Griffin RJ. Photothermal Response Induced by Nanocage-Coated Artificial Extracellular Matrix Promotes Neural Stem Cell Differentiation. NANOMATERIALS 2021; 11:nano11051216. [PMID: 34064443 PMCID: PMC8147862 DOI: 10.3390/nano11051216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022]
Abstract
Strategies to increase the proportion of neural stem cells that differentiate into neurons are vital for therapy of neurodegenerative disorders. In vitro, the extracellular matrix composition and topography have been found to be important factors in stem cell differentiation. We have developed a novel artificial extracellular matrix (aECM) formed by attaching gold nanocages (AuNCs) to glass coverslips. After culturing rat neural stem cells (rNSCs) on these gold nanocage-coated surfaces (AuNC-aECMs), we observed that 44.6% of rNSCs differentiated into neurons compared to only 27.9% for cells grown on laminin-coated glass coverslips. We applied laser irradiation to the AuNC-aECMs to introduce precise amounts of photothermally induced heat shock in cells. Our results showed that laser-induced thermal stimulation of AuNC-aECMs further enhanced neuronal differentiation (56%) depending on the laser intensity used. Response to these photothermal effects increased the expression of heat shock protein 27, 70, and 90α in rNSCs. Analysis of dendritic complexity showed that this thermal stimulation promoted neuronal maturation by increasing dendrite length as thermal dose was increased. In addition, we found that cells growing on AuNC-aECMs post laser irradiation exhibited action potentials and increased the expression of voltage-gated Na+ channels compared to laminin-coated glass coverslips. These results indicate that the photothermal response induced in cells growing on AuNC-aECMs can be used to produce large quantities of functional neurons, with improved electrochemical properties, that can potentially be transplanted into a damaged central nervous system to provide replacement neurons and restore lost function.
Collapse
Affiliation(s)
- Seunghyun Jung
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.J.); (M.J.B.)
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.V.J.); (A.J.-P.)
| | - Nathaniel Harris
- Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Isabelle I. Niyonshuti
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (I.I.N.); (J.C.)
| | - Samir V. Jenkins
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.V.J.); (A.J.-P.)
| | - Abdallah M. Hayar
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Fumiya Watanabe
- Center for Integrative Nanotechnology Sciences, University of Arkansas, Little Rock, AR 72204, USA;
| | - Azemat Jamshidi-Parsian
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.V.J.); (A.J.-P.)
| | - Jingyi Chen
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (I.I.N.); (J.C.)
| | - Michael J. Borrelli
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.J.); (M.J.B.)
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Robert J. Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.V.J.); (A.J.-P.)
- Correspondence: ; Tel.: +1-501-526-7873
| |
Collapse
|
5
|
Nicolson F, Ali A, Kircher MF, Pal S. DNA Nanostructures and DNA-Functionalized Nanoparticles for Cancer Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001669. [PMID: 33304747 PMCID: PMC7709992 DOI: 10.1002/advs.202001669] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/27/2020] [Indexed: 05/12/2023]
Abstract
In the last two decades, DNA has attracted significant attention toward the development of materials at the nanoscale for emerging applications due to the unparalleled versatility and programmability of DNA building blocks. DNA-based artificial nanomaterials can be broadly classified into two categories: DNA nanostructures (DNA-NSs) and DNA-functionalized nanoparticles (DNA-NPs). More importantly, their use in nanotheranostics, a field that combines diagnostics with therapy via drug or gene delivery in an all-in-one platform, has been applied extensively in recent years to provide personalized cancer treatments. Conveniently, the ease of attachment of both imaging and therapeutic moieties to DNA-NSs or DNA-NPs enables high biostability, biocompatibility, and drug loading capabilities, and as a consequence, has markedly catalyzed the rapid growth of this field. This review aims to provide an overview of the recent progress of DNA-NSs and DNA-NPs as theranostic agents, the use of DNA-NSs and DNA-NPs as gene and drug delivery platforms, and a perspective on their clinical translation in the realm of oncology.
Collapse
Affiliation(s)
- Fay Nicolson
- Department of ImagingDana‐Farber Cancer Institute & Harvard Medical SchoolBostonMA02215USA
- Center for Molecular Imaging and NanotechnologyMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
| | - Akbar Ali
- Department of ChemistryIndian Institute of Technology‐ BhilaiRaipurChhattisgarh492015India
| | - Moritz F. Kircher
- Department of ImagingDana‐Farber Cancer Institute & Harvard Medical SchoolBostonMA02215USA
- Center for Molecular Imaging and NanotechnologyMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
- Department of RadiologyBrigham and Women's Hospital & Harvard Medical SchoolBostonMA02215USA
| | - Suchetan Pal
- Department of ChemistryIndian Institute of Technology‐ BhilaiRaipurChhattisgarh492015India
| |
Collapse
|
6
|
Yang S, Chen C, Qiu Y, Xu C, Yao J. Paying attention to tumor blood vessels: Cancer phototherapy assisted with nano delivery strategies. Biomaterials 2020; 268:120562. [PMID: 33278682 DOI: 10.1016/j.biomaterials.2020.120562] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022]
Abstract
Cancer phototherapy has attracted increasing attention for its promising effectiveness and relative non-invasiveness. Over the past years, tremendous efforts have been made to develop better phototherapy strategies with various nano delivery systems. This review introduces cancer phototherapy strategies based on tumor blood vessels for improved therapeutic outcomes from the angle of direct tumor destruction and improved delivery process assisted with nano delivery designs. Latest directions and ideas of cancer phototherapy with translation potential are also discussed. Focusing on the double role of tumor vessels not only as an anti-tumor target but also as part of the delivery process, we highlight the crosstalk between photo-induced extensive effects and the complicated drug delivery process. Due to the heterogeneity of tumors, deeper investigations about the interconnection between tumor vessels and cancer phototherapy remain to be carried out. More delicate and intelligent nano delivery systems are expected to help realize the full potential of this therapeutic strategy.
Collapse
Affiliation(s)
- Shan Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Chen Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Yue Qiu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Cheng Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| |
Collapse
|
7
|
Rahban D, Doostan M, Salimi A. Cancer Therapy; Prospects for Application of Nanoparticles for Magnetic-Based Hyperthermia. Cancer Invest 2020; 38:507-521. [PMID: 32870068 DOI: 10.1080/07357907.2020.1817482] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hyperthermic therapy is defined as increasing the temperature of tumor tissues to 40-43 °C that has been effective approach for destroying malignant cells in the field of cancer therapy. Recent line of research has applied different approaches along with hyperthermic treatment to obtain high efficiency and little side effects. Magnetic nanoparticle-based hyperthermia has demonstrated an improved functionality in targeting malignant cells and implement their therapeutic role by heating the tumor cells. Here in this review article, we clarify the diverse aspects of magnetic nanoparticles in the treatment of cancer.
Collapse
Affiliation(s)
- Dariuosh Rahban
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahtab Doostan
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Yang Y, Zhang Q, Cai M, Xu H, Lu D, Liu Y, Fu Y, Yang G, Shan Y. Size-Dependent Transmembrane Transport of Gold Nanocages. ACS OMEGA 2020; 5:9864-9869. [PMID: 32391473 PMCID: PMC7203911 DOI: 10.1021/acsomega.0c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Gold nanocages (Au NCs), as drug carriers, have been widely applied for cancer diagnosis and photothermal therapy (PTT). Transmembrane transporting efficacy of Au NCs is the fundamental and important issue for their use in PTT. Herein, we used a force tracing technique based on atomic force microscopy to track the dynamic transmembrane process of Au NCs at the single-particle level in real time. Meanwhile, we measured and compared the dynamic parameters of Au NCs with sizes of 50 and 100 nm usually used as nanodrug carriers of PTT. It is concluded that the 50 nm Au NC transmembrane transporting needs smaller force and shorter duration with a much faster speed. However, both the 50 and 100 nm Au NC transmembrane transporting depends on the caveolin-mediated endocytosis, clathrin-mediated endocytosis, and macropinocytosis, which was also confirmed by confocal fluorescence imaging. This report will provide a potential technique for screening nanodrug carriers from the perspective of transmembrane transporting efficacy.
Collapse
Affiliation(s)
- Yu Yang
- School
of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Yan’an St. 2055, Changchun 130012, China
| | - Qingrong Zhang
- School
of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Yan’an St. 2055, Changchun 130012, China
| | - Mingjun Cai
- Changchun
Institute of Applied Chemistry, Chinese Academy of Science, Renmin St. 5625, Changchun 130022, China
| | - Haijiao Xu
- Changchun
Institute of Applied Chemistry, Chinese Academy of Science, Renmin St. 5625, Changchun 130022, China
| | - Denghua Lu
- School
of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Yan’an St. 2055, Changchun 130012, China
| | - Yulin Liu
- School
of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Yan’an St. 2055, Changchun 130012, China
| | - Yanfeng Fu
- School
of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Yan’an St. 2055, Changchun 130012, China
| | - Guocheng Yang
- School
of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Yan’an St. 2055, Changchun 130012, China
| | - Yuping Shan
- School
of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Yan’an St. 2055, Changchun 130012, China
| |
Collapse
|