1
|
McMahon D, Jones RM, Ramdoyal R, Zhuang JYX, Leavitt D, Hynynen K. Investigation of Sonication Parameters for Large-Volume Focused Ultrasound-Mediated Blood-Brain Barrier Permeability Enhancement Using a Clinical-Prototype Hemispherical Phased Array. Pharmaceutics 2024; 16:1289. [PMID: 39458618 PMCID: PMC11510584 DOI: 10.3390/pharmaceutics16101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Focused ultrasound (FUS) and microbubble (MB) exposure is a promising technique for targeted drug delivery to the brain; however, refinement of protocols suitable for large-volume treatments in a clinical setting remains underexplored. Methods: Here, the impacts of various sonication parameters on blood-brain barrier (BBB) permeability enhancement and tissue damage were explored in rabbits using a clinical-prototype hemispherical phased array developed in-house, with real-time 3D MB cavitation imaging for exposure calibration. Initial experiments revealed that continuous manual agitation of MBs during infusion resulted in greater gadolinium (Gd) extravasation compared to gravity drip infusion. Subsequent experiments used low-dose MB infusion with continuous agitation and a low burst repetition frequency (0.2 Hz) to mimic conditions amenable to long-duration clinical treatments. Results: Key sonication parameters-target level (proportional to peak negative pressure), number of bursts, and burst length-significantly affected BBB permeability enhancement, with all parameters displaying a positive relationship with relative Gd contrast enhancement (p < 0.01). Even at high levels of BBB permeability enhancement, tissue damage was minimal, with low occurrences of hypointensities on T2*-weighted MRI. When accounting for relative Gd contrast enhancement, burst length had a significant impact on red blood cell extravasation detected in histological sections, with 1 ms bursts producing significantly greater levels compared to 10 ms bursts (p = 0.03), potentially due to the higher pressure levels required to generate equal levels of BBB permeability enhancement. Additionally, albumin and IgG extravasation correlated strongly with relative Gd contrast enhancement across sonication parameters, suggesting that protein extravasation can be predicted from non-invasive imaging. Conclusions: These findings contribute to the development of safer and more effective clinical protocols for FUS + MB exposure, potentially improving the efficacy of the approach.
Collapse
Affiliation(s)
- Dallan McMahon
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (R.M.J.); (K.H.)
| | - Ryan M. Jones
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (R.M.J.); (K.H.)
| | - Rohan Ramdoyal
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (R.M.J.); (K.H.)
| | - Joey Ying Xuan Zhuang
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (R.M.J.); (K.H.)
| | - Dallas Leavitt
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (R.M.J.); (K.H.)
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (R.M.J.); (K.H.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M4N 3M5, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
2
|
Angolano C, Hansen E, Ajjawi H, Nowlin P, Zhang Y, Thunemann N, Ferran C, Todd N. Characterization of focused ultrasound blood-brain barrier disruption effect on inflammation as a function of treatment parameters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602776. [PMID: 39071338 PMCID: PMC11275883 DOI: 10.1101/2024.07.10.602776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The technology of focused ultrasound-mediated disruption of the blood-brain barrier (FUS- BBB opening) has now been used in over 20 Phase 1 clinical trials to validate the safety and feasibility of BBB opening for drug delivery in patients with brain tumors and neurodegenerative diseases. The primary treatment parameters, FUS intensity and microbubble dose, are chosen to balance sufficient BBB disruption to achieve drug delivery against potential acute vessel damage leading to microhemorrhage. This can largely be achieved based on both empirical results from animal studies and by monitoring the microbubble cavitation signal in real time during the treatment. However, other safety considerations due to second order effects caused by BBB disruption, such as inflammation and alteration of neurovascular function, are not as easily measurable, may take longer to manifest and are only beginning to be understood. This study builds on previous work that has investigated the inflammatory response following FUS-BBB opening. In this study, we characterize the effect of FUS intensity and microbubble dose on the extent of BBB disruption, observed level of microhemorrhage, and degree of inflammatory response at three acute post-treatment time points in the wild-type mouse brain. Additionally, we evaluate differences related to biological sex, presence and degree of the anti- inflammatory response that develops to restore homeostasis in the brain environment, and the impact of multiple FUS-BBB opening treatments on this inflammatory response.
Collapse
|
3
|
Kline-Schoder AR, Chintamen S, Willner MJ, DiBenedetto MR, Noel RL, Batts AJ, Kwon N, Zacharoulis S, Wu CC, Menon V, Kernie SG, Konofagou EE. Characterization of the responses of brain macrophages to focused ultrasound-mediated blood-brain barrier opening. Nat Biomed Eng 2024; 8:650-663. [PMID: 37857722 DOI: 10.1038/s41551-023-01107-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 09/16/2023] [Indexed: 10/21/2023]
Abstract
The opening of the blood-brain barrier (BBB) by focused ultrasound (FUS) coupled with intravenously injected microbubbles can be leveraged as a form of immunotherapy for the treatment of neurodegenerative disorders. However, how FUS BBB opening affects brain macrophages is not well understood. Here by using single-cell sequencing to characterize the distinct responses of microglia and central nervous system-associated macrophages (CAMs) to FUS-mediated BBB opening in mice, we show that the treatment remodels the immune landscape via the recruitment of CAMs and the proliferation of microglia and via population size increases in disease-associated microglia. Both microglia and CAMs showed early and late increases in population sizes, yet only the proliferation of microglia increased at both timepoints. The population of disease-associated microglia also increased, accompanied by the upregulation of genes associated with gliogenesis and phagocytosis, with the depletion of brain macrophages significantly decreasing the duration of BBB opening.
Collapse
Affiliation(s)
| | - Sana Chintamen
- Department of Neurobiology and Behaviour, Columbia University, New York, NY, USA
| | - Moshe J Willner
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | - Rebecca L Noel
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Alec J Batts
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Nancy Kwon
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Cheng-Chia Wu
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Vilas Menon
- Department of Neurology, Columbia University, New York, NY, USA
| | - Steven G Kernie
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Department of Radiology, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Roy M, Alix C, Burlaud-Gaillard J, Fouan D, Raoul W, Bouakaz A, Blanchard E, Lecomte T, Viaud-Massuard MC, Sasaki N, Serrière S, Escoffre JM. Delivery of Anticancer Drugs Using Microbubble-Assisted Ultrasound in a 3D Spheroid Model. Mol Pharm 2024; 21:831-844. [PMID: 38174896 DOI: 10.1021/acs.molpharmaceut.3c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Tumor spheroids are promising three-dimensional (3D) in vitro tumor models for the evaluation of drug delivery methods. The design of noninvasive and targeted drug methods is required to improve the intratumoral bioavailability of chemotherapeutic drugs and reduce their adverse off-target effects. Among such methods, microbubble-assisted ultrasound (MB-assisted US) is an innovative modality for noninvasive targeted drug delivery. The aim of the present study is to evaluate the efficacy of this US modality for the delivery of bleomycin, doxorubicin, and irinotecan in colorectal cancer (CRC) spheroids. MB-assisted US permeabilized the CRC spheroids to propidium iodide, which was used as a drug model without affecting their growth and viability. Histological analysis and electron microscopy revealed that MB-assisted US affected only the peripheral layer of the CRC spheroids. The acoustically mediated bleomycin delivery induced a significant decrease in CRC spheroid growth in comparison to spheroids treated with bleomycin alone. However, this US modality did not improve the therapeutic efficacy of doxorubicin and irinotecan on CRC spheroids. In conclusion, this study demonstrates that tumor spheroids are a relevant approach to evaluate the efficacy of MB-assisted US for the delivery of chemotherapeutics.
Collapse
Affiliation(s)
- Marie Roy
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - Corentin Alix
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - Julien Burlaud-Gaillard
- Inserm U1259, Université de Tours et CHRU de Tours & Plateforme IBiSA des Microscopies, PPF ASB, CHRU de Tours, 37032 Tours, France
| | - Damien Fouan
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - William Raoul
- Inserm UMR 1069, Nutrition Croissance et Cancer (N2C), Université de Tours, 37032 Tours, France
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - Emmanuelle Blanchard
- Inserm U1259, Université de Tours et CHRU de Tours & Plateforme IBiSA des Microscopies, PPF ASB, CHRU de Tours, 37032 Tours, France
| | - Thierry Lecomte
- Inserm UMR 1069, Nutrition Croissance et Cancer (N2C), Université de Tours, 37032 Tours, France
- Department of Hepato-Gastroenterology & Digestive Oncology, CHRU de Tours, 37000 Tours, France
| | | | - Noboru Sasaki
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, 060-0818 Sapporo, Japan
| | - Sophie Serrière
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
- Département d'Imagerie Préclinique, Plateforme Scientifique et Technique Analyse des Systèmes Biologiques, Université de Tours, 37032 Tours, France
| | | |
Collapse
|
5
|
Mondou P, Mériaux S, Nageotte F, Vappou J, Novell A, Larrat B. State of the art on microbubble cavitation monitoring and feedback control for blood-brain-barrier opening using focused ultrasound. Phys Med Biol 2023; 68:18TR03. [PMID: 37369229 DOI: 10.1088/1361-6560/ace23e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/27/2023] [Indexed: 06/29/2023]
Abstract
Focused ultrasound (FUS) is a non-invasive and highly promising method for targeted and reversible blood-brain barrier permeabilization. Numerous preclinical studies aim to optimize the localized delivery of drugs using this method in rodents and non-human primates. Several clinical trials have been initiated to treat various brain diseases in humans using simultaneous BBB permeabilization and drug injection. This review presents the state of the art ofin vitroandin vivocavitation control algorithms for BBB permeabilization using microbubbles (MB) and FUS. Firstly, we describe the different cavitation states, their physical significance in terms of MB behavior and their translation into the spectral composition of the backscattered signal. Next, we report the different indexes calculated and used during the ultrasonic monitoring of cavitation. Finally, the differentin vitroandin vivocavitation control strategies described in the literature are presented and compared.
Collapse
Affiliation(s)
- Paul Mondou
- Université de Strasbourg, CNRS, ICube, UMR7357, Strasbourg, France
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, 91191, Gif-sur-Yvette, France
| | - Sébastien Mériaux
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, 91191, Gif-sur-Yvette, France
| | - Florent Nageotte
- Université de Strasbourg, CNRS, ICube, UMR7357, Strasbourg, France
| | - Jonathan Vappou
- Université de Strasbourg, CNRS, ICube, UMR7357, Strasbourg, France
| | - Anthony Novell
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, 91191, Gif-sur-Yvette, France
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, SHFJ, 91401 , Orsay, France
| | - Benoit Larrat
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, 91191, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Li Q, Tang Z, Zhang Y, Yuan T, Yuan B, Du L, Jin Y. Application of low-intensity ultrasound by opening blood-brain barrier for enhanced brain-targeted drug delivery. Int J Pharm 2023; 642:123191. [PMID: 37391108 DOI: 10.1016/j.ijpharm.2023.123191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023]
Abstract
Brain-targeted drug delivery has been a research hotspot, and substantial amount of related studies were already translated into standard therapy and put into clinical use. However, low effective rate retains a huge challenge for brain disease. Because, the blood-brain barrier (BBB) protects brain from pathogenic molecules and tightly controls the process of molecular transportation, which gives rise to poor-liposoluble drugs or molecules with high molecular weight cannot permeate the barrier to exert treating effect. There is an ongoing process to dig out more methods for efficient brain-targeted drug delivery. Besides modified chemical methods such as prodrugs design and brain-targeted nanotechnology, physical methods as a novel initiative could enhance the treatment effect for brain disease. In our study, the influence of low-intensity ultrasound on transient opening BBB and the related applications were explored. A medical ultrasound therapeutic device (1 MHz) was used on heads of mice at different intensities and for different treating time. Evans blue was used as a model to exhibit the permeability of the BBB after subcutaneous injection. Three types of intensities (0.6, 0.8, and 1.0 W/cm2) and duration times (1, 3, and 5 min) of ultrasound were respectively investigated. It was found that the combinations of 0.6 W/cm2/1 min, 0.6 W/cm2/3 min, 0.6 W/cm2/5 min, 0.8 W/cm2/1 min, and 1.0 W/cm2/1 min could open the BBB sufficiently with significant Evans blue staining in the brain. Brain pathological analysis showed structural change on moderate degree was found on cerebral cortex after ultrasound and could recovered rapidly. There are no obvious changes in the behavior of mice after ultrasound processing. More importantly, the BBB recovered quickly at 12 h after ultrasound application with complete BBB structure and unbroken tight junction, suggesting that ultrasound was safe to apply for brain-targeted drug delivery. Proper use of local ultrasound on the brain is a promising technique to open the BBB and enhance brain-targeted delivery.
Collapse
Affiliation(s)
- Qian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ziyan Tang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yuanyuan Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Tianyu Yuan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; College of Pharmacy, Henan University, Kaifeng 475004, China
| | - Bochuan Yuan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lina Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; College of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; College of Pharmacy, Henan University, Kaifeng 475004, China.
| |
Collapse
|
7
|
Rao R, Patel A, Hanchate K, Robinson E, Edwards A, Shah S, Higgins D, Haworth KJ, Lucke-Wold B, Pomeranz Krummel D, Sengupta S. Advances in Focused Ultrasound for the Treatment of Brain Tumors. Tomography 2023; 9:1094-1109. [PMID: 37368542 DOI: 10.3390/tomography9030090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Employing the full arsenal of therapeutics to treat brain tumors is limited by the relative impermeability of the blood-brain and blood-tumor barriers. In physiologic states, the blood-brain barrier serves a protective role by passively and actively excluding neurotoxic compounds; however, this functionality limits the penetrance of therapeutics into the tumor microenvironment. Focused ultrasound technology provides a method for overcoming the blood-brain and blood-tumor barriers through ultrasound frequency to transiently permeabilize or disrupt these barriers. Concomitant delivery of therapeutics has allowed for previously impermeable agents to reach the tumor microenvironment. This review details the advances in focused ultrasound in both preclinical models and clinical studies, with a focus on its safety profile. We then turn towards future directions in focused ultrasound-mediated therapies for brain tumors.
Collapse
Affiliation(s)
- Rohan Rao
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Anjali Patel
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Kunal Hanchate
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Eric Robinson
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Aniela Edwards
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Sanjit Shah
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Dominique Higgins
- Department of Neurosurgery, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin J Haworth
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Daniel Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| |
Collapse
|
8
|
Manuel TJ, Phipps MA, Caskey CF. Design of a 1-MHz Therapeutic Ultrasound Array for Small Volume Blood-Brain Barrier Opening at Cortical Targets in Macaques. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:449-459. [PMID: 37028345 DOI: 10.1109/tuffc.2023.3256268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
[[gabstract]][] Focused ultrasound (FUS) can temporarily open the blood-brain barrier (BBB) and increase the delivery of chemotherapeutics, viral vectors, and other agents to the brain parenchyma. To limit FUS BBB opening to a single brain region, the transcranial acoustic focus of the ultrasound transducer must not be larger than the region targeted. In this work, we design and characterize a therapeutic array optimized for BBB opening at the frontal eye field (FEF) in macaques. We used 115 transcranial simulations in four macaques varying f-number and frequency to optimize the design for focus size, transmission, and small device footprint. The design leverages inward steering for focus tightening, a 1-MHz transmit frequency, and can focus to a simulation predicted 2.5- ± 0.3-mm lateral and 9.5- ± 1.0-mm axial full-width at half-maximum spot size at the FEF without aberration correction. The array is capable of steering axially 35 mm outward, 26 mm inward, and laterally 13 mm with 50% the geometric focus pressure. The simulated design was fabricated, and we characterized the performance of the array using hydrophone beam maps in a water tank and through an ex vivo skull cap to compare measurements with simulation predictions, achieving a 1.8-mm lateral and 9.5-mm axial spot size with a transmission of 37% (transcranial, phase corrected). The transducer produced by this design process is optimized for BBB opening at the FEF in macaques.
Collapse
|
9
|
Mathon B, Navarro V, Lecas S, Roussel D, Charpier S, Carpentier A. Safety Profile of Low-Intensity Pulsed Ultrasound-Induced Blood-Brain Barrier Opening in Non-epileptic Mice and in a Mouse Model of Mesial Temporal Lobe Epilepsy. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1327-1336. [PMID: 36878831 DOI: 10.1016/j.ultrasmedbio.2023.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE It is unknown whether ultrasound-induced blood-brain barrier (BBB) disruption can promote epileptogenesis and how BBB integrity changes over time after sonication. METHODS To gain more insight into the safety profile of ultrasound (US)-induced BBB opening, we determined BBB permeability as well as histological modifications in C57BL/6 adult control mice and in the kainate (KA) model for mesial temporal lobe epilepsy in mice after sonication with low-intensity pulsed ultrasound (LIPU). Microglial and astroglial changes in ipsilateral hippocampus were examined at different time points following BBB disruption by respectively analyzing Iba1 and glial fibrillary acidic protein immunoreactivity. Using intracerebral EEG recordings, we further studied the possible electrophysiological repercussions of a repeated disrupted BBB for seizure generation in nine non-epileptic mice. RESULTS LIPU-induced BBB opening led to transient albumin extravasation and reversible mild astrogliosis, but not to microglial activation in the hippocampus of non-epileptic mice. In KA mice, the transient albumin extravasation into the hippocampus mediated by LIPU-induced BBB opening did not aggravate inflammatory processes and histologic changes that characterize the hippocampal sclerosis. Three LIPU-induced BBB opening did not induce epileptogenicity in non-epileptic mice implanted with depth EEG electrodes. CONCLUSION Our experiments in mice provide persuasive evidence of the safety of LIPU-induced BBB opening as a therapeutic modality for neurological diseases.
Collapse
Affiliation(s)
- Bertrand Mathon
- Department of Neurosurgery, Sorbonne University, APHP, La Pitié-Salpêtrière Hospital, Paris, France; Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France; Sorbonne University, GRC 23, Brain Machine Interface, APHP, La Pitié-Salpêtrière Hospital, Paris, France; Advanced Surgical Research Technology Lab, Sorbonne University, Paris, France.
| | - Vincent Navarro
- Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France; Epileptology Unit, Department of Neurology, Sorbonne University, APHP, La Pitié-Salpêtrière Hospital, Paris, France
| | - Sarah Lecas
- Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France
| | - Delphine Roussel
- Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France
| | - Stéphane Charpier
- Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne University, Paris, France
| | - Alexandre Carpentier
- Department of Neurosurgery, Sorbonne University, APHP, La Pitié-Salpêtrière Hospital, Paris, France; Sorbonne University, GRC 23, Brain Machine Interface, APHP, La Pitié-Salpêtrière Hospital, Paris, France; Advanced Surgical Research Technology Lab, Sorbonne University, Paris, France
| |
Collapse
|
10
|
Li Q, Wang C, Hu J, Jiao W, Tang Z, Song X, Wu Y, Dai J, Gao P, Du L, Jin Y. Cannabidiol-loaded biomimetic macrophage membrane vesicles against post-traumatic stress disorder assisted by ultrasound. Int J Pharm 2023; 637:122872. [PMID: 36958611 DOI: 10.1016/j.ijpharm.2023.122872] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Post-traumatic stress disorder (PTSD), which normally follows psychological trauma, has been increasingly studied as a brain disease. However, the blood-brain barrier (BBB) prevents conventional drugs for PTSD from entering the brain. Our previous studies proved the effectiveness of cannabidiol (CBD) against PTSD, but low water solubility, low brain targeting efficiency and poor bioavailability restricted its applications. Here, a bionic delivery system, camouflage CBD-loaded macrophage-membrane nanovesicles (CMNVs), was constructed via co-extrusion of CBD with macrophage membranes, which had inflammatory and immune escape properties. In vitro anti-inflammatory, cellular uptake and pharmacokinetic experiments respectively verified the anti-inflammatory, inflammatory targeting and immune escape properties of CMNVs. Brain targeting and excellent anti-PTSD effects of CMNVs had been validated in vivo by imaging and pharmacodynamics studies. In our study, the potential of ultrasound to open BBBs and improve the brain-targeted delivery of CBD was evaluated. In conclusion, this cell membrane bionic delivery system assisted with ultrasound had good therapeutic effect against PTSD mice, which is expected to help convey CBD to inflammatory areas within the brain and alleviate the symptoms of PTSD.
Collapse
Affiliation(s)
- Qi Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chunqing Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jinglu Hu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Pharmaceutical College, Henan University, Kaifeng 475004, China
| | - Wencheng Jiao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Pharmaceutical College, Hebei University, Baoding 071000, China
| | - Ziyan Tang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xingshuang Song
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yanping Wu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jing Dai
- Information Department, General Hospital of Western Theater Command, Chengdu 610083, China
| | - Peng Gao
- R&D Institute, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Lina Du
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Pharmaceutical College, Henan University, Kaifeng 475004, China; Pharmaceutical College, Hebei University, Baoding 071000, China.
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Pharmaceutical College, Henan University, Kaifeng 475004, China
| |
Collapse
|
11
|
Choi HJ, Han M, Seo H, Park CY, Lee EH, Park J. The new insight into the inflammatory response following focused ultrasound-mediated blood-brain barrier disruption. Fluids Barriers CNS 2022; 19:103. [PMID: 36564820 PMCID: PMC9783406 DOI: 10.1186/s12987-022-00402-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Despite the great potential of FUS-BBB disruption (FUS-BBBD), it is still controversial whether FUS-BBBD acts as an inducing factor of neuro-inflammation or not, and the biological responses after FUS-BBBD triggers the inflammatory process are poorly understood. The aim of this study is to investigate the safety window for FUS levels based on a comprehensive safety assessment. METHODS The mice were treated with two different ultrasound parameters (0.25 MPa and 0.42 MPa) in the thalamus region of brain. The efficacy of BBB opening was verified by dynamic contrast-enhanced MRI (DCE-MRI) and the cavitation monitoring. The transcriptome analysis was performed to investigate the molecular response for the two BBBD conditions after FUS-mediated BBB opening in time-dependent manners. Histological analysis was used for evaluation of the tissue damage, neuronal degeneration, and activation of glial cells induced by FUS-BBBD. RESULTS The BBBD, as quantified by the Ktrans, was approximately threefold higher in 0.42 MPa-treated group than 0.25 MPa-treated group. While the minimal tissue/cellular damage was found in 0.25 MPa-treated group, visible damages containing microhemorrhages and degenerating neurons were detected in 0.42 MPa-treated group in accordance with the extent of BBBD. In transcriptome analysis, 0.42 MPa-treated group exhibited highly dynamic changes in the expression levels of an inflammatory response or NF-κB pathway-relative genes in a time-dependent manner whereas, 0.25 MPa was not altered. Interestingly, although it is clear that 0.42 MPa induces neuroinflammation through glial activation, neuroprotective properties were evident by the expression of A2-type astrocytes. CONCLUSIONS Our findings propose that a well-defined BBBD parameter of 0.25 MPa could ensure the safety without cellular/tissue damage or sterile inflammatory response in the brain. Furthermore, the fact that the excessive sonication parameters at 0.42 MPa could induce a sterile inflammation response via glial activation suggested the possibility that could lead to tissue repair toward the homeostasis of the brain microenvironment through A2-type reactive astrocytes.
Collapse
Affiliation(s)
- Hyo Jin Choi
- grid.496160.c0000 0004 6401 4233Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hubub), 80, Cheombok-Ro, Dong-Gu, Daegu, 41061 Republic of Korea
| | - Mun Han
- grid.496160.c0000 0004 6401 4233Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hubub), 80, Cheombok-Ro, Dong-Gu, Daegu, 41061 Republic of Korea
| | - Hyeon Seo
- grid.256681.e0000 0001 0661 1492Department of Computer Science, Gyeongsang National University, 501, Jinju-Daero, Jinju, Gyeongsangnam-Do 52828 Republic of Korea
| | - Chan Yuk Park
- grid.496160.c0000 0004 6401 4233Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hubub), 80, Cheombok-Ro, Dong-Gu, Daegu, 41061 Republic of Korea
| | - Eun-Hee Lee
- grid.496160.c0000 0004 6401 4233Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hubub), 80, Cheombok-Ro, Dong-Gu, Daegu, 41061 Republic of Korea
| | - Juyoung Park
- grid.256155.00000 0004 0647 2973College of Future Industry, Department of High-Tech Medical Device, Gachon University, 1342, Seongnam-Daero, Sujeong-Gu, Seongnam, Gyeonggi 13120 Republic of Korea
| |
Collapse
|
12
|
Li Q, Zhang Y, Hu J, Yuan B, Zhang P, Wang Y, Jin X, Du L, Jin Y. The Improved Brain-Targeted Drug Delivery of Edaravone Temperature-Sensitive Gels by Ultrasound for γ-ray Radiation-Induced Brain Injury. Pharmaceutics 2022; 14:2281. [PMID: 36365100 PMCID: PMC9698875 DOI: 10.3390/pharmaceutics14112281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
Radiation-induced brain injury (RBI) is a common neurological disease caused by ionizing radiation (IR). Edaravone (EDA) is a free radical scavenger, has the potential to treat RBI. EDA loaded temperature-sensitive gels (TSGs) were prepared for subcutaneous injection to improve inconvenient administration of intravenous infusion. RBI mice model was established by irradiation of 60Co γ-ray on head. EDA TSGs could improve spontaneous behavior, learning and memory and anxiety of RBI mice by behavior tests, including the open field test, the novel object recognition test, the elevated plus maze test and the fear conditioning test. The therapeutic effects were enhanced with the assistance of ultrasound. Alleviative pathological changes, decreased the expression of Molondialdehyde (MDA) and Interleukin-6 (IL-6) in the hippocampus of brain, indicated reduced oxidative stress and inflammatory response with the treatment of EDA TSGs and ultrasound. Moreover, ultrasound was superior to the use of EDA TSGs. Safe and effective EDA TSGs were prepared for RBI, and the feasibility of brain-targeted drug delivery enhanced by ultrasound was preliminarily demonstrated in this study.
Collapse
Affiliation(s)
- Qian Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yizhi Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jinglu Hu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Bochuan Yuan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pengcheng Zhang
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yaxin Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xu Jin
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Lina Du
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
13
|
Li N, Gaur P, Quah K, Pauly KB. Improving in situ acoustic intensity estimates using MR acoustic radiation force imaging in combination with multifrequency MR elastography. Magn Reson Med 2022; 88:1673-1689. [PMID: 35762849 PMCID: PMC9439407 DOI: 10.1002/mrm.29309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE Magnetic resonance acoustic radiation force imaging (MR-ARFI) enables focal spot localization during nonablative transcranial ultrasound therapies. As the acoustic radiation force is proportional to the applied acoustic intensity, measured MR-ARFI displacements could potentially be used to estimate the acoustic intensity at the target. However, variable brain stiffness is an obstacle. The goal of this study was to develop and assess a method to accurately estimate the acoustic intensity at the focus using MR-ARFI displacements in combination with viscoelastic properties obtained with multifrequency MR elastography (MRE). METHODS Phantoms with a range of viscoelastic properties were fabricated, and MR-ARFI displacements were acquired within each phantom using multiple acoustic intensities. Voigt model parameters were estimated for each phantom based on storage and loss moduli measured using multifrequency MRE, and these were used to predict the relationship between acoustic intensity and measured displacement. RESULTS Using assumed viscoelastic properties, MR-ARFI displacements alone could not accurately estimate acoustic intensity across phantoms. For example, acoustic intensities were underestimated in phantoms stiffer than the assumed stiffness and overestimated in phantoms softer than the assumed stiffness. This error was greatly reduced using individualized viscoelasticity measurements obtained from MRE. CONCLUSION We demonstrated that viscoelasticity information from MRE could be used in combination with MR-ARFI displacements to obtain more accurate estimates of acoustic intensity. Additionally, Voigt model viscosity parameters were found to be predictive of the relaxation rate of each phantom's time-varying displacement response, which could be used to optimize patient-specific MR-ARFI pulse sequences.
Collapse
Affiliation(s)
- Ningrui Li
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Pooja Gaur
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Kristin Quah
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
14
|
Jung O, Thomas A, Burks SR, Dustin ML, Frank JA, Ferrer M, Stride E. Neuroinflammation associated with ultrasound-mediated permeabilization of the blood-brain barrier. Trends Neurosci 2022; 45:459-470. [PMID: 35461727 PMCID: PMC9117477 DOI: 10.1016/j.tins.2022.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/17/2022] [Accepted: 03/10/2022] [Indexed: 12/30/2022]
Abstract
The blood-brain barrier (BBB) continues to represent one of the most significant challenges for successful drug-based treatments of neurological disease. Mechanical modulation of the BBB using focused ultrasound (FUS) and microbubbles (MBs) has shown considerable promise in enhancing the delivery of therapeutics to the brain, but questions remain regarding possible long-term effects of such forced disruption. This review examines the evidence for inflammation associated with ultrasound-induced BBB disruption and potential strategies for managing such inflammatory effects to improve both the efficacy and safety of therapeutic ultrasound in neurological applications.
Collapse
Affiliation(s)
- Olive Jung
- Biomedical Ultrasonics, Biotherapy, and Biopharmaceuticals Laboratory, Institute of Biomedical Engineering, University of Oxford, Oxford, UK; 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Alec Thomas
- Biomedical Ultrasonics, Biotherapy, and Biopharmaceuticals Laboratory, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Scott R Burks
- The Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Michael L Dustin
- Nuffield Department of Orthopedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Joseph A Frank
- The Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, USA; Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Marc Ferrer
- 3D Tissue Bioprinting Laboratory, Department of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Eleanor Stride
- Biomedical Ultrasonics, Biotherapy, and Biopharmaceuticals Laboratory, Institute of Biomedical Engineering, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
Translation of focused ultrasound for blood-brain barrier opening in glioma. J Control Release 2022; 345:443-463. [PMID: 35337938 DOI: 10.1016/j.jconrel.2022.03.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022]
Abstract
Survival outcomes for patients with glioblastoma multiforme (GBM) have remained poor for the past 15 years, reflecting a clear challenge in the development of more effective treatment strategies. The efficacy of systemic therapies for GBM is greatly limited by the presence of the blood-brain barrier (BBB), which prevents drug penetration and accumulation in regions of infiltrative tumour, as represented in a consistent portion of GBM lesions. Focused ultrasound (FUS) - a technique that uses low-frequency ultrasound waves to induce targeted temporary disruption of the BBB - promises to improve survival outcomes by enhancing drug delivery and accumulation to infiltrating tumour regions. In this review we discuss the current state of preclinical investigations using FUS to enhance delivery of systemic therapies to intracranial neoplasms. We highlight critical methodological inconsistencies that are hampering clinical translation of FUS and we provide guiding principles for future preclinical studies. Particularly, we focus our attention on the importance of the selection of clinically relevant animal models and to the standardization of methods for FUS delivery, which will be paramount to the successful clinical translation of this promising technology for treatment in GBM patients. We also discuss how preclinical FUS research can benefit the development of GBM immunotherapies.
Collapse
|
16
|
Acoustic power management by swarms of microscopic robots. JOURNAL OF MICRO-BIO ROBOTICS 2022. [DOI: 10.1007/s12213-022-00148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Whelan R, Hargaden GC, Knox AJS. Modulating the Blood-Brain Barrier: A Comprehensive Review. Pharmaceutics 2021; 13:1980. [PMID: 34834395 PMCID: PMC8618722 DOI: 10.3390/pharmaceutics13111980] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022] Open
Abstract
The highly secure blood-brain barrier (BBB) restricts drug access to the brain, limiting the molecular toolkit for treating central nervous system (CNS) diseases to small, lipophilic drugs. Development of a safe and effective BBB modulator would revolutionise the treatment of CNS diseases and future drug development in the area. Naturally, the field has garnered a great deal of attention, leading to a vast and diverse range of BBB modulators. In this review, we summarise and compare the various classes of BBB modulators developed over the last five decades-their recent advancements, advantages and disadvantages, while providing some insight into their future as BBB modulators.
Collapse
Affiliation(s)
- Rory Whelan
- School of Biological and Health Sciences, Technological University Dublin, Central Quad, Grangegorman, D07 XT95 Dublin, Ireland;
- Chemical and Structural Biology, Environmental Sustainability and Health Institute, Technological University Dublin, D07 H6K8 Dublin, Ireland
| | - Grainne C. Hargaden
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, Central Quad, Grangegorman, D07 XT95 Dublin, Ireland;
| | - Andrew J. S. Knox
- School of Biological and Health Sciences, Technological University Dublin, Central Quad, Grangegorman, D07 XT95 Dublin, Ireland;
- Chemical and Structural Biology, Environmental Sustainability and Health Institute, Technological University Dublin, D07 H6K8 Dublin, Ireland
| |
Collapse
|