1
|
Bender AA, Holiski CK, Embree M, Hennkens HM, Klaehn JR, Lundgreen E, Roberts AG, Zalupski PR, Mastren T. Pursuing theranostics: a multimodal architecture approach. SENSORS & DIAGNOSTICS 2025; 4:35-43. [PMID: 39493501 PMCID: PMC11528688 DOI: 10.1039/d4sd00221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Theranostics is a field of nuclear medicine which uses the same targeting vector and chelating system for both a diagnostic and therapeutic radionuclide, allowing for uniformity in imaging and treatment. This growing field requires the development of more flexible chelate systems that permit novel targeting strategies. Toward this end, a multimodal architecture has been realized, making use of a phosphazene-based core and click chemistry to achieve a flexible and customizable scaffold. The six arm phosphazene-based core can scaffold six DTPA chelating motifs or a mixed set of 3 : 3 DTPA : DFO chelates resulting in two multimodal compounds, pDbDt and pDbDtDf, respectively. Terbium complexes displayed strong luminescence, supporting that the structures act as an organic antenna for luminescence. Metal displacement titration studies confirmed the desired structures as well as the capability for heterometallic labeling of the structures. These structures were found to have high thermal and biological stability in vitro. Radiolabeling of each compound resulted in high molar activity labeling of each compound: 169 MBq nmol-1: [161Tb]Tb-pDbDt, 170 MBq nmol-1: [89Zr]Zr-pDbDtDf, and the mixed radiolabeling illustrated chelation of both radionuclides in a 1 : 1 ratio. This multimodal architecture is promising as a heterometallic structure for coupling of both a diagnostic and a therapeutic radionuclide with a highly customizable core structure.
Collapse
Affiliation(s)
- Aidan A Bender
- Nuclear Engineering Program, University of Utah 110 Central Campus Dr. Suite 2000B Salt Lake City UT 84112 USA
| | - Connor K Holiski
- Nuclear Engineering Program, University of Utah 110 Central Campus Dr. Suite 2000B Salt Lake City UT 84112 USA
| | - Mary Embree
- University of Missouri Research Reactor Columbia MO 65211 USA
| | - Heather M Hennkens
- University of Missouri Research Reactor Columbia MO 65211 USA
- Department of Chemistry, University of Missouri Columbia MO 65211 USA
| | - John R Klaehn
- Biological and Chemical Process Sciences, Idaho National Laboratory Idaho Falls ID 83415 USA
| | - Ellie Lundgreen
- Nuclear Engineering Program, University of Utah 110 Central Campus Dr. Suite 2000B Salt Lake City UT 84112 USA
| | - Andrew G Roberts
- Department of Chemistry, University of Utah Salt Lake City UT 84112 USA
| | - Peter R Zalupski
- Aqueous Separations and Radiochemistry, Idaho National Laboratory Idaho Falls ID 83415 USA
| | - Tara Mastren
- Nuclear Engineering Program, University of Utah 110 Central Campus Dr. Suite 2000B Salt Lake City UT 84112 USA
| |
Collapse
|
2
|
Constantin M, Chifiriuc MC, Vrancianu CO, Petrescu L, Cristian RE, Crunteanu I, Grigore GA, Chioncel MF. Insights into the effects of lanthanides on mammalian systems and potential applications. ENVIRONMENTAL RESEARCH 2024; 263:120235. [PMID: 39461700 DOI: 10.1016/j.envres.2024.120235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Lanthanides, a group of elements with unique chemical properties, have garnered significant attention for their varied biological effects, ranging from cytotoxic to protective, depending on concentration, cell type, and exposure conditions. This review provides a detailed examination of the biological interactions of lanthanides with mammalian systems, including humans, by exploring their impact on different cell lines and organisms. Through a systematic assessment of current research, this work highlights the dual nature of lanthanides, identifying them as both potential therapeutic agents and environmental toxins. Furthermore, it underscores the importance of understanding their mechanisms to mitigate health risks, particularly for those exposed occupationally or via environmental sources. The review concludes with an overview of knowledge gaps and future research directions necessary for unlocking the therapeutic potential of lanthanides while ensuring safety and sustainability in their applications.
Collapse
Affiliation(s)
- Marian Constantin
- Institute of Biology of Romanian Academy, 060031, Bucharest, Romania; The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania.
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania; Doctoral School, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari, District 5, Bucharest, Romania.
| | - Livia Petrescu
- Department of Anatomy, Animal Physiology and Biophysics, DAFAB, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania.
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania; Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania
| | - Ioana Crunteanu
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Georgiana Alexandra Grigore
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania
| | - Mariana F Chioncel
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| |
Collapse
|
3
|
Borisova NE, Kharcheva AV, Sumyanova TB, Gontcharenko V, Matveev PI, Starostin L, Trigub A, Ivanov AV, Patsaeva SV. Bipyridyldicarboxamides and f-metals: the influence of electron effects on the structure, stability, separation, and photophysical properties of their complexes. Dalton Trans 2024; 53:17673-17686. [PMID: 39415720 DOI: 10.1039/d4dt02489c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In this work, three isomeric fluorinated bipyridyldicarboxamides were studied to evaluate the impact of the fluorine atom position on the structure, stability, Am(III)/Ln(III) separation, and photophysical properties of their complexes. The complexes of the fluorinated amides have a metal-to-ligand composition of 1 : 1, which is independent of the fluorine atom position or lanthanide metal. The bipyridyl fragments in the fluorinated complexes are flattened compared with those in unsubstituted ones. Ln-to-heteroatom distances are more affected by steric hindrance in the ligand and further by lanthanide ion radius contraction. This leads to significant effectivity of heavy lanthanide extraction compared with the light ones, particularly for 4F diamide. Fluorination leads to a slight variation in the excited triplet state of the complexes, and hence, the effectiveness of luminescence increases for Eu, Sm, and Tb complexes. Moreover, fluorination significantly affects the CIE chromaticity coordinates for the complexes.
Collapse
Affiliation(s)
- Nataliya E Borisova
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
| | - Anastasia V Kharcheva
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
- Department of Physics M.V. Lomonosov Moscow State University 1/2 Leninskie Gory, 119991 Moscow, Russia
| | - Tsagana B Sumyanova
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
| | - Victoria Gontcharenko
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
| | - Pert I Matveev
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
| | - Leonid Starostin
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
| | - Alexander Trigub
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
| | - Alexey V Ivanov
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
| | - Svetlana V Patsaeva
- Department of Physics M.V. Lomonosov Moscow State University 1/2 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
4
|
Zhao D, Liu Y, Ho SL, Tegafaw T, Al Saidi AKA, Lee H, Ahn D, Nam H, Park JA, Yang JU, Chae WS, Chang Y, Lee GH. Multi-functional GdEu xTb 1-xO 3 ( x = 0 to 1) nanoparticles: colour tuning optical properties, water proton spin relaxivities, and X-ray attenuation properties. NANOSCALE 2024; 16:16998-17008. [PMID: 39188197 DOI: 10.1039/d4nr02195a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Multi-functional nanoparticles are useful for various applications, such as biomedical imaging, detection, and display technologies. Colour-tunable GdEuxTb1-xO3 nanoparticles were synthesized with emission colour ranging from green (545 nm) to red (616 nm) by varying x (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1). These nanoparticles were surface-grafted with polyacrylic acid and a small quantity of 2,6-pyridinedicarboxylic acid. This modification aimed to ensure long-term colloidal stability (>1 year without precipitation) and high quantum yields (>30%) in aqueous media. Additionally, they exhibited long emission lifetimes (∼1 ms), high longitudinal water proton spin relaxivities (>30 s-1mM-1), and high X-ray attenuation efficiencies (∼10 HU mM-1). These multiple exceptional properties within a single nanoparticle make them highly valuable for applications in biomedical imaging, noise-free signal detection, and colour display.
Collapse
Affiliation(s)
- Dejun Zhao
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South Korea.
| | - Ying Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South Korea.
| | - Son Long Ho
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South Korea.
| | - Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South Korea.
| | | | - Hansol Lee
- Department of Medical & Biological Engineering, Kyungpook National University, Taegu 41944, South Korea
| | - Dabin Ahn
- Department of Medical & Biological Engineering, Kyungpook National University, Taegu 41944, South Korea
| | - Hyunji Nam
- Department of Medical & Biological Engineering, Kyungpook National University, Taegu 41944, South Korea
| | - Ji Ae Park
- Division of RI-Convergence Research, Korea Institute of Radiological & Medical Science, Seoul 01817, South Korea
| | - Ji-Ung Yang
- Division of RI-Convergence Research, Korea Institute of Radiological & Medical Science, Seoul 01817, South Korea
| | - Weon-Sik Chae
- Daegu Center, Korea Basic Science Institute, Taegu 41566, South Korea
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, South Korea.
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South Korea.
| |
Collapse
|
5
|
Gaffar NA, Zahid M, Asghar A, Shafiq MF, Jelani S, Rehan F. Biosynthesized metallic nanoparticles: A new era in cancer therapy. Arch Pharm (Weinheim) 2024; 357:e2300712. [PMID: 38653735 DOI: 10.1002/ardp.202300712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Cancer remains a global health crisis, claiming countless lives throughout the years. Traditional cancer treatments like chemotherapy and radiation often bring about severe side effects, underscoring the pressing need for innovative, more efficient, and less toxic therapies. Nanotechnology has emerged as a promising technology capable of producing environmentally friendly anticancer nanoparticles. Among various nanoparticle types, metal-based nanoparticles stand out due to their exceptional performance and ease of use in methods of imaging. The widespread accessibility of biological precursors for synthesis based on plants of metal nanoparticles has made large-scale, eco-friendly production feasible. This evaluation provides a summary of the green strategy for synthesizing metal-based nanoparticles and explores their applications. Moreover, this review delves into the potential of phyto-based metal nanoparticles in combating cancer, shedding light on their probable mechanisms of action. These insights are invaluable for enhancing both biomedical and environmental applications. The study also touches on the numerous potential applications of nanotechnology in the field of medicine. Consequently, this research offers a concise and well-structured summary of nanotechnology, which should prove beneficial to researchers, engineers, and scientists embarking on future research endeavors.
Collapse
Affiliation(s)
- Nabila Abdul Gaffar
- Department of Chemistry, Forman Christian College University, Lahore, Pakistan
| | - Mavia Zahid
- Department of Chemistry, Forman Christian College University, Lahore, Pakistan
| | - Akleem Asghar
- Department of Chemistry, Forman Christian College University, Lahore, Pakistan
| | | | - Seemal Jelani
- Department of Chemistry, Forman Christian College University, Lahore, Pakistan
| | - Farah Rehan
- Department of Pharmacy, Forman Christian College University, Lahore, Pakistan
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
6
|
Arnaouti E, Georgiadou C, Hatizdimitriou AG, Kalogiannis S, Psomas G. Erbium(III) complexes with fluoroquinolones: Structure and biological properties. J Inorg Biochem 2024; 255:112525. [PMID: 38522216 DOI: 10.1016/j.jinorgbio.2024.112525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Four erbium(III) complexes with the fluoroquinolones enrofloxacin, levofloxacin, flumequine and sparfloxacin as ligands were synthesized and characterized by a wide range of physicochemical and spectroscopic techniques as well as single-crystal X-ray crystallography. The compounds were evaluated for their activity against the bacterial strains Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Xanthomonas campestris, which was higher than that of the corresponding free quinolones. The interaction mode of the complexes with calf-thymus DNA is via intercalation, as suggested by diverse studies such as UV-vis spectroscopy, DNA-viscosity measurements and competitive studies with ethidium bromide. Fluorescence emission spectroscopy revealed the high affinity of the complexes for bovine and human serum albumin and the determined binding constants suggested a tight and reversible binding of the compounds with both albumins.
Collapse
Affiliation(s)
- Eleni Arnaouti
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Christina Georgiadou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, GR-57400 Thessaloniki, Greece
| | - Antonios G Hatizdimitriou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, GR-57400 Thessaloniki, Greece
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
7
|
Li M, Gao J, Yao L, Zhang L, Li D, Li Z, Wu Q, Wang S, Ding J, Liu Y, Wang M, Tang G, Qin H, Li J, Yang X, Liu R, Zeng L, Shi J, Qu G, Jiang G. Determining toxicity of europium oxide nanoparticles in immune cell components and hematopoiesis in dominant organs in mice: Role of lysosomal fluid interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173482. [PMID: 38795982 DOI: 10.1016/j.scitotenv.2024.173482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Extensive application of rare earth element oxide nanoparticles (REE NPs) has raised a concern over the possible toxic health effects after human exposure. Once entering the body, REE NPs are primarily processed by phagocytes in particular macrophages and undergo biotic phosphate complexation in lysosomal compartment. Such biotransformation affects the target organs and in vivo fate of REE NPs after escaping the lysosomes. However, the immunomodulatory effects of intraphagolysosomal dissolved REE NPs remains insufficient. Here, europium oxide (Eu2O3) NPs were pre-incubated with phagolysosomal simulant fluid (PSF) to mimic the biotransformation of europium oxide (p-Eu2O3) NPs under acid phagolysosome conditions. We investigated the alteration in immune cell components and the hematopoiesis disturbance on adult mice after intravenous administration of Eu2O3 NPs and p-Eu2O3 NPs. Our results indicated that the liver and spleen were the main target organs for Eu2O3 NPs and p-Eu2O3 NPs. Eu2O3 NPs had a much higher accumulative potential in organs than p-Eu2O3 NPs. Eu2O3 NPs induced more alterations in immune cells in the spleen, while p-Eu2O3 NPs caused stronger response in the liver. Regarding hematopoietic disruption, Eu2O3 NPs reduced platelets (PLTs) in peripheral blood, which might be related to the inhibited erythrocyte differentiation in the spleen. By contrast, p-Eu2O3 NPs did not cause significant disturbance in peripheral PLTs. Our study demonstrated that the preincubation with PSF led to a distinct response in the immune system compared to the pristine REE NPs, suggesting that the potentially toxic effects induced by the release of NPs after phagocytosis should not be neglected, especially when evaluating the safety of NPs application in vivo.
Collapse
Affiliation(s)
- Min Li
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Liu Zhang
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Danyang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zikang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ding
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Yaquan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Qin
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junya Li
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xinyue Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runzeng Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Li Zeng
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China.
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- College of Science, Northeastern University, Shenyang 110819, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
8
|
Mohanto S, Biswas A, Gholap AD, Wahab S, Bhunia A, Nag S, Ahmed MG. Potential Biomedical Applications of Terbium-Based Nanoparticles (TbNPs): A Review on Recent Advancement. ACS Biomater Sci Eng 2024; 10:2703-2724. [PMID: 38644798 DOI: 10.1021/acsbiomaterials.3c01969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The scientific world is increasingly focusing on rare earth metal oxide nanomaterials due to their consequential biological prospects, navigated by breakthroughs in biomedical applications. Terbium belongs to rare earth elements (lanthanide series) and possesses remarkably strong luminescence at lower energy emission and signal transduction properties, ushering in wide applications for diagnostic measurements (i.e., bioimaging, biosensors, fluorescence imaging, etc.) in the biomedical sectors. In addition, the theranostic applications of terbium-based nanoparticles further permit the targeted delivery of drugs to the specific site of the disease. Furthermore, the antimicrobial properties of terbium nanoparticles induced via reactive oxygen species (ROS) cause oxidative damage to the cell membrane and nuclei of living organisms, ion release, and surface charge interaction, thus further creating or exhibiting excellent antioxidant characteristics. Moreover, the recent applications of terbium nanoparticles in tissue engineering, wound healing, anticancer activity, etc., due to angiogenesis, cell proliferation, promotion of growth factors, biocompatibility, cytotoxicity mitigation, and anti-inflammatory potentials, make this nanoparticle anticipate a future epoch of nanomaterials. Terbium nanoparticles stand as a game changer in the realm of biomedical research, proffering a wide array of possibilities, from revolutionary imaging techniques to advanced drug delivery systems. Their unique properties, including luminescence, magnetic characteristics, and biocompatibility, have redefined the boundaries of what can be achieved in biomedicine. This review primarily delves into various mechanisms involved in biomedical applications via terbium-based nanoparticles due to their physicochemical characteristics. This review article further explains the potential biomedical applications of terbium nanoparticles with in-depth significant mechanisms from the individual literature. This review additionally stands as the first instance to furnish a "single-platted" comprehensive acquaintance of terbium nanoparticles in shaping the future of healthcare as well as potential limitations and overcoming strategies that require exploration before being trialed in clinical settings.
Collapse
Affiliation(s)
- Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Aritra Biswas
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, P.O. Rahara, Kolkata, West Bengal 700118, India
| | - Amol Dilip Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra 401404, India
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Adrija Bhunia
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor , Malaysia
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| |
Collapse
|
9
|
Bakhti A, Shokouhi Z, Mohammadipanah F. Modulation of proteins by rare earth elements as a biotechnological tool. Int J Biol Macromol 2024; 258:129072. [PMID: 38163500 DOI: 10.1016/j.ijbiomac.2023.129072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Although rare earth element (REE) complexes are often utilized in bioimaging due to their photo- and redox stability, magnetic and optical characteristics, they are also applied for pharmaceutical applications due to their interaction with macromolecules namely proteins. The possible implications induced by REEs through modification in the function or regulatory activity of the proteins trigger a variety of applications for these elements in biomedicine and biotechnology. Lanthanide complexes have particularly been applied as anti-biofilm agents, cancer inhibitors, potential inflammation inhibitors, metabolic elicitors, and helper agents in the cultivation of unculturable strains, drug delivery, tissue engineering, photodynamic, and radiation therapy. This paper overviews emerging applications of REEs in biotechnology, especially in biomedical imaging, tumor diagnosis, and treatment along with their potential toxic effects. Although significant advances in applying REEs have been made, there is a lack of comprehensive studies to identify the potential of all REEs in biotechnology since only four elements, Eu, Ce, Gd, and La, among 17 REEs have been mostly investigated. However, in depth research on ecotoxicology, environmental behavior, and biological functions of REEs in the health and disease status of living organisms is required to fill the vital gaps in our understanding of REEs applications.
Collapse
Affiliation(s)
- Azam Bakhti
- Department of Microbial Biotechnology, Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Zahra Shokouhi
- Department of Microbial Biotechnology, Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
| |
Collapse
|
10
|
Ferro-Flores G, Ancira-Cortez A, Ocampo-García B, Meléndez-Alafort L. Molecularly Targeted Lanthanide Nanoparticles for Cancer Theranostic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:296. [PMID: 38334567 PMCID: PMC10857384 DOI: 10.3390/nano14030296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Injectable colloidal solutions of lanthanide oxides (nanoparticles between 10 and 100 nm in size) have demonstrated high biocompatibility and no toxicity when the nanoparticulate units are functionalized with specific biomolecules that molecularly target various proteins in the tumor microenvironment. Among the proteins successfully targeted by functionalized lanthanide nanoparticles are folic receptors, fibroblast activation protein (FAP), gastrin-releasing peptide receptor (GRP-R), prostate-specific membrane antigen (PSMA), and integrins associated with tumor neovasculature. Lutetium, samarium, europium, holmium, and terbium, either as lanthanide oxide nanoparticles or as nanoparticles doped with lanthanide ions, have demonstrated their theranostic potential through their ability to generate molecular images by magnetic resonance, nuclear, optical, or computed tomography imaging. Likewise, photodynamic therapy, targeted radiotherapy (neutron-activated nanoparticles), drug delivery guidance, and image-guided tumor therapy are some examples of their potential therapeutic applications. This review provides an overview of cancer theranostics based on lanthanide nanoparticles coated with specific peptides, ligands, and proteins targeting the tumor microenvironment.
Collapse
Affiliation(s)
- Guillermina Ferro-Flores
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (G.F.-F.); (A.A.-C.); (B.O.-G.)
| | - Alejandra Ancira-Cortez
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (G.F.-F.); (A.A.-C.); (B.O.-G.)
| | - Blanca Ocampo-García
- Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac 52750, Mexico; (G.F.-F.); (A.A.-C.); (B.O.-G.)
| | - Laura Meléndez-Alafort
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35138 Padova, Italy
| |
Collapse
|
11
|
Tegafaw T, Liu Y, Ho SL, Liu S, Ahmad MY, Al Saidi AKA, Zhao D, Ahn D, Nam H, Chae WS, Nam SW, Chang Y, Lee GH. High-Quantum-Yield Ultrasmall Ln 2O 3 (Ln = Eu, Tb, or Dy) Nanoparticle Colloids in Aqueous Media Obtained via Photosensitization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15338-15342. [PMID: 37856331 DOI: 10.1021/acs.langmuir.3c02229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Fluorescent nanoparticles used in biomedical applications should be stable in their colloidal form in aqueous media and possess a high quantum yield (QY). We report ultrasmall Ln2O3 (Ln = Eu, Tb, or Dy) nanoparticle colloids with high QYs in aqueous media. The nanoparticles are grafted with hydrophilic and biocompatible poly(acrylic acid) (PAA) to ensure colloidal stability and biocompatibility and with organic photosensitizer 2,6-pyridinedicarboxylic acid (PDA) for achieving a high QY. The PAA/PDA-Ln2O3 nanoparticle colloids were nearly monodispersed and ultrasmall (particle diameter: ∼2 nm). They exhibited excellent colloidal stability with no precipitation after synthesis (>1.5 years) in aqueous media, very low cellular toxicity, and very high absolute QYs of 87.6, 73.6, and 2.8% for Ln = Eu, Tb, and Dy, respectively. These QYs are the highest reported so far for lanthanides in aqueous media. Therefore, the results suggest their high potential as sensitive optical or imaging probes in biomedical applications.
Collapse
Affiliation(s)
- Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South Korea
| | - Ying Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South Korea
| | - Son Long Ho
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South Korea
| | - Shuwen Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South Korea
| | - Mohammad Yaseen Ahmad
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South Korea
| | | | - Dejun Zhao
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South Korea
| | - Dabin Ahn
- Division of Biomedical Science, School of Medicine, Kyungpook National University, Taegu 41944, South Korea
| | - Hyunji Nam
- Division of Biomedical Science, School of Medicine, Kyungpook National University, Taegu 41944, South Korea
| | - Weon-Sik Chae
- Daegu Center, Korea Basic Science Institute, Taegu 41566, South Korea
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, South Korea
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, South Korea
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South Korea
| |
Collapse
|
12
|
Sabaghi V, Rashidi-Ranjbar P, Davar F, Sharif-Paghaleh E. Development of lanthanide-based “all in one” theranostic nanoplatforms for TME-reinforced T1-weighted MRI/CT bimodal imaging. J Drug Deliv Sci Technol 2023; 87:104703. [DOI: 10.1016/j.jddst.2023.104703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Chaturvedi VK, Sharma B, Tripathi AD, Yadav DP, Singh KRB, Singh J, Singh RP. Biosynthesized nanoparticles: a novel approach for cancer therapeutics. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1236107. [PMID: 37521721 PMCID: PMC10374256 DOI: 10.3389/fmedt.2023.1236107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Nanotechnology has become one of the most rapid, innovative, and adaptable sciences in modern science and cancer therapy. Traditional chemotherapy has limits owing to its non-specific nature and adverse side effects on healthy cells, and it remains a serious worldwide health issue. Because of their capacity to specifically target cancer cells and deliver therapeutic chemicals directly to them, nanoparticles have emerged as a viable strategy for cancer therapies. Nanomaterials disclose novel properties based on size, distribution, and shape. Biosynthesized or biogenic nanoparticles are a novel technique with anti-cancer capabilities, such as triggering apoptosis in cancer cells and slowing tumour growth. They may be configured to deliver medications or other therapies to specific cancer cells or tumour markers. Despite their potential, biosynthesized nanoparticles confront development obstacles such as a lack of standardisation in their synthesis and characterization, the possibility of toxicity, and their efficiency against various forms of cancer. The effectiveness and safety of biosynthesized nanoparticles must be further investigated, as well as the types of cancer they are most successful against. This review discusses the promise of biosynthesized nanoparticles as a novel approach for cancer therapeutics, as well as their mode of action and present barriers to their development.
Collapse
Affiliation(s)
- Vivek K. Chaturvedi
- Department of Gastroenterology, I.M.S., Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Bhaskar Sharma
- Neurobiology Laboratory, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Abhay Dev Tripathi
- School of Biochemical Engineering, Indian Institute Technology-BHU, Varanasi, Uttar Pradesh, India
| | - Dawesh P. Yadav
- Department of Gastroenterology, I.M.S., Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Kshitij RB Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| |
Collapse
|
14
|
Qin W, Chandra J, Abourehab MAS, Gupta N, Chen ZS, Kesharwani P, Cao HL. New opportunities for RGD-engineered metal nanoparticles in cancer. Mol Cancer 2023; 22:87. [PMID: 37226188 DOI: 10.1186/s12943-023-01784-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023] Open
Abstract
The advent of nanotechnology has opened new possibilities for bioimaging. Metal nanoparticles (such as gold, silver, iron, copper, etc.) hold tremendous potential and offer enormous opportunities for imaging and diagnostics due to their broad optical characteristics, ease of manufacturing technique, and simple surface modification. The arginine-glycine-aspartate (RGD) peptide is a three-amino acid sequence that seems to have a considerably greater ability to adhere to integrin adhesion molecules that exclusively express on tumour cells. RGD peptides act as the efficient tailoring ligand with a variety of benefits including non-toxicity, greater precision, rapid clearance, etc. This review focuses on the possibility of non-invasive cancer imaging using metal nanoparticles with RGD assistance.
Collapse
Affiliation(s)
- Wei Qin
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, 710021, China
| | - Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Neelima Gupta
- Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Zhe-Sheng Chen
- Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical science, Chennai, India.
| | - Hui-Ling Cao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
15
|
Nosov VG, Betina AA, Bulatova TS, Guseva PB, Kolesnikov IE, Orlov SN, Panov MS, Ryazantsev MN, Bogachev NA, Skripkin MY, Mereshchenko AS. Effect of Gd 3+, La 3+, Lu 3+ Co-Doping on the Morphology and Luminescent Properties of NaYF 4:Sm 3+ Phosphors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2157. [PMID: 36984038 PMCID: PMC10058261 DOI: 10.3390/ma16062157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The series of luminescent NaYF4:Sm3+ nano- and microcrystalline materials co-doped by La3+, Gd3+, and Lu3+ ions were synthesized by hydrothermal method using rare earth chlorides as the precursors and citric acid as a stabilizing agent. The phase composition of synthesized compounds was studied by PXRD. All synthesized materials except ones with high La3+ content (where LaF3 is formed) have a β-NaYF4 crystalline phase. SEM images demonstrate that all particles have shape of hexagonal prisms. The type and content of doping REE significantly effect on the particle size. Upon 400 nm excitation, phosphors exhibit distinct emission peaks in visible part of the spectrum attributed to 4G5/2→6HJ transitions (J = 5/2-11/2) of Sm3+ ion. Increasing the samarium (III) content results in concentration quenching by dipole-dipole interactions, the optimum Sm3+concentration is found to be of 2%. Co-doping by non-luminescent La3+, Gd3+ and Lu3+ ions leads to an increase in emission intensity. This effect was explained from the Sm3+ local symmetry point of view.
Collapse
Affiliation(s)
- Viktor G. Nosov
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Anna A. Betina
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Tatyana S. Bulatova
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Polina B. Guseva
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Ilya E. Kolesnikov
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Sergey N. Orlov
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
- Federal State Unitary Enterprise “Alexandrov Research Institute of Technology”, 72 Koporskoe Shosse, 188540 Sosnovy Bor, Russia
- Institute of Nuclear Industry, Peter the Great St. Petersburg Polytechnic University (SPbSU), 29, Polytechnicheskaya Street, 195251 St. Petersburg, Russia
| | - Maxim S. Panov
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
- Center for Biophysical Studies, Saint Petersburg State Chemical Pharmaceutical University, 14 Professor Popov Str., Lit. A, 197022 St. Petersburg, Russia
| | - Mikhail N. Ryazantsev
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia
| | - Nikita A. Bogachev
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Mikhail Yu Skripkin
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| | - Andrey S. Mereshchenko
- Saint-Petersburg State University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia
| |
Collapse
|
16
|
Li S, Wei J, Yao Q, Song X, Xie J, Yang H. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem Soc Rev 2023; 52:1672-1696. [PMID: 36779305 DOI: 10.1039/d2cs00497f] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Photoluminescence (PL) imaging has become a fundamental tool in disease diagnosis, therapeutic evaluation, and surgical navigation applications. However, it remains a big challenge to engineer nanoprobes for high-efficiency in vivo imaging and clinical translation. Recent years have witnessed increasing research efforts devoted into engineering sub-10 nm ultrasmall nanoprobes for in vivo PL imaging, which offer the advantages of efficient body clearance, desired clinical translation potential, and high imaging signal-to-noise ratio. In this review, we present a comprehensive summary and contrastive discussion of emerging ultrasmall luminescent nanoprobes towards in vivo PL bioimaging of diseases. We first summarize size-dependent nano-bio interactions and imaging features, illustrating the unique attributes and advantages/disadvantages of ultrasmall nanoprobes differentiating them from molecular and large-sized probes. We also discuss general design methodologies and PL properties of emerging ultrasmall luminescent nanoprobes, which are established based on quantum dots, metal nanoclusters, lanthanide-doped nanoparticles, and silicon nanoparticles. Then, recent advances of ultrasmall luminescent nanoprobes are highlighted by surveying their latest in vivo PL imaging applications. Finally, we discuss existing challenges in this exciting field and propose some strategies to improve in vivo PL bioimaging and further propel their clinical applications.
Collapse
Affiliation(s)
- Shihua Li
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Jing Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China. .,Fujian Science &Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
17
|
Sabaghi V, Davar F, Rashidi-Ranjbar P, Sharif-Paghaleh E. Hierarchical design of intelligent α-MnO2-based theranostics nanoplatform for TME-activated drug delivery and T1-weighted MRI. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
18
|
Singh P, Kachhap S, Singh P, Singh S. Lanthanide-based hybrid nanostructures: Classification, synthesis, optical properties, and multifunctional applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Mesbahi A, Rajabpour S, Smilowitz HM, Hainfeld JF. Accelerated brachytherapy with the Xoft electronic source used in association with iodine, gold, bismuth, gadolinium, and hafnium nano-radioenhancers. Brachytherapy 2022; 21:968-978. [PMID: 36002350 DOI: 10.1016/j.brachy.2022.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE The current study was designed to calculate the dose enhancement factor (DEF) of iodine (I), gold (Au), bismuth (Bi), gadolinium (Gd), and hafnium (Hf) nanoparticles (NP)s by Monte Carlo (MC) modeling of an electronic brachytherapy source in resection cavities of breast tumors. METHODS AND MATERIALS The GEANT4 MC code was used for simulation of a phantom containing a water-filled balloon and a Xoft source (50 kVp) to irradiate the margins of a resected breast tumor. NPs with a diameter of 20 nm and concentrations from 1 to 5% w/w were simulated in a tumor margin with 5 mm thickness as well as a hypothetical breast model consisting of spherical island-like residual tumor-remnants. The DEFs for all NPs were calculated in both models. RESULTS In the margin-loaded model, for the concentration of 1% w/w heavy atom, DEFs of 2.5, 2.3, 2.1, 2, and 1.7 were calculated for Bi, Au, I, Hf, and Gd NPs (descending order), which increased, almost linearly with concentration for all NPs. Moreover, normal tissue dose behind the NP-loaded margin declined significantly depending on NP type and concentration. When modeling residual tumor islands, DEF values were very close to the margin-loaded values except for Bi and I, where DEFs of 2.55 and 1.7 were seen, respectively. CONCLUSIONS Considerable dose enhancements were obtained for the heavy atom NPs studied in the partial breast brachytherapy with a Xoft electronic source. In addition, normal tissue doses were lowered in the points beyond the NP-loaded margin. The findings revealed promising outcomes and the probability of improved tumor control for NP-aided brachytherapy with the Xoft electronic source.
Collapse
Affiliation(s)
- Asghar Mesbahi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Medical Radiation Sciences Research Team, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Saeed Rajabpour
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Henry M Smilowitz
- Department of Cell Biology, University of Connecticut Health Center, CT
| | | |
Collapse
|
20
|
Nanoparticles Design for Theranostic Approach in Cancer Disease. Cancers (Basel) 2022; 14:cancers14194654. [PMID: 36230578 PMCID: PMC9564040 DOI: 10.3390/cancers14194654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Presently, there are no conclusive treatments for many types of cancer, mainly due to the advanced phase of the disease at the time of diagnosis and to the side effects of existing therapies. Present diagnostic and therapeutic procedures need to be improved to supply early detection abilities and perform a more specific therapy with reduced systemic toxicity. In this review, improvements in nanotechnology allowing the design of multifunctional nanoparticles for cancer detection, therapy, and monitoring are reported. Nanoparticles, thanks to the nanomaterials they are made of, can be used as contrast agents for various diagnostic techniques such as MRI, optical imaging, and photoacoustic imaging. Furthermore, when used as drug carriers, they can accumulate in tumor tissues through the passive or/and active targeting, protect encapsulated drugs from degradation, raise tumor exposure to chemotherapeutic agents improving treatment effects. In addition, nanocarriers can simultaneously deliver more than one therapeutic agent enhancing the effectiveness of therapy and can co-deliver imaging and therapy agents to provide integration of diagnostics, therapy, and follow-up. Furthermore, the use of nanocarriers allows to use different therapeutic approaches, such as chemotherapy and hyperthermia to exploit synergistic effects. Theranostic approach to diagnose and treat cancer show a great potential to improve human health, however, despite technological advances in this field, the transfer into clinical practice is still a long way off.
Collapse
|
21
|
Near-infrared excitation/emission microscopy with lanthanide-based nanoparticles. Anal Bioanal Chem 2022; 414:4291-4310. [PMID: 35312819 DOI: 10.1007/s00216-022-03999-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022]
Abstract
Near-infrared optical imaging offers some advantages over conventional imaging, such as deeper tissue penetration, low or no autofluorescence, and reduced tissue scattering. Lanthanide-doped nanoparticles (LnNPs) have become a trend in the field of photoactive nanomaterials for optical imaging due to their unique optical features and because they can use NIR light as excitation and/or emission light. This review is focused on NaREF4 NPs and offers an overview of the state-of-the-art investigation in their use as luminophores in optical microscopy, time-resolved imaging, and super-resolution nanoscopy based on, or applied to, LnNPs. Secondly, whenever LnNPs are combined with other nanomaterial or nanoparticle to afford nanohybrids, the characterization of their physical and chemical properties is of current interest. In this context, the latest trends in optical microscopy and their future perspectives are discussed.
Collapse
|
22
|
Tang Q, Liu S, Liu J, Wang Y, Wang Y, Wang S, Du Z, Huang L, Belfiore LA, Tang J. Novel Cuboid-like Crystalline Complexes (CLCCs), Photon Emission, Fluorescent Fibers, and Bright Red Fabrics of Eu 3+ Complexes Adjusted by Amphiphilic Molecules. Polymers (Basel) 2022; 14:905. [PMID: 35267728 PMCID: PMC8912808 DOI: 10.3390/polym14050905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/10/2022] Open
Abstract
With the growing needs for flexible fluorescence emission materials, emission fibers and related wearable fabrics with bright emission properties have become key factors for wearable applications. In this article, novel cuboid-like crystals of Eu3+ complexes were generated. Except for light-energy-harvesting ligands of thenoyltrifluoroacetone (TTA) and 1,10-phenanthroline hydrate (Phen), the crystal structures were adjusted by other functional amphiphilic molecules. Not only does ETPC-SA, adjusted by stearic acid, have a regular cuboid-like crystal with a size of about 2 μm size, but it also generates the best photon emission property, with a fluorescence quantum yield of 98.4% fluorescence quantum yield in this report. Furthermore, we succeeded in producing novel fluorescent fibers by mini-twin-screw extrusion, and it was easy to form bright red fabrics, which are equipped with strong fluorescence intensity, flexibility, and a smooth hand feeling, with the normal fabricating method in our work. It is worth noting that ETPC-HQ fibers, which carry a crystal complex adjusted by hydroquinone, possess the lowest quantum yield but have the longest average fluorescence lifetime of 1259 µs. This result means that a low-density polyethylene (LDPE) matrix could make excited electrons stand in the excited state for a relatively long time when adjusted by hydroquinone, so as to increase the afterglow property of fluorescent fibers.
Collapse
Affiliation(s)
- Qinglin Tang
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Shasha Liu
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Jin Liu
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Yao Wang
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Yanxin Wang
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Shichao Wang
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Zhonglin Du
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Linjun Huang
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| | - Laurence A. Belfiore
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Jianguo Tang
- National Center of International Joint Research for Hybrid Materials Technology, Institute of Hybrid Materials, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (Q.T.); (S.L.); (J.L.); (Y.W.); (Y.W.); (S.W.); (Z.D.); (L.H.); (L.A.B.)
| |
Collapse
|