1
|
Cardoso VMDO, Bistaffa MJ, Sterman RG, Lima LLPD, Toldo GS, Cancino-Bernardi J, Zucolotto V. Nanomedicine Innovations for Lung Cancer Diagnosis and Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:13197-13220. [PMID: 40045524 DOI: 10.1021/acsami.4c16840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Lung cancer remains a challenge within the realm of oncology. Characterized by late-stage diagnosis and resistance to conventional treatments, the currently available therapeutic strategies encompass surgery, radiotherapy, chemotherapy, immunotherapy, and biological therapy; however, overall patient survival remains suboptimal. Nanotechnology has ushered in a new era by offering innovative nanomaterials with the potential to precisely target cancer cells while sparing healthy tissues. It holds the potential to reshape the landscape of cancer management, offering hope for patients and clinicians. The assessment of these nanotechnologies follows a rigorous evaluation process similar to that applied to chemical drugs, which includes considerations of their pharmacokinetics, pharmacodynamics, toxicology, and clinical effectiveness. However, because of the characteristics of nanoparticles, standard toxicological tests require modifications to accommodate their unique characteristics. Effective therapeutic strategies demand a profound understanding of the disease and consideration of clinical outcomes, physicochemical attributes of nanomaterials, nanobiointeractions, nanotoxicity, and regulatory compliance to ensure patient safety. This review explores the promise of nanomedicine in lung cancer treatment by capitalizing on its unique physicochemical properties. We address the multifaceted challenges of lung cancer and its tumor microenvironment and provide an overview of recent developments in nanoplatforms for early diagnosis and treatment that can enhance patient outcomes and overall quality of life.
Collapse
Affiliation(s)
- Valéria Maria de Oliveira Cardoso
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | - Maria Julia Bistaffa
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | - Raquel González Sterman
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | - Lorena Leticia Peixoto de Lima
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | - Gustavo Silveira Toldo
- Chemistry Department, Laboratory in Bioanalytical of Nanosystems, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil
| | - Juliana Cancino-Bernardi
- Chemistry Department, Laboratory in Bioanalytical of Nanosystems, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, São Paulo, Brazil
- Comprehensive Center for Precision Oncology, C2PO, University of São Paulo, São Paulo 01246-000, Brazil
| |
Collapse
|
2
|
Graham W, Torbett-Dougherty M, Islam A, Soleimani S, Bruce-Tagoe TA, Johnson JA. Magnetic Nanoparticles and Drug Delivery Systems for Anti-Cancer Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:285. [PMID: 39997849 PMCID: PMC11858650 DOI: 10.3390/nano15040285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Cancer continues to be a prominent fatal health issue worldwide, driving the urgent need for more effective treatment strategies. The pressing demand has sparked significant interest in the development of advanced drug delivery systems for chemotherapeutics. The advent of nanotechnology offers a groundbreaking approach, presenting a promising pathway to revolutionize cancer treatment and improve patient outcomes. Nanomedicine-based drug delivery systems have demonstrated the capability of improving the pharmacokinetic properties and accumulation of chemotherapeutic agents in cancer sites while minimizing the adverse side effects. Despite these advantages, most NDDSs exhibit only limited improvement in cancer treatment during clinical trials. The recent development of magnetic nanoparticles (MNPs) for biomedical applications has revealed a potential opportunity to further enhance the performance of NDDSs. The magnetic properties of MNPs can be utilized to increase the targeting capabilities of NDDSs, improve the controlled release of chemotherapeutic agents, and weaken the chemoresistance of tumors with magnetic hyperthermia. In this review, we will explore recent advancements in research for NDDSs for oncology applications, how MNPs and their properties can augment the capabilities of NDDSs when complexed with them and emphasize the challenges and safety concerns of incorporating these systems into cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Jacqueline Ann Johnson
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA; (W.G.); (M.T.-D.); (A.I.); (S.S.); (T.A.B.-T.)
| |
Collapse
|
3
|
Singh P, Pandit S, Balusamy SR, Madhusudanan M, Singh H, Amsath Haseef HM, Mijakovic I. Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications. Adv Healthc Mater 2025; 14:e2403059. [PMID: 39501968 PMCID: PMC11804848 DOI: 10.1002/adhm.202403059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/07/2024] [Indexed: 01/05/2025]
Abstract
Cancer remains one of the most challenging health issues globally, demanding innovative therapeutic approaches for effective treatment. Nanoparticles, particularly those composed of gold, silver, and iron oxide, have emerged as promising candidates for changing cancer therapy. This comprehensive review demonstrates the landscape of nanoparticle-based oncological interventions, focusing on the remarkable advancements and therapeutic potentials of gold, silver, and iron oxide nanoparticles. Gold nanoparticles have garnered significant attention for their exceptional biocompatibility, tunable surface chemistry, and distinctive optical properties, rendering them ideal candidates for various cancer diagnostic and therapeutic strategies. Silver nanoparticles, renowned for their antimicrobial properties, exhibit remarkable potential in cancer therapy through multiple mechanisms, including apoptosis induction, angiogenesis inhibition, and drug delivery enhancement. With their magnetic properties and biocompatibility, iron oxide nanoparticles offer unique cancer diagnosis and targeted therapy opportunities. This review critically examines the recent advancements in the synthesis, functionalization, and biomedical applications of these nanoparticles in cancer therapy. Moreover, the challenges are discussed, including toxicity concerns, immunogenicity, and translational barriers, and ongoing efforts to overcome these hurdles are highlighted. Finally, insights into the future directions of nanoparticle-based cancer therapy and regulatory considerations, are provided aiming to accelerate the translation of these promising technologies from bench to bedside.
Collapse
Affiliation(s)
- Priyanka Singh
- The Novo Nordisk FoundationCenter for BiosustainabilityTechnical University of DenmarkKogens LyngbyDK‐2800Denmark
| | - Santosh Pandit
- Systems and Synthetic Biology DivisionDepartment of Life SciencesChalmers University of TechnologyGothenburgSE‐412 96Sweden
| | - Sri Renukadevi Balusamy
- Department of Food Science and BiotechnologySejong UniversityGwangjin‐GuSeoul05006Republic of Korea
| | - Mukil Madhusudanan
- The Novo Nordisk FoundationCenter for BiosustainabilityTechnical University of DenmarkKogens LyngbyDK‐2800Denmark
| | - Hina Singh
- Division of Biomedical SciencesSchool of MedicineUniversity of CaliforniaRiversideCA92521USA
| | | | - Ivan Mijakovic
- The Novo Nordisk FoundationCenter for BiosustainabilityTechnical University of DenmarkKogens LyngbyDK‐2800Denmark
- Systems and Synthetic Biology DivisionDepartment of Life SciencesChalmers University of TechnologyGothenburgSE‐412 96Sweden
| |
Collapse
|
4
|
Izadiyan Z, Misran M, Kalantari K, Webster TJ, Kia P, Basrowi NA, Rasouli E, Shameli K. Advancements in Liposomal Nanomedicines: Innovative Formulations, Therapeutic Applications, and Future Directions in Precision Medicine. Int J Nanomedicine 2025; 20:1213-1262. [PMID: 39911259 PMCID: PMC11794392 DOI: 10.2147/ijn.s488961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/01/2025] [Indexed: 02/07/2025] Open
Abstract
Liposomal nanomedicines have emerged as a pivotal approach for the treatment of various diseases, notably cancer and infectious diseases. This manuscript provides an in-depth review of recent advancements in liposomal formulations, highlighting their composition, targeted delivery strategies, and mechanisms of action. We explore the evolution of liposomal products currently in clinical trials, emphasizing their potential in addressing diverse medical challenges. The integration of immunotherapeutic agents within liposomes marks a paradigm shift, enabling the design of 'immuno-modulatory hubs' capable of orchestrating precise immune responses while facilitating theranostic applications. The recent COVID-19 pandemic has accelerated research in liposomal-based vaccines and antiviral therapies, underscoring the need for improved delivery mechanisms to overcome challenges like rapid clearance and organ toxicity. Furthermore, we discuss the potential of "smart" liposomes, which can respond to specific disease microenvironments, enhancing treatment efficacy and precision. The integration of artificial intelligence and machine learning in optimizing liposomal designs promises to revolutionize personalized medicine, paving the way for innovative strategies in disease detection and therapeutic interventions. This comprehensive review underscores the significance of ongoing research in liposomal technologies, with implications for future clinical applications and enhanced patient outcomes.
Collapse
Affiliation(s)
- Zahra Izadiyan
- Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Misni Misran
- Department of Chemistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Katayoon Kalantari
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Thomas J Webster
- Biomedical Engineering, Hebei University of Technology, Tianjin, People’s Republic of China
- School of Engineering, Saveetha University, Chennai, India
| | - Pooneh Kia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Elisa Rasouli
- Department of Electrical and Electronics Engineering, Nanyang Technological University, Nanyang, Singapore
| | - Kamyar Shameli
- School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
Soleymani S, Naghib SM, Mozafari MR. Circulating Tumor Cells in Cancer Diagnosis, Therapy, and Theranostics Applications: An Overview of Emerging Materials and Technologies. Curr Pharm Des 2025; 31:674-690. [PMID: 39473210 DOI: 10.2174/0113816128328459241009191933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/06/2024] [Indexed: 04/11/2025]
Abstract
In recent years, immunotherapy, namely immune checkpoint inhibitor therapy, has significantly transformed the approach to treating various forms of cancer. Simultaneously, the adoption of clinical oncology has been sluggish due to the exorbitant expense of therapy, the adverse effects experienced by patients, and the inconsistency in treatment response among individuals. As a reaction, individualized methods utilizing predictive biomarkers have arisen as novel strategies for categorizing patients to achieve successful immunotherapy. Recently, the identification and examination of circulating tumor cells (CTCs) have gained attention as predictive indicators for the treatment of cancer patients undergoing chemotherapy and for personalized targeted therapy. CTCs have been found to exhibit immunological checkpoints in several types of solid tumors, which has contributed to our understanding of managing cancer immunotherapy. Circulating tumor cells (CTCs) present in the bloodstream have a crucial function in the formation of metastases. Nevertheless, the practical usefulness of existing CTC tests is mostly restricted by methodological limitations.
Collapse
Affiliation(s)
- Sina Soleymani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
6
|
Liu HQ, Wu XD, Fang XW, An YS, Xia M, Luo XH, Li JZ, Wang GH, Liu T. Tumor-Targeted Magnetic Micelles for Magnetic Resonance Imaging, Drug Delivery, and Overcoming Multidrug Resistance. ACS OMEGA 2024; 9:49566-49579. [PMID: 39713686 PMCID: PMC11656234 DOI: 10.1021/acsomega.4c07132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is prevalent in Southern China. Unfortunately, current treatments encounter multidrug resistance (MDR). Overexpression of P-glycoprotein (P-gp), resulting in the efflux of chemotherapy drugs, is one of the significant mechanisms causing MDR. d-α-Tocopheryl poly(ethylene glycol) 1000 succinate (TPGS) has been demonstrated to effectively inhibit P-gp expression. The objectives of this study are to improve tumor MRI imaging, optimize docetaxel (DOC) administration, and target P-gp to overcome NPC resistance. Multifunctional micelles of TPGS (MM@DOC), loaded with magnetic nanoparticles, were synthesized for the targeted delivery of the first-line anticancer drug. MM@DOC exhibited greater toxicity and induced higher levels of apoptosis in DOC-resistant NPC cells (C666-1/DOC) compared to DOC. MM@DOC loaded with magnetic nanoparticles improved the quality of tumor MRI imaging. MM@DOC also demonstrated significant antitumor effects in nude mice with C666-1/DOC NPC. In conclusion, MM@DOC exhibited promising inhibitory effects on resistant tumors both in vitro and in vivo, optimized tumor MRI imaging, and showed great potential in drug delivery and overcoming resistance.
Collapse
Affiliation(s)
- Hui-Qin Liu
- Department
of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s
Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
- Shantou
University Medical College, Shantou, Guangdong 515063, China
| | - Xi-Dong Wu
- Department
of Drug Safety Evaluation, Jiangxi Testing
Center of Medical Instruments, Nanchang 330029, China
| | - Xue-Wen Fang
- Department
of Radiology, The Tenth Affiliated Hospital
of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Yun-Song An
- Department
of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s
Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Meng Xia
- Department
of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
| | - Xiao-Hua Luo
- Department
of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
| | - Jun-Zheng Li
- Department
of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou 510280, China
| | - Guan-Hai Wang
- School
of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Tao Liu
- Department
of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s
Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| |
Collapse
|
7
|
Tang H, Cheng X, Liang L, Chen BZ, Liu C, Wang Y. A stimulus responsive microneedle-based drug delivery system for cancer therapy. Biomater Sci 2024; 12:6274-6283. [PMID: 39501760 DOI: 10.1039/d4bm00741g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The intricate nature of the tumor microenvironment (TME) results in the inefficient delivery of anticancer drugs within tumor tissues, significantly compromising the therapeutic effect of cancer treatment. To address this issue, transdermal drug delivery microneedles (MNs) with high mechanical strength have emerged. Such MNs penetrate the skin barrier, enabling efficient drug delivery to tumor tissues. This approach enhances drug bioavailability, while also mitigating concerns such as liver and kidney toxicity associated with intravenous and oral drug administration. Notably, stimulus responsive MNs designed for drug delivery have the capacity to respond to various biological signals and pathological changes. This adaptability enables them to exert therapeutic effects within the TME, exploiting biochemical variations and tailoring treatment strategies to suit tumor characteristics. The present review surveys recent advancements in responsive MN systems. This comprehensive analysis serves as a valuable reference for the prospective application of smart MN drug delivery systems in cancer therapy.
Collapse
Affiliation(s)
- Hongyu Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xueqing Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ling Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
8
|
Albukhaty S, Sulaiman GM, Al-Karagoly H, Mohammed HA, Hassan AS, Alshammari AAA, Ahmad AM, Madhi R, Almalki FA, Khashan KS, Jabir MS, Yusuf M, Al-aqbi ZT, Sasikumar P, Khan RA. Iron oxide nanoparticles: The versatility of the magnetic and functionalized nanomaterials in targeting drugs, and gene deliveries with effectual magnetofection. J Drug Deliv Sci Technol 2024; 99:105838. [DOI: 10.1016/j.jddst.2024.105838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Karal MAS, Billah MM, Nasrin T, Moniruzzaman M. Interaction of anionic Fe 3O 4 nanoparticles with lipid vesicles: a review on deformation and poration under various conditions. RSC Adv 2024; 14:25986-26001. [PMID: 39161454 PMCID: PMC11331399 DOI: 10.1039/d4ra05686h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024] Open
Abstract
This review focuses on the deformation and poration of lipid vesicles caused by the interaction of anionic magnetite nanoparticles (MNPs). Effects of various factors, such as surface charge density, salt and sugar concentrations in buffer, membrane cholesterol content, polymer-grafted phospholipid, and membrane potential have been discussed for the interaction of MNPs with lipid vesicles. To quantify these effects on the vesicles, compactness, fraction of deformation and poration, dynamics of membrane permeation, and kinetics of membrane permeation have been critically evaluated. The review explores the potential advancements as well as future directions of the research field in the biomedical application of MNPs.
Collapse
Affiliation(s)
- Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka 1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Md Masum Billah
- Department of Physics, Jashore University of Science and Technology Jashore 7408 Bangladesh +880-2-42142012 +880-242142046
| | - Tawfika Nasrin
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka 1000 Bangladesh +880-2-58613046 +880-2-9665613
| | - Md Moniruzzaman
- Department of Physics, Bangladesh University of Engineering and Technology Dhaka 1000 Bangladesh +880-2-58613046 +880-2-9665613
| |
Collapse
|
10
|
Khan H, Shahab U, Alshammari A, Alyahyawi AR, Akasha R, Alharazi T, Ahmad R, Khanam A, Habib S, Kaur K, Ahmad S, Moinuddin. Nano-therapeutics: The upcoming nanomedicine to treat cancer. IUBMB Life 2024; 76:468-484. [PMID: 38440959 DOI: 10.1002/iub.2814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024]
Abstract
Nanotechnology is considered a successful approach for cancer diagnosis and treatment. Preferentially, cancer cell recognition and drug targeting via nano-delivery system include the penetration of anticancer agents into the cell membrane to damage the cancer cell by protein modification, DNA oxidation, or mitochondrial dysfunction. The past research on nano-delivery systems and their target has proven the beneficial achievement in a malignant tumor. Modern perceptions using inventive nanomaterials for cancer management have been offered by a multifunctional platform based on various nano-carriers with the probability of imaging and cancer therapy simultaneously. Emerging nano-delivery systems in cancer therapy still lack knowledge of the biological functions behind the interaction between nanoparticles and cancer cells. Since the potential of engineered nanoparticles addresses the various challenges, limiting the success of cancer therapy subsequently, it is a must to review the molecular targeting of a nano-delivery system to enhance the therapeutic efficacy of cancer. This review focuses on using a nano-delivery system, an imaging system, and encapsulated nanoparticles for cancer therapy.
Collapse
Affiliation(s)
- Hamda Khan
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, India
| | - Ahmed Alshammari
- Department of Internal Medicine, College of Medicine, University of Hail, Ha'il, Saudi Arabia
| | - Amjad R Alyahyawi
- Department of Diagnostic Radiology, College of Applied Medical Science, University of Hail, Ha'il, Saudi Arabia
- Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford, UK
| | - Rihab Akasha
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Ha'il, Saudi Arabia
| | - Talal Alharazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Ha'il, Saudi Arabia
| | - Rizwan Ahmad
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Afreen Khanam
- Department of Biotechnology & Life Science, Institute of Biomedical Education & Research, Mangalayatan University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Kirtanjot Kaur
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Ha'il, Saudi Arabia
| | - Moinuddin
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
11
|
Xie L, Chen Y. The protagonist of contemporary and emerging nanotechnology-based theranostics and therapeutic approaches in reshaping intensive care unit. Saudi Med J 2024; 45:759-770. [PMID: 39074899 PMCID: PMC11288488 DOI: 10.15537/smj.2024.45.8.20240069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
To maintain a clean and hygienic environment in the intensive care unit (ICU) is crucial for ensuring patient safety, preventing infections, and reducing healthcare-associated complications. With the increasing prevalence of infections and the emergence of viral and bacterial resistance to standard antiseptics, there is a pressing need for innovative antiseptic solutions. Nanotechnology is increasingly being employed in medicine, particularly focusing on mitigating the activities of various pathogens, including those associated with hospital-acquired infections. This paper explores the current impact of nanotechnology, with a particular focus on bacterial infections and SARS-CoV-2, which significantly strain healthcare systems, and then discusses how nanotechnology can enhance existing treatment methodologies. We highlight the effectiveness of the nanotechnology-based bactericide Bio-Kil in reducing bacterial counts in an ICU. The aim is to educate healthcare professionals on the existing role and prospects of nanotechnology in addressing prevalent infectious diseases.
Collapse
Affiliation(s)
- Ling Xie
- From the Department of Critical Medicine, First People’s Hospital of Linping District, Hangzhou, China.
| | - Yun Chen
- From the Department of Critical Medicine, First People’s Hospital of Linping District, Hangzhou, China.
| |
Collapse
|
12
|
Liu S, Sun J. Magnetic nanomaterials mediate precise magnetic therapy. Biomed Phys Eng Express 2024; 10:052001. [PMID: 38981447 DOI: 10.1088/2057-1976/ad60cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Magnetic nanoparticle (MNP)-mediated precision magnet therapy plays a crucial role in treating various diseases. This therapeutic strategy compensates for the limitations of low spatial resolution and low focusing of magnetic stimulation, and realizes the goal of wireless teletherapy with precise targeting of focal areas. This paper summarizes the preparation methods of magnetic nanomaterials, the properties of magnetic nanoparticles, the biological effects, and the measurement methods for detecting magnetism; discusses the research progress of precision magnetotherapy in the treatment of psychiatric disorders, neurological injuries, metabolic disorders, and bone-related disorders, and looks forward to the future development trend of precision magnet therapy.
Collapse
Affiliation(s)
- Sha Liu
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jianfei Sun
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| |
Collapse
|
13
|
Upadhaya PG, Nabar SJ. Direct radiolabeling of methotrexate and methotrexate micelles with Tc-99m using QbD approach. Appl Radiat Isot 2024; 209:111313. [PMID: 38603864 DOI: 10.1016/j.apradiso.2024.111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
The aim of the work presented in this manuscript was to radiolabel methotrexate and prepare radiolabeled methotrexate micelles, an antifolate drug with Tc-99m using QbD approach. The radiolabeling was executed using the experimental design and the radiolabeled drug was further encapsulated in micelles. The authors are of the view that the radiolabeled MTX could be used to target the folate receptor overexpressing cancers such as the kidney, colorectal, breast, brain etc thereby opening newer possibilities to the theranostic applications of the formed conjugate.
Collapse
Affiliation(s)
- Prashant G Upadhaya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Swapna J Nabar
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Annex Building, Tata Memorial Hospital Campus, JerbaiWadia Road, Dadar East, Mumbai, 400012, India.
| |
Collapse
|
14
|
Jang YO, Roh Y, Shin W, Jo S, Koo B, Liu H, Kim MG, Lee HJ, Qiao Z, Lee EY, Lee M, Lee J, Lee EJ, Shin Y. Transferrin-conjugated magnetic nanoparticles for the isolation of brain-derived blood exosomal MicroRNAs: A novel approach for Parkinson's disease diagnosis. Anal Chim Acta 2024; 1306:342623. [PMID: 38692796 DOI: 10.1016/j.aca.2024.342623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Brain-derived exosomes circulate in the bloodstream and other bodily fluids, serving as potential indicators of neurological disease progression. These exosomes present a promising avenue for the early and precise diagnosis of neurodegenerative conditions. Notably, miRNAs found in plasma extracellular vesicles (EVs) offer distinct diagnostic benefits due to their stability, abundance, and resistance to breakdown. RESULTS In this study, we introduce a method using transferrin conjugated magnetic nanoparticles (TMNs) to isolate these exosomes from the plasma of patients with neurological disorders. This TMNs technique is both quick (<35 min) and cost-effective, requiring no high-priced ingredients or elaborate equipment for EV extraction. Our method successfully isolated EVs from 33 human plasma samples, including those from patients with Parkinson's disease (PD), Multiple Sclerosis (MS), and Dementia. Using quantitative polymerase chain reaction (PCR) analysis, we evaluated the potential of 8 exosomal miRNA profiles as biomarker candidates. Six exosomal miRNA biomarkers (miR-195-5p, miR-495-3p, miR-23b-3P, miR-30c-2-3p, miR-323a-3p, and miR-27a-3p) were consistently linked with all stages of PD. SIGNIFICANCE The TMNs method provides a practical, cost-efficient way to isolate EVs from biological samples, paving the way for non-invasive neurological diagnoses. Furthermore, the identified miRNA biomarkers in these exosomes may emerge as innovative tools for precise diagnosis in neurological disorders including PD.
Collapse
Affiliation(s)
- Yoon Ok Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeonjeong Roh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Wangyong Shin
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Sungyang Jo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Bonhan Koo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Huifang Liu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Myoung Gyu Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyo Joo Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Zhen Qiao
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eun Yeong Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minju Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
15
|
Thomas RG, Kim S, Tran TAT, Kim YH, Nagareddy R, Jung TY, Kim SK, Jeong YY. Magnet-Guided Temozolomide and Ferucarbotran Loaded Nanoparticles to Enhance Therapeutic Efficacy in Glioma Model. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:939. [PMID: 38869565 PMCID: PMC11173836 DOI: 10.3390/nano14110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
Background. The aim of the study was to synthesize liposomal nanoparticles loaded with temozolomide and ferucarbotran (LTF) and to evaluate the theranostic effect of LTF in the glioma model. Methods. We synthesized an LTF that could pass through the Blood Brain Barrier (BBB) and localize in brain tumor tissue with the help of magnet guidance. We examined the chemical characteristics. Cellular uptake and cytotoxicity studies were conducted in vitro. A biodistribution and tumor inhibition study was conduted using an in vivo glioma model. Results. The particle size and surface charge of LTF show 108 nm and -38 mV, respectively. Additionally, the presence of ferucarbotran significantly increased the contrast agent effect of glioma compared to the control group in MR imaging. Magnet-guided LTF significantly reduced the tumor size compared to control and other groups. Furthermore, compared to the control group, our results demonstrate a significant inhibition in brain tumor size and an increase in lifespan. Conclusions. These findings suggest that the LTF with magnetic guidance represents a novel approach to address current obstacles, such as BBB penetration of nanoparticles and drug resistance. Magnet-guided LTF is able to enhance therapeutic efficacy in mouse brain glioma.
Collapse
Affiliation(s)
- Reju George Thomas
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea; (R.G.T.)
| | - Subin Kim
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 501190, Republic of Korea;
| | - Thi-Anh-Thuy Tran
- Biomedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea (T.-Y.J.)
| | - Young Hee Kim
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea (T.-Y.J.)
| | - Raveena Nagareddy
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea; (R.G.T.)
| | - Tae-Young Jung
- Brain Tumor Research Laboratory, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea (T.-Y.J.)
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Seul Kee Kim
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea; (R.G.T.)
- Department of Radiology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea; (R.G.T.)
- Department of Radiology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| |
Collapse
|
16
|
Mi Y, Zhang MN, Ma C, Zheng W, Teng F. Feature Matching of Microsecond-Pulsed Magnetic Fields Combined with Fe 3O 4 Particles for Killing A375 Melanoma Cells. Biomolecules 2024; 14:521. [PMID: 38785928 PMCID: PMC11117552 DOI: 10.3390/biom14050521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The combination of magnetic fields and magnetic nanoparticles (MNPs) to kill cancer cells by magneto-mechanical force represents a novel therapy, offering advantages such as non-invasiveness, among others. Pulsed magnetic fields (PMFs) hold promise for application in this therapy due to advantages such as easily adjustable parameters; however, they suffer from the drawback of narrow pulse width. In order to fully exploit the potential of PMFs and MNPs in this therapy, while maximizing therapeutic efficacy within the constraints of the narrow pulse width, a feature-matching theory is proposed, encompassing the matching of three aspects: (1) MNP volume and critical volume of Brownian relaxation, (2) relaxation time and pulse width, and (3) MNP shape and the intermittence of PMF. In the theory, a microsecond-PMF generator was developed, and four kinds of MNPs were selected for in vitro cell experiments. The results demonstrate that the killing rate of the experimental group meeting the requirements of the theory is at least 18% higher than the control group. This validates the accuracy of our theory and provides valuable guidance for the further application of PMFs in this therapy.
Collapse
Affiliation(s)
- Yan Mi
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China; (M.-N.Z.); (C.M.); (W.Z.)
| | - Meng-Nan Zhang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China; (M.-N.Z.); (C.M.); (W.Z.)
| | - Chi Ma
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China; (M.-N.Z.); (C.M.); (W.Z.)
| | - Wei Zheng
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China; (M.-N.Z.); (C.M.); (W.Z.)
| | - Fei Teng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China;
| |
Collapse
|
17
|
Orel VB, Kurapov YA, Lytvyn SY, Orel VE, Galkin OY, Dasyukevich OY, Rykhalskyi OY, Diedkov AG, Ostafiichuk VV, Lyalkin SA, Burlaka AP, Virko SV, Skoryk MA, Zagorodnii VV, Stelmakh YA, Didikin GG, Oranska OI, Calcagnile L, Manno DE, Rinaldi R, Nedostup YV. Characterization and antitumor effect of doxorubicin-loaded Fe 3O 4-Au nanocomposite synthesized by electron beam evaporation for magnetic nanotheranostics. RSC Adv 2024; 14:14126-14138. [PMID: 38686287 PMCID: PMC11056945 DOI: 10.1039/d4ra01777c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Magnetic nanocomposites (MNC) are promising theranostic platforms with tunable physicochemical properties allowing for remote drug delivery and multimodal imaging. Here, we developed doxorubicin-loaded Fe3O4-Au MNC (DOX-MNC) using electron beam physical vapor deposition (EB-PVD) in combination with magneto-mechanochemical synthesis to assess their antitumor effect on Walker-256 carcinosarcoma under the influence of a constant magnetic (CMF) and electromagnetic field (EMF) by comparing tumor growth kinetics, magnetic resonance imaging (MRI) scans and electron spin resonance (ESR) spectra. Transmission (TEM) and scanning electron microscopy (SEM) confirmed the formation of spherical magnetite nanoparticles with a discontinuous gold coating that did not significantly affect the ferromagnetic properties of MNC, as measured by vibrating-sample magnetometry (VSM). Tumor-bearing animals were divided into the control (no treatment), conventional doxorubicin (DOX), DOX-MNC and DOX-MNC + CMF + EMF groups. DOX-MNC + CMF + EMF resulted in 14% and 16% inhibition of tumor growth kinetics as compared with DOX and DOX-MNC, respectively. MRI visualization showed more substantial tumor necrotic changes after the combined treatment. Quantitative analysis of T2-weighted (T2W) images revealed the lowest value of skewness and a significant increase in tumor intensity in response to DOX-MNC + CMF + EMF as compared with the control (1.4 times), DOX (1.6 times) and DOX-MNC (1.8 times) groups. In addition, the lowest level of nitric oxide determined by ESR was found in DOX-MNC + CMF + EMF tumors, which was close to that of the muscle tissue in the contralateral limb. We propose that the reason for the relationship between the observed changes in MRI and ESR is the hyperfine interaction of nuclear and electron spins in mitochondria, as a source of free radical production. Therefore, these results point to the use of EB-PVD and magneto-mechanochemically synthesized Fe3O4-Au MNC loaded with DOX as a potential candidate for cancer magnetic nanotheranostic applications.
Collapse
Affiliation(s)
- Valerii B Orel
- National Cancer Institute Kyiv 03022 Ukraine
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Kyiv 03056 Ukraine
| | | | | | - Valerii E Orel
- National Cancer Institute Kyiv 03022 Ukraine
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Kyiv 03056 Ukraine
| | - Olexander Yu Galkin
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Kyiv 03056 Ukraine
| | | | | | | | | | | | - Anatoliy P Burlaka
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology Kyiv 03022 Ukraine
| | - Sergii V Virko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology Kyiv 03022 Ukraine
- V.E. Lashkaryov Institute of Semiconductor Physics Kyiv 03028 Ukraine
| | - Mykola A Skoryk
- G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine Kyiv 03142 Ukraine
| | - Viacheslav V Zagorodnii
- National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Kyiv 03056 Ukraine
- G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine Kyiv 03142 Ukraine
| | | | | | - Olena I Oranska
- Chuiko Institute of Surface Chemistry of the N.A.S. of Ukraine Kyiv 03164 Ukraine
| | | | | | | | - Yana V Nedostup
- Taras Shevchenko National University of Kyiv Kyiv 03680 Ukraine
| |
Collapse
|
18
|
Sikorski J, Matczuk M, Stępień M, Ogórek K, Ruzik L, Jarosz M. Fe 3O 4SPIONs in cancer theranostics-structure versus interactions with proteins and methods of their investigation. NANOTECHNOLOGY 2024; 35:212001. [PMID: 38387086 DOI: 10.1088/1361-6528/ad2c54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
As the second leading cause of death worldwide, neoplastic diseases are one of the biggest challenges for public health care. Contemporary medicine seeks potential tools for fighting cancer within nanomedicine, as various nanomaterials can be used for both diagnostics and therapies. Among those of particular interest are superparamagnetic iron oxide nanoparticles (SPIONs), due to their unique magnetic properties,. However, while the number of new SPIONs, suitably modified and functionalized, designed for medical purposes, has been gradually increasing, it has not yet been translated into the number of approved clinical solutions. The presented review covers various issues related to SPIONs of potential theranostic applications. It refers to structural considerations (the nanoparticle core, most often used modifications and functionalizations) and the ways of characterizing newly designed nanoparticles. The discussion about the phenomenon of protein corona formation leads to the conclusion that the scarcity of proper tools to investigate the interactions between SPIONs and human serum proteins is the reason for difficulties in introducing them into clinical applications. The review emphasizes the importance of understanding the mechanism behind the protein corona formation, as it has a crucial impact on the effectiveness of designed SPIONs in the physiological environment.
Collapse
Affiliation(s)
- Jacek Sikorski
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Marta Stępień
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Karolina Ogórek
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Lena Ruzik
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Maciej Jarosz
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| |
Collapse
|
19
|
Inam H, Sprio S, Tavoni M, Abbas Z, Pupilli F, Tampieri A. Magnetic Hydroxyapatite Nanoparticles in Regenerative Medicine and Nanomedicine. Int J Mol Sci 2024; 25:2809. [PMID: 38474056 DOI: 10.3390/ijms25052809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
This review focuses on the latest advancements in magnetic hydroxyapatite (mHA) nanoparticles and their potential applications in nanomedicine and regenerative medicine. mHA nanoparticles have gained significant interest over the last few years for their great potential, offering advanced multi-therapeutic strategies because of their biocompatibility, bioactivity, and unique physicochemical features, enabling on-demand activation and control. The most relevant synthetic methods to obtain magnetic apatite-based materials, either in the form of iron-doped HA nanoparticles showing intrinsic magnetic properties or composite/hybrid compounds between HA and superparamagnetic metal oxide nanoparticles, are described as highlighting structure-property correlations. Following this, this review discusses the application of various magnetic hydroxyapatite nanomaterials in bone regeneration and nanomedicine. Finally, novel perspectives are investigated with respect to the ability of mHA nanoparticles to improve nanocarriers with homogeneous structures to promote multifunctional biological applications, such as cell stimulation and instruction, antimicrobial activity, and drug release with on-demand triggering.
Collapse
Affiliation(s)
- Hina Inam
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Material Science and Technology, University of Parma, 43121 Parma, Italy
| | - Simone Sprio
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
| | - Marta Tavoni
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Material Science and Technology, University of Parma, 43121 Parma, Italy
| | - Zahid Abbas
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Federico Pupilli
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
- Department of Chemical Sciences, University of Padova, 35122 Padova, Italy
| | - Anna Tampieri
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council of Italy (CNR), 48018 Faenza, Italy
| |
Collapse
|
20
|
Jain B, Verma DK, Rawat RN, Berdimurodov E. Nanomaterials in Targeting Cancer Cells with Nanotherapeutics: Transitioning Towards Responsive Systems. Curr Pharm Des 2024; 30:3018-3037. [PMID: 39143881 DOI: 10.2174/0113816128317407240724065912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 08/16/2024]
Abstract
On a global scale, cancer is a difficult and devastating illness. Several problems with current chemotherapies include cytotoxicity, lack of selectivity, stem-like cell growth, and multi-drug resistance. The most appropriate nanomaterials for cancer treatment are those with characteristics, such as cytotoxicity, restricted specificity, and drug capacity and bioavailability; these materials are nanosized (1-100 nm). Nanodrugs are rarely licenced for therapeutic use despite growing research. These compounds need nanocarrier-targeted drug delivery experiments to improve their translation. This review describes new nanomaterials reported in the literature, impediments to their clinical studies, and their beneficial cancer therapeutic use. It also suggests ways to use nanomaterials in cancer therapy more efficiently and describes the intrinsic challenges of cancer treatment and the different nanocarriers and chemicals that can be utilised for specified tumour targeting. Furthermore, it provides a concise overview of cancer theranostics methods, with a focus on those that make use of nanomaterials. Although nanotechnology offers a great source for future advancements in cancer detection and therapy, there is an emerging need for more studies to address the present barriers to clinical translation.
Collapse
Affiliation(s)
- Bhawana Jain
- Siddhachalam Laboratory, Institute of Life Science Research, Raipur, Chhattisgarh, 493221, India
| | - Dakeshwar Kumar Verma
- Department of Medicinal Chemistry, Govt. Digvijay P.G. Autonomous College, Rajnandgaon, 491441, India
| | - Reena Negi Rawat
- Department of Chemistry, Echelon Institute of Technology, Kabulpur, Kheri-Manjhawali Road, Naharpar, Faridabad, 121101, India
| | - Elyor Berdimurodov
- Department of Chemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| |
Collapse
|
21
|
Calatayud DG, Lledos M, Casarsa F, Pascu SI. Functional Diversity in Radiolabeled Nanoceramics and Related Biomaterials for the Multimodal Imaging of Tumors. ACS BIO & MED CHEM AU 2023; 3:389-417. [PMID: 37876497 PMCID: PMC10591303 DOI: 10.1021/acsbiomedchemau.3c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 10/26/2023]
Abstract
Nanotechnology advances have the potential to assist toward the earlier detection of diseases, giving increased accuracy for diagnosis and helping to personalize treatments, especially in the case of noncommunicative diseases (NCDs) such as cancer. The main advantage of nanoparticles, the scaffolds underpinning nanomedicine, is their potential to present multifunctionality: synthetic nanoplatforms for nanomedicines can be tailored to support a range of biomedical imaging modalities of relevance for clinical practice, such as, for example, optical imaging, computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). A single nanoparticle has the potential to incorporate myriads of contrast agent units or imaging tracers, encapsulate, and/or be conjugated to different combinations of imaging tags, thus providing the means for multimodality diagnostic methods. These arrangements have been shown to provide significant improvements to the signal-to-noise ratios that may be obtained by molecular imaging techniques, for example, in PET diagnostic imaging with nanomaterials versus the cases when molecular species are involved as radiotracers. We surveyed some of the main discoveries in the simultaneous incorporation of nanoparticulate materials and imaging agents within highly kinetically stable radio-nanomaterials as potential tracers with (pre)clinical potential. Diversity in function and new developments toward synthesis, radiolabeling, and microscopy investigations are explored, and preclinical applications in molecular imaging are highlighted. The emphasis is on the biocompatible materials at the forefront of the main preclinical developments, e.g., nanoceramics and liposome-based constructs, which have driven the evolution of diagnostic radio-nanomedicines over the past decade.
Collapse
Affiliation(s)
- David G. Calatayud
- Department
of Inorganic Chemistry, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Department
of Electroceramics, Instituto de Cerámica
y Vidrio, Madrid 28049, Spain
| | - Marina Lledos
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Federico Casarsa
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Sofia I. Pascu
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- Centre
of Therapeutic Innovations, University of
Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
22
|
Fernandes DA. Liposomes for Cancer Theranostics. Pharmaceutics 2023; 15:2448. [PMID: 37896208 PMCID: PMC10610083 DOI: 10.3390/pharmaceutics15102448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is one of the most well-studied diseases and there have been significant advancements over the last few decades in understanding its molecular and cellular mechanisms. Although the current treatments (e.g., chemotherapy, radiotherapy, gene therapy and immunotherapy) have provided complete cancer remission for many patients, cancer still remains one of the most common causes of death in the world. The main reasons for the poor response rates for different cancers include the lack of drug specificity, drug resistance and toxic side effects (i.e., in healthy tissues). For addressing the limitations of conventional cancer treatments, nanotechnology has shown to be an important field for constructing different nanoparticles for destroying cancer cells. Due to their size (i.e., less than 1 μm), nanoparticles can deliver significant amounts of cancer drugs to tumors and are able to carry moieties (e.g., folate, peptides) for targeting specific types of cancer cells (i.e., through receptor-mediated endocytosis). Liposomes, composed of phospholipids and an interior aqueous core, can be used as specialized delivery vehicles as they can load different types of cancer therapy agents (e.g., drugs, photosensitizers, genetic material). In addition, the ability to load imaging agents (e.g., fluorophores, radioisotopes, MRI contrast media) enable these nanoparticles to be used for monitoring the progress of treatment. This review examines a wide variety of different liposomes for cancer theranostics, with the different available treatments (e.g., photothermal, photodynamic) and imaging modalities discussed for different cancers.
Collapse
|
23
|
Verma J, Warsame C, Seenivasagam RK, Katiyar NK, Aleem E, Goel S. Nanoparticle-mediated cancer cell therapy: basic science to clinical applications. Cancer Metastasis Rev 2023; 42:601-627. [PMID: 36826760 PMCID: PMC10584728 DOI: 10.1007/s10555-023-10086-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023]
Abstract
Every sixth person in the world dies due to cancer, making it the second leading severe cause of death after cardiovascular diseases. According to WHO, cancer claimed nearly 10 million deaths in 2020. The most common types of cancers reported have been breast (lung, colon and rectum, prostate cases), skin (non-melanoma) and stomach. In addition to surgery, the most widely used traditional types of anti-cancer treatment are radio- and chemotherapy. However, these do not distinguish between normal and malignant cells. Additional treatment methods have evolved over time for early detection and targeted therapy of cancer. However, each method has its limitations and the associated treatment costs are quite high with adverse effects on the quality of life of patients. Use of individual atoms or a cluster of atoms (nanoparticles) can cause a paradigm shift by virtue of providing point of sight sensing and diagnosis of cancer. Nanoparticles (1-100 nm in size) are 1000 times smaller in size than the human cell and endowed with safer relocation capability to attack mechanically and chemically at a precise location which is one avenue that can be used to destroy cancer cells precisely. This review summarises the extant understanding and the work done in this area to pave the way for physicians to accelerate the use of hybrid mode of treatments by leveraging the use of various nanoparticles.
Collapse
Affiliation(s)
- Jaya Verma
- School of Engineering, London South Bank University, London, SE10AA UK
| | - Caaisha Warsame
- School of Engineering, London South Bank University, London, SE10AA UK
| | | | | | - Eiman Aleem
- School of Applied Sciences, Division of Human Sciences, Cancer Biology and Therapy Research Group, London South Bank University, London, SE10AA UK
| | - Saurav Goel
- School of Engineering, London South Bank University, London, SE10AA UK
- Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun, 248007 India
| |
Collapse
|
24
|
Ashique S, Garg A, Hussain A, Farid A, Kumar P, Taghizadeh‐Hesary F. Nanodelivery systems: An efficient and target-specific approach for drug-resistant cancers. Cancer Med 2023; 12:18797-18825. [PMID: 37668041 PMCID: PMC10557914 DOI: 10.1002/cam4.6502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Cancer treatment is still a global health challenge. Nowadays, chemotherapy is widely applied for treating cancer and reducing its burden. However, its application might be in accordance with various adverse effects by exposing the healthy tissues and multidrug resistance (MDR), leading to disease relapse or metastasis. In addition, due to tumor heterogeneity and the varied pharmacokinetic features of prescribed drugs, combination therapy has only shown modestly improved results in MDR malignancies. Nanotechnology has been explored as a potential tool for cancer treatment, due to the efficiency of nanoparticles to function as a vehicle for drug delivery. METHODS With this viewpoint, functionalized nanosystems have been investigated as a potential strategy to overcome drug resistance. RESULTS This approach aims to improve the efficacy of anticancer medicines while decreasing their associated side effects through a range of mechanisms, such as bypassing drug efflux, controlling drug release, and disrupting metabolism. This review discusses the MDR mechanisms contributing to therapeutic failure, the most cutting-edge approaches used in nanomedicine to create and assess nanocarriers, and designed nanomedicine to counteract MDR with emphasis on recent developments, their potential, and limitations. CONCLUSIONS Studies have shown that nanoparticle-mediated drug delivery confers distinct benefits over traditional pharmaceuticals, including improved biocompatibility, stability, permeability, retention effect, and targeting capabilities.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of PharmaceuticsPandaveswar School of PharmacyPandaveswarIndia
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, PharmacyJabalpurIndia
| | - Afzal Hussain
- Department of Pharmaceutics, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Arshad Farid
- Gomal Center of Biochemistry and BiotechnologyGomal UniversityDera Ismail KhanPakistan
| | - Prashant Kumar
- Teerthanker Mahaveer College of PharmacyTeerthanker Mahaveer UniversityMoradabadIndia
- Department of Pharmaceutics, Amity Institute of PharmacyAmity University Madhya Pradesh (AUMP)GwaliorIndia
| | - Farzad Taghizadeh‐Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of MedicineIran University of Medical SciencesTehranIran
- Clinical Oncology DepartmentIran University of Medical SciencesTehranIran
| |
Collapse
|
25
|
Rahman M. Magnetic Resonance Imaging and Iron-oxide Nanoparticles in the era of Personalized Medicine. Nanotheranostics 2023; 7:424-449. [PMID: 37650011 PMCID: PMC10464520 DOI: 10.7150/ntno.86467] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023] Open
Abstract
Medical imaging is an important factor for diagnosis. It can be used to diagnose patients, differentiate disease stages, and monitor treatment regimens. Although different imaging technologies are available, MRI is sensitive over other imaging modalities as it is capable of deep tissue penetration allowing to image the anatomical, structural, and molecular level of diseased organs. Thus, it can be used as screening tool for disease staging. One of the important components of imaging is contrast agents which are used to increase the sensitivity of MRI technology. While different types of contrast agents are available, iron-oxide based nanoparticles (IONPS) are widely used as these are easy to formulate, functionalize, biocompatible and cost effective. In addition to its use as contrast agents, these have been used as drug carriers for the treatment of different types of diseases ranging from cancer, cardiovascular diseases, neurological disorders, autoimmune diseases, and infectious diseases. For the last two decades, there has been advancement in nanotheranostics, where IONPs are formulated to carry drug and be used as contrast agents in one system so that these can be used for image-guided therapy and monitor real-life treatment response in diseased tissue. This technology can be used to stratify patients into responders and non-responders and reduce adverse drug toxicity and lead to a tailored treatment. However, success of nanotheranostics depends on several factor, including identification of disease associated biomarkers that can be targeted on IONPs during formulation. While many challenges exist for the clinical translation of nanotheranostics, it still has the potential to be implemented in personalized treatment strategy. In this review article, we discussed the use of MRI technology and IONPs in relation to their application in disease diagnosis and nanotheranostics application in personalized medicine.
Collapse
Affiliation(s)
- Mahbuba Rahman
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
26
|
Miola M, Multari C, Kostevšek N, Gerbaldo R, Laviano F, Verné E. Tannic-acid-mediated synthesis and characterization of magnetite-gold nanoplatforms for photothermal therapy. Nanomedicine (Lond) 2023; 18:1331-1342. [PMID: 37800456 DOI: 10.2217/nnm-2023-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Aim: The design of new hybrid nanoplatforms (HNPs) through the innovative and eco-friendly use of tannic acid (TA) for the synthesis and stabilization of the nanoplatforms. Materials & methods: The size, morphology, composition and magnetic and plasmonic properties of HNPs were investigated together with their ability to generate heat under laser irradiation and the hemotoxicity to explore their potential use for biomedical applications. Results & conclusion: The use of TA allowed the synthesis of the HNPs by adopting a simple and green method. The HNPs preserved the peculiar properties of both magnetic and plasmonic nanoparticles and did not show any hemotoxic effect.
Collapse
Affiliation(s)
- Marta Miola
- Department of Applied Science & Technology, Politecnico di Torino, Torino, 10129, Italy
| | - Cristina Multari
- Department of Applied Science & Technology, Politecnico di Torino, Torino, 10129, Italy
| | - Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
| | - Roberto Gerbaldo
- Department of Applied Science & Technology, Politecnico di Torino, Torino, 10129, Italy
| | - Francesco Laviano
- Department of Applied Science & Technology, Politecnico di Torino, Torino, 10129, Italy
| | - Enrica Verné
- Department of Applied Science & Technology, Politecnico di Torino, Torino, 10129, Italy
| |
Collapse
|
27
|
Hu F, Wang D, Ma X, Hu T, Yue Y, Tang W, Wu P, Tong T, Peng W. Concurrent Dual-Contrast Enhancement Using Fe 3O 4 Nanoparticles to Achieve a CEST Signal Controllability. ACS OMEGA 2023; 8:24153-24164. [PMID: 37457473 PMCID: PMC10339402 DOI: 10.1021/acsomega.2c07000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/13/2023] [Indexed: 07/18/2023]
Abstract
Traditional T2 magnetic resonance imaging (MRI) contrast agents have defects inherent to negative contrast agents, while chemical exchange saturation transfer (CEST) contrast agents can quantify substances at trace concentrations. After reaching a certain concentration, iron-based contrast agents can "shut down" CEST signals. The application range of T2 contrast agents can be widened through a combination of CEST and T2 contrast agents, which has promising application prospects. The purpose of this study is to develop a T2 MRI negative contrast agent with a controllable size and to explore the feasibility of dual contrast enhancement by combining T2 with CEST contrast agents. The study was carried out in vitro with HCT-116 human colon cancer cells. A GE SIGNA Pioneer 3.0 T medical MRI scanner was used to acquire CEST images with different saturation radio-frequency powers (1.25/2.5/3.75/5 μT) by 2D spin echo-echo planar imaging (SE-EPI). Magnetic resonance image compilation (MAGiC) was acquired by a multidynamic multiecho 2D fast spin-echo sequence. The feasibility of this dual-contrast enhancement method was assessed by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, dynamic light scattering, ζ potential analysis, inductively coupled plasma, X-ray photoelectron spectroscopy, X-ray powder diffraction, vibrating-sample magnetometry, MRI, and a Cell Counting Kit-8 assay. The association between the transverse relaxation rate r2 and the pH of the iron-based contrast agents was analyzed by linear fitting, and the linear relationship between the CEST effect in different B1 fields and pH was analyzed by the ratio method. Fe3O4 nanoparticles (NPs) with a mean particle size of 82.6 ± 22.4 nm were prepared by a classical process, and their surface was successfully modified with -OH active functional groups. They exhibited self-aggregation in an acidic environment. The CEST effect was enhanced as the B1 field increased, and an in vitro pH map was successfully plotted using the ratio method. Fe3O4 NPs could stably serve as reference agents at different pH values. At a concentration of 30 μg/mL, Fe3O4 NPs "shut down" the CEST signals, but when the concentration of Fe3O4 NPs was less than 10 μg/mL, the two contrast agents coexisted. The prepared Fe3O4 NPs had almost no toxicity, and when their concentration rose to 200 μg/mL at pH 6.5 or 7.4, they did not reach the half-maximum inhibitory concentration (IC50). Fe3O4 magnetic NPs with a controllable size and no toxicity were successfully synthesized. By combining Fe3O4 NPs with a CEST contrast agent, the two contrast agents could be imaged simultaneously; at higher concentrations, the iron-based contrast agent "shut down" the CEST signal. An in vitro pH map was successfully plotted by the ratio method. CEST signal inhibition can be used to realize the pH mapping of solid tumors and the identification of tumor active components, thus providing a new imaging method for tumor efficacy evaluation.
Collapse
Affiliation(s)
- Feixiang Hu
- Department
of Radiology, Fudan University Shanghai Cancer Center, Department
of Oncology, Shanghai Medical College, Fudan
University, Shanghai, People’s Republic of China 200032
| | - Dan Wang
- Department
of Ultrasound, Shanghai Municipal Hospital of Traditional Chinese
Medicine, Shanghai University of Traditional
Chinese Medicine, Shanghai, People’s Republic of China. 200071
| | - Xiaowen Ma
- Department
of Radiology, Fudan University Shanghai Cancer Center, Department
of Oncology, Shanghai Medical College, Fudan
University, Shanghai, People’s Republic of China 200032
| | - Tingdan Hu
- Department
of Radiology, Fudan University Shanghai Cancer Center, Department
of Oncology, Shanghai Medical College, Fudan
University, Shanghai, People’s Republic of China 200032
| | - Yali Yue
- Department
of Radiology, Children’s Hospital
of Fudan University, Shanghai, People’s Republic of China 200000
| | - Wei Tang
- Department
of Radiology, Fudan University Shanghai Cancer Center, Department
of Oncology, Shanghai Medical College, Fudan
University, Shanghai, People’s Republic of China 200032
| | - PuYe Wu
- GE
Healthcare, Beijing, People’s Republic of China 100176
| | - Tong Tong
- Department
of Radiology, Fudan University Shanghai Cancer Center, Department
of Oncology, Shanghai Medical College, Fudan
University, Shanghai, People’s Republic of China 200032
| | - Weijun Peng
- Department
of Radiology, Fudan University Shanghai Cancer Center, Department
of Oncology, Shanghai Medical College, Fudan
University, Shanghai, People’s Republic of China 200032
| |
Collapse
|
28
|
Montazersaheb P, Pishgahzadeh E, Jahani VB, Farahzadi R, Montazersaheb S. Magnetic nanoparticle-based hyperthermia: A prospect in cancer stem cell tracking and therapy. Life Sci 2023; 323:121714. [PMID: 37088411 DOI: 10.1016/j.lfs.2023.121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Tumor heterogeneity is a major problem in cancer treatment. Cancer stem cells (CSCs) are a subpopulation of tumor masses that produce proliferating and quiescent cells. Under stress-related conditions, quiescent cells are capable of repopulating tumor masses. Consequently, many attempts have been made to identify, isolate, and eradicate CSCs from various tumors. Research has found that quiescent CSCs are less susceptible to conventional therapy than bulk cancer cells. This could be due to reduced cell cycling and increased DNA repair capacity of these cells. Indeed, disease progression is temporarily suppressed by eliminating fast-proliferating tumor cells and sparing quiescent CSCs lead to cancer relapse. Among all the available therapeutic modalities for cancer treatment, hyperthermia uses moderate heat to kill tumor cells. Nanoparticle-based platforms have the potential to deposit heat locally and selectively with the simultaneous activation of nanoparticles as heat transducers. Over the past few decades, magnetic nanoparticles (MNPs) have been widely investigated in the biomedical field. Magnetic hyperthermia therapy (MHT) is a promising therapeutic approach in which MNPs are delivered directly through targeting (systemic) or by direct injection into a tumor under exposure to an alternating magnetic field (AMF). Heat is generated by the MNPs subjected to AMF at a frequency of 100 kHz. Despite the widespread use of MHT alone or in combination therapies, its effectiveness in targeting CSCs remains unclear. This review discusses various types of MHT and their related mechanisms in cancer therapy, particularly concerning the eradication of CSCs.
Collapse
Affiliation(s)
- Parsa Montazersaheb
- Department of Materials Engineering, Institute of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| | - Elahe Pishgahzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Bayrami Jahani
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Orel VB, Papazoglou ΑS, Tsagkaris C, Moysidis DV, Papadakos S, Galkin OY, Orel VE, Syvak LA. Nanotherapy based on magneto-mechanochemical modulation of tumor redox state. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1868. [PMID: 36289050 DOI: 10.1002/wnan.1868] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 05/13/2023]
Abstract
Magnetic nanoparticles (MNs) are typically used as contrast agents for magnetic resonance imaging or as drug carriers with a remotely controlled delivery to the tumor. However, they can also potentiate the action of anticancer drugs under the influence of applied constant magnetic (CMFs) and electromagnetic fields (EMFs). This review demonstrates the role of magneto-mechanochemical effects produced by MNs alone and loaded with anticancer agents (MNCs) in response to CMFs and EMFs for modulation of tumor redox state. The combined treatment is suggested to act by two mechanisms: spin-dependent electron transport propagates free radical chain reactions, while magnetomechanical interactions cause conformational changes in drug molecules loaded onto MNs and generate reactive oxygen species (ROS). By adjusting the parameters of CMFs and EMFs during the magneto-mechanochemical synthesis and subsequent treatment, it is possible to modulate ROS production and switch redox signaling involved in ERK1/2 and NF-κB pathways from initiation of tumor growth to inhibition. Observations of tumor volume in different animal models and treatment combinations reported a 6%-70% reduction as compared with conventional drugs. Despite these results, there is a general lack of research in magnetic nanotheranostics that link redox changes across multiple levels of organization in the tumor-bearing host. Further multidisciplinary studies with more focus on the relationship between the electron transport processes in biomolecules and their effects on the tumor-host interaction should accelerate the clinical translation of magnetic nanotheranostics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Valerii B Orel
- National Cancer Institute, Kyiv, Ukraine
- Faculty of Biomedical Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | | | - Christos Tsagkaris
- Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
| | - Dimitrios V Moysidis
- Department of Cardiology, Hippokration General Hospital of Thessaloniki, Thessaloniki, Greece
| | | | - Olexander Yu Galkin
- Faculty of Biomedical Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | - Valerii E Orel
- National Cancer Institute, Kyiv, Ukraine
- Faculty of Biomedical Engineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | | |
Collapse
|
30
|
Kashyap BK, Singh VV, Solanki MK, Kumar A, Ruokolainen J, Kesari KK. Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities. ACS OMEGA 2023; 8:14290-14320. [PMID: 37125102 PMCID: PMC10134471 DOI: 10.1021/acsomega.2c07840] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Cancer is ranked as the second leading cause of death globally. Traditional cancer therapies including chemotherapy are flawed, with off-target and on-target toxicities on the normal cells, requiring newer strategies to improve cell selective targeting. The application of nanomaterial has been extensively studied and explored as chemical biology tools in cancer theranostics. It shows greater applications toward stability, biocompatibility, and increased cell permeability, resulting in precise targeting, and mitigating the shortcomings of traditional cancer therapies. The nanoplatform offers an exciting opportunity to gain targeting strategies and multifunctionality. The advent of nanotechnology, in particular the development of smart nanomaterials, has transformed cancer diagnosis and treatment. The large surface area of nanoparticles is enough to encapsulate many molecules and the ability to functionalize with various biosubstrates such as DNA, RNA, aptamers, and antibodies, which helps in theranostic action. Comparatively, biologically derived nanomaterials perceive advantages over the nanomaterials produced by conventional methods in terms of economy, ease of production, and reduced toxicity. The present review summarizes various techniques in cancer theranostics and emphasizes the applications of smart nanomaterials (such as organic nanoparticles (NPs), inorganic NPs, and carbon-based NPs). We also critically discussed the advantages and challenges impeding their translation in cancer treatment and diagnostic applications. This review concludes that the use of smart nanomaterials could significantly improve cancer theranostics and will facilitate new dimensions for tumor detection and therapy.
Collapse
Affiliation(s)
- Brijendra Kumar Kashyap
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi 284128, Uttar Pradesh, India
| | - Virendra Vikram Singh
- Defence Research and Development Establishment, DRDO, Gwalior 474002, Madhya Pradesh, India
| | - Manoj Kumar Solanki
- Faculty of Natural Sciences, Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Anil Kumar
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke 835222, Ranchi, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Vikkinkaari 1, 00100 Helsinki, Finland
| |
Collapse
|
31
|
Koklesova L, Jakubikova J, Cholujova D, Samec M, Mazurakova A, Šudomová M, Pec M, Hassan STS, Biringer K, Büsselberg D, Hurtova T, Golubnitschaja O, Kubatka P. Phytochemical-based nanodrugs going beyond the state-of-the-art in cancer management-Targeting cancer stem cells in the framework of predictive, preventive, personalized medicine. Front Pharmacol 2023; 14:1121950. [PMID: 37033601 PMCID: PMC10076662 DOI: 10.3389/fphar.2023.1121950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer causes many deaths worldwide each year, especially due to tumor heterogeneity leading to disease progression and treatment failure. Targeted treatment of heterogeneous population of cells - cancer stem cells is still an issue in protecting affected individuals against associated multidrug resistance and disease progression. Nanotherapeutic agents have the potential to go beyond state-of-the-art approaches in overall cancer management. Specially assembled nanoparticles act as carriers for targeted drug delivery. Several nanodrugs have already been approved by the US Food and Drug Administration (FDA) for treating different cancer types. Phytochemicals isolated from plants demonstrate considerable potential for nanomedical applications in oncology thanks to their antioxidant, anti-inflammatory, anti-proliferative, and other health benefits. Phytochemical-based NPs can enhance anticancer therapeutic effects, improve cellular uptake of therapeutic agents, and mitigate the side effects of toxic anticancer treatments. Per evidence, phytochemical-based NPs can specifically target CSCs decreasing risks of tumor relapse and metastatic disease manifestation. Therefore, this review focuses on current outlook of phytochemical-based NPs and their potential targeting CSCs in cancer research studies and their consideration in the framework of predictive, preventive, and personalized medicine (3PM).
Collapse
Affiliation(s)
- Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jana Jakubikova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dana Cholujova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Samec
- Department of Pathological Physiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | | | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Tatiana Hurtova
- Department of Dermatology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin and University Hospital Martin, Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
32
|
Nirmala MJ, Kizhuveetil U, Johnson A, G B, Nagarajan R, Muthuvijayan V. Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. RSC Adv 2023; 13:8606-8629. [PMID: 36926304 PMCID: PMC10013677 DOI: 10.1039/d2ra07863e] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer is known as the most dangerous disease in the world in terms of mortality and lack of effective treatment. Research on cancer treatment is still active and of great social importance. Since 1930, chemotherapeutics have been used to treat cancer. However, such conventional treatments are associated with pain, side effects, and a lack of targeting. Nanomedicines are an emerging alternative due to their targeting, bioavailability, and low toxicity. Nanoparticles target cancer cells via active and passive mechanisms. Since FDA approval for Doxil®, several nano-therapeutics have been developed, and a few have received approval for use in cancer treatment. Along with liposomes, solid lipid nanoparticles, polymeric nanoparticles, and nanoemulsions, even newer techniques involving extracellular vesicles (EVs) and thermal nanomaterials are now being researched and implemented in practice. This review highlights the evolution and current status of cancer therapy, with a focus on clinical/pre-clinical nanomedicine cancer studies. Insight is also provided into the prospects in this regard.
Collapse
Affiliation(s)
- M Joyce Nirmala
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Uma Kizhuveetil
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Athira Johnson
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Balaji G
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Ramamurthy Nagarajan
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Vignesh Muthuvijayan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600 036 India
| |
Collapse
|
33
|
Rational design of magnetoliposomes for enhanced interaction with bacterial membrane models. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184115. [PMID: 36603803 DOI: 10.1016/j.bbamem.2022.184115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023]
Abstract
There is a growing need for alternatives to target and treat bacterial infection. Thus, the present work aims to develop and optimize the production of PEGylated magnetoliposomes (MLPs@PEG), by encapsulating superparamagnetic iron oxide nanoparticles (SPIONs) within fusogenic liposomes. A Box-Behnken design was applied to modulate size distribution variables, using lipid concentration, SPIONs amount and ultrasonication time as independent variables. As a result of the optimization, it was possible to obtain MLPs@PEG with a mean size of 182 nm, with polydispersity index (PDI) of 0.19, and SPIONs encapsulation efficiency (%EE) around 76%. Cytocompatibility assays showed that no toxicity was observed in fibroblasts, for iron concentrations up to 400μg/ml. Also, for safe lipid and iron concentrations, no hemolytic effect was detected. The fusogenicity of the nanosystems was first evaluated through lipid mixing assays, based on Förster resonance energy transfer (FRET), using liposomal membrane models, mimicking bacterial cytoplasmic membrane and eukaryotic plasma membrane. It was shown that the hybrid nanosystems preferentially interact with the bacterial membrane model. Confocal microscopy and fluorescence lifetime measurements, using giant unilamellar vesicles (GUVs), validated these results. Overall, the developed hybrid nanosystem may represent an efficient drug delivery system with improved targetability for bacterial membrane.
Collapse
|
34
|
Spoială A, Ilie CI, Motelica L, Ficai D, Semenescu A, Oprea OC, Ficai A. Smart Magnetic Drug Delivery Systems for the Treatment of Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050876. [PMID: 36903753 PMCID: PMC10004758 DOI: 10.3390/nano13050876] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/01/2023]
Abstract
Cancer remains the most devastating disease, being one of the main factors of death and morbidity worldwide since ancient times. Although early diagnosis and treatment represent the correct approach in the fight against cancer, traditional therapies, such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy, have some limitations (lack of specificity, cytotoxicity, and multidrug resistance). These limitations represent a continuous challenge for determining optimal therapies for the diagnosis and treatment of cancer. Cancer diagnosis and treatment have seen significant achievements with the advent of nanotechnology and a wide range of nanoparticles. Due to their special advantages, such as low toxicity, high stability, good permeability, biocompatibility, improved retention effect, and precise targeting, nanoparticles with sizes ranging from 1 nm to 100 nm have been successfully used in cancer diagnosis and treatment by solving the limitations of conventional cancer treatment, but also overcoming multidrug resistance. Additionally, choosing the best cancer diagnosis, treatment, and management is extremely important. The use of nanotechnology and magnetic nanoparticles (MNPs) represents an effective alternative in the simultaneous diagnosis and treatment of cancer using nano-theranostic particles that facilitate early-stage detection and selective destruction of cancer cells. The specific properties, such as the control of the dimensions and the specific surface through the judicious choice of synthesis methods, and the possibility of targeting the target organ by applying an internal magnetic field, make these nanoparticles effective alternatives for the diagnosis and treatment of cancer. This review discusses the use of MNPs in cancer diagnosis and treatment and provides future perspectives in the field.
Collapse
Affiliation(s)
- Angela Spoială
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials, and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
| | - Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials, and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
| | - Ludmila Motelica
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials, and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Centre for Micro and Nanomaterials, and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
| | - Augustin Semenescu
- Departament of Engineering and Management for Transports, Faculty of Transports, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Street Ilfov, 050045 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Centre for Micro and Nanomaterials, and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
- Academy of Romanian Scientists, 3 Street Ilfov, 050045 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials, and National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 313 Spl. Independentei, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Street Ilfov, 050045 Bucharest, Romania
| |
Collapse
|
35
|
Bordeianu G, Filip N, Cernomaz A, Veliceasa B, Hurjui LL, Pinzariu AC, Pertea M, Clim A, Marinca MV, Serban IL. The Usefulness of Nanotechnology in Improving the Prognosis of Lung Cancer. Biomedicines 2023; 11:biomedicines11030705. [PMID: 36979684 PMCID: PMC10045176 DOI: 10.3390/biomedicines11030705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Lung cancer remains a major public health problem both in terms of incidence and specific mortality despite recent developments in terms of prevention, such as smoking reduction policies and clinical management advances. Better lung cancer prognosis could be achieved by early and accurate diagnosis and improved therapeutic interventions. Nanotechnology is a dynamic and fast-developing field; various medical applications have been developed and deployed, and more exist as proofs of concepts or experimental models. We aim to summarize current knowledge relevant to the use of nanotechnology in lung cancer management. Starting from the chemical structure-based classification of nanoparticles, we identify and review various practical implementations roughly organized as diagnostic or therapeutic in scope, ranging from innovative contrast agents to targeted drug carriers. Available data are presented starting with standards of practice and moving to highly experimental methods and proofs of concept; particularities, advantages, limits and future directions are explored, focusing on the potential impact on lung cancer clinical prognosis.
Collapse
Affiliation(s)
- Gabriela Bordeianu
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Nina Filip
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (N.F.); (A.C.)
| | - Andrei Cernomaz
- III-rd Medical Department, Discipline of Pneumology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (N.F.); (A.C.)
| | - Bogdan Veliceasa
- Department of Orthopedics and Traumatology, Surgical Science (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin Constantin Pinzariu
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihaela Pertea
- Department of Plastic Surgery and Reconstructive Microsurgery, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Andreea Clim
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihai Vasile Marinca
- III-rd Medical Department, Discipline of Oncology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
36
|
Khabibullin VR, Chetyrkina MR, Obydennyy SI, Maksimov SV, Stepanov GV, Shtykov SN. Study on Doxorubicin Loading on Differently Functionalized Iron Oxide Nanoparticles: Implications for Controlled Drug-Delivery Application. Int J Mol Sci 2023; 24:4480. [PMID: 36901910 PMCID: PMC10002596 DOI: 10.3390/ijms24054480] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Nanoplatforms applied for the loading of anticancer drugs is a cutting-edge approach for drug delivery to tumors and reduction of toxic effects on healthy cells. In this study, we describe the synthesis and compare the sorption properties of four types of potential doxorubicin-carriers, in which iron oxide nanoparticles (IONs) are functionalized with cationic (polyethylenimine, PEI), anionic (polystyrenesulfonate, PSS), and nonionic (dextran) polymers, as well as with porous carbon. The IONs are thoroughly characterized by X-ray diffraction, IR spectroscopy, high resolution TEM (HRTEM), SEM, magnetic susceptibility, and the zeta-potential measurements in the pH range of 3-10. The degree of doxorubicin loading at pH 7.4, as well as the degree of desorption at pH 5.0, distinctive to cancerous tumor environment, are measured. Particles modified with PEI were shown to exhibit the highest loading capacity, while the greatest release at pH 5 (up to 30%) occurs from the surface of magnetite decorated with PSS. Such a slow release of the drug would imply a prolonged tumor-inhibiting action on the affected tissue or organ. Assessment of the toxicity (using Neuro2A cell line) for PEI- and PSS-modified IONs showed no negative effect. In conclusion, the preliminary evaluation of the effects of IONs coated with PSS and PEI on the rate of blood clotting was carried out. The results obtained can be taken into account when developing new drug delivery platforms.
Collapse
Affiliation(s)
- Vladislav R. Khabibullin
- Chemistry Department, Lomonosov Moscow State University, Lenin Hills, 119991 Moscow, Russia
- State Scientific Center of the Russian Federation, Joint Stock Company “State Order of the Red Banner of Labor Research Institute of Chemistry and Technology of Organoelement Compounds”, 105118 Moscow, Russia
| | | | - Sergei I. Obydennyy
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, 119334 Moscow, Russia
| | - Sergey V. Maksimov
- Chemistry Department, Lomonosov Moscow State University, Lenin Hills, 119991 Moscow, Russia
| | - Gennady V. Stepanov
- State Scientific Center of the Russian Federation, Joint Stock Company “State Order of the Red Banner of Labor Research Institute of Chemistry and Technology of Organoelement Compounds”, 105118 Moscow, Russia
| | - Sergei N. Shtykov
- Department of Analytical Chemistry and Chemical Ecology, Institute of Chemistry, Saratov State University, 410012 Saratov, Russia
| |
Collapse
|
37
|
The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life (Basel) 2023; 13:life13020466. [PMID: 36836823 PMCID: PMC9965924 DOI: 10.3390/life13020466] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer is a fatal disease with a complex pathophysiology. Lack of specificity and cytotoxicity, as well as the multidrug resistance of traditional cancer chemotherapy, are the most common limitations that often cause treatment failure. Thus, in recent years, significant efforts have concentrated on the development of a modernistic field called nano-oncology, which provides the possibility of using nanoparticles (NPs) with the aim to detect, target, and treat cancer diseases. In comparison with conventional anticancer strategies, NPs provide a targeted approach, preventing undesirable side effects. What is more, nanoparticle-based drug delivery systems have shown good pharmacokinetics and precise targeting, as well as reduced multidrug resistance. It has been documented that, in cancer cells, NPs promote reactive oxygen species (ROS) production, induce cell cycle arrest and apoptosis, activate ER (endoplasmic reticulum) stress, modulate various signaling pathways, etc. Furthermore, their ability to inhibit tumor growth in vivo has also been documented. In this paper, we have reviewed the role of silver NPs (AgNPs) in cancer nanomedicine, discussing numerous mechanisms by which they render anticancer properties under both in vitro and in vivo conditions, as well as their potential in the diagnosis of cancer.
Collapse
|
38
|
Panda S, Hajra S, Kaushik A, Rubahn H, Mishra Y, Kim H. Smart nanomaterials as the foundation of a combination approach for efficient cancer theranostics. MATERIALS TODAY CHEMISTRY 2022; 26:101182. [DOI: 10.1016/j.mtchem.2022.101182] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
39
|
Bozhenko KV, Utenyshev AN, Gutsev LG, Aldoshin SM, Gutsev GL. Spin-Dependent Interactions of Fe2On Clusters with H2 and O2 Molecules. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622601751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Patel V, Parekh P, Khimani M, Yusa SI, Bahadur P. Pluronics® based Penta Block Copolymer micelles as a precursor of smart aggregates for various applications: A review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Pisani S, Bertino G, Prina-Mello A, Locati LD, Mauramati S, Genta I, Dorati R, Conti B, Benazzo M. Electroporation in Head-and-Neck Cancer: An Innovative Approach with Immunotherapy and Nanotechnology Combination. Cancers (Basel) 2022; 14:5363. [PMID: 36358782 PMCID: PMC9658293 DOI: 10.3390/cancers14215363] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Squamous cell carcinoma is the most common malignancy that arises in the head-and-neck district. Traditional treatment could be insufficient in case of recurrent and/or metastatic cancers; for this reason, more selective and enhanced treatments are in evaluation in preclinical and clinical trials to increase in situ concentration of chemotherapy drugs promoting a selectively antineoplastic activity. Among all cancer treatment types (i.e., surgery, chemotherapy, radiotherapy), electroporation (EP) has emerged as a safe, less invasive, and effective approach for cancer treatment. Reversible EP, using an intensive electric stimulus (i.e., 1000 V/cm) applied for a short time (i.e., 100 μs), determines a localized electric field that temporarily permealizes the tumor cell membranes while maintaining high cell viability, promoting cytoplasm cell uptake of antineoplastic agents such as bleomycin and cisplatin (electrochemotherapy), calcium (Ca2+ electroporation), siRNA and plasmid DNA (gene electroporation). The higher intracellular concentration of antineoplastic agents enhances the antineoplastic activity and promotes controlled tumor cell death (apoptosis). As secondary effects, localized EP (i) reduces the capillary blood flow in tumor tissue ("vascular lock"), lowering drug washout, and (ii) stimulates the immune system acting against cancer cells. After years of preclinical development, electrochemotherapy (ECT), in combination with bleomycin or cisplatin, is currently one of the most effective treatments used for cutaneous metastases and primary skin and mucosal cancers that are not amenable to surgery. To reach this clinical evidence, in vitro and in vivo models were preclinically developed for evaluating the efficacy and safety of ECT on different tumor cell lines and animal models to optimize dose and administration routes of drugs, duration, and intensity of the electric field. Improvements in reversible EP efficacy are under evaluation for HNSCC treatment, where the focus is on the development of a combination treatment between EP-enhanced nanotechnology and immunotherapy strategies.
Collapse
Affiliation(s)
- Silvia Pisani
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy
| | - Giulia Bertino
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy
| | - Adriele Prina-Mello
- LBCAM, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, DO2 W085 Dublin, Ireland
| | - Laura Deborah Locati
- Translational Oncology, IRCCS ICS Maugeri, 27100 Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Simone Mauramati
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Marco Benazzo
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi, 19, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
42
|
Wu C, Shen Z, Lu Y, Sun F, Shi H. p53 Promotes Ferroptosis in Macrophages Treated with Fe 3O 4 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42791-42803. [PMID: 36112832 DOI: 10.1021/acsami.2c00707] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fe3O4 nanoparticles are the most widely used magnetic nanoparticles in the biomedicine field. The biodistribution of most nanoparticles in vivo is determined by the capture of macrophages; however, the effects of nanoparticles on macrophages remain poorly understood. Here, we demonstrated that Fe3O4 nanoparticles could reduce macrophage viability after 48 h of treatment and induce a shift in macrophage polarization toward the M1 phenotype; RNA sequencing revealed the activation of the ferroptosis pathway and p53 upregulation compared to the control group. The expression in p53, xCT, glutathione peroxidase 4 (GPX4), and transferrin receptor (TFR) in macrophages was similar to that in erastin-induced ferroptosis in macrophages, and the ultrastructural morphology of mitochondria was consistent with that of erastin-treated cells. We used DCFH-DA to estimate the intracellular reactive oxygen species content in Fe3O4 nanoparticles treated with Ana-1 and JC-1 fluorescent probes to detect the mitochondrial membrane potential change; both showed to be time-dependent. Fer-1 inhibited the reduction of the glutathione/oxidized glutathione (GSH/GSSG) ratio and inhibited intracellular oxidative stress states; therefore, Fe3O4 nanoparticles induced ferroptosis in macrophages. Finally, we used pifithrin-α hydrobromide (PFT) as a p53 inhibitor to verify whether the high expression of p53 is involved in mediating this process. After PFT treatment, the live/dead cell rate, TFR, p53 expression, and GPX4 consumption were inhibited and mitigated the GSH/GSSG ratio reduction as well. This indicates that p53 may contribute to Fe3O4 nanoparticle-induced ferroptosis of macrophages. We provide a theoretical basis for the molecular mechanisms of ferroptosis in macrophages and the biotoxicity in vivo induced by Fe3O4 nanoparticles.
Collapse
Affiliation(s)
- Cong Wu
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225000, China
| | - Zhiming Shen
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225000, China
| | - Yi Lu
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225000, China
| | - Fei Sun
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225000, China
| | - Hongcan Shi
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
43
|
de Melo FM, Kawasaki K, Sellani TA, Bonifácio BS, Mortara RA, Toma HE, de Melo FM, Rodrigues EG. Quantum-Dot-Based Iron Oxide Nanoparticles Activate the NLRP3 Inflammasome in Murine Bone Marrow-Derived Dendritic Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3145. [PMID: 36144933 PMCID: PMC9502261 DOI: 10.3390/nano12183145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Inflammasomes are cytosolic complexes composed of a Nod-like receptor, NLR, the adaptor protein, ASC, and a proteolytic enzyme, caspase-1. Inflammasome activation leads to caspase-1 activation and promotes functional maturation of IL-1β and IL-18, two prototypical inflammatory cytokines. Besides, inflammasome activation leads to pyroptosis, an inflammatory type of cell death. Inflammasomes are vital for the host to cope with foreign pathogens or tissue damage. Herein, we show that quantum-dot-based iron oxide nanoparticles, MNP@QD, trigger NLRP3 inflammasome activation and subsequent release of proinflammatory interleukin IL-1β by murine bone marrow-derived dendritic cells (BMDCs). This activation is more pronounced if these cells endocytose the nanoparticles before receiving inflammatory stimulation. MNP@QD was characterized by using imaging techniques like transmission electron microscopy, fluorescence microscopy, and atomic force microscopy, as well as physical and spectroscopical techniques such as fluorescence spectroscopy and powder diffraction. These findings may open the possibility of using the composite MNP@QD as both an imaging and a therapeutic tool.
Collapse
Affiliation(s)
- Fernando Menegatti de Melo
- Department of Chemistry, Institute of Chemistry, University of São Paulo (USP), Av. Lineu Prestes 748, Butantã, São Paulo 05508-000, SP, Brazil
- Metal-Chek do Brasil Indústria e Comércio, Research & Development Department, Rua das Indústrias, 135, Bragança Paulista 12926-674, SP, Brazil
| | - Karine Kawasaki
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), Rua Botucatu, 862, Vila Clementino, São Paulo 04023-062, SP, Brazil
| | - Tarciso Almeida Sellani
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), Rua Botucatu, 862, Vila Clementino, São Paulo 04023-062, SP, Brazil
| | - Bruno Souza Bonifácio
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), Rua Botucatu, 862, Vila Clementino, São Paulo 04023-062, SP, Brazil
| | - Renato Arruda Mortara
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), Rua Botucatu, 862, Vila Clementino, São Paulo 04023-062, SP, Brazil
| | - Henrique Eisi Toma
- Department of Chemistry, Institute of Chemistry, University of São Paulo (USP), Av. Lineu Prestes 748, Butantã, São Paulo 05508-000, SP, Brazil
| | - Filipe Menegatti de Melo
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), Rua Botucatu, 862, Vila Clementino, São Paulo 04023-062, SP, Brazil
| | - Elaine Guadelupe Rodrigues
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), Rua Botucatu, 862, Vila Clementino, São Paulo 04023-062, SP, Brazil
| |
Collapse
|
44
|
Shahriari M, Liu S, Ebrahimi Z, Cao L. A strategy for the treatment of lung carcinoma by in situ immobilization of Ag nanoparticles on the surface of Fe3O4 nanoparticles that modified by lignin. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Li Z, Sun Z. In vitro anti-human gastric cancer property of silver nanoparticles green-synthesized by Vitis vinifera leaf aqueous extract. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Qu J, Yang J, Chen M, Zhai A. Anti-human gastric cancer study of gold nanoparticles synthesized using Alhagi maurorum. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Sachdeva V, Monga A, Vashisht R, Singh D, Singh A, Bedi N. Iron Oxide Nanoparticles: The precise strategy for targeted delivery of genes, oligonucleotides and peptides in cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Zhao W, Wang L, Chen H, Qi L, Yang R, Ouyang T, Ning L. Green synthesis, characterization and determination of anti-prostate cancer, cytotoxicity and antioxidant effects of gold nanoparticles synthesized using Alhagi maurorum. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Yang P, Qu Y, Wang M, Chu B, Chen W, Zheng Y, Niu T, Qian Z. Pathogenesis and treatment of multiple myeloma. MedComm (Beijing) 2022; 3:e146. [PMID: 35665368 PMCID: PMC9162151 DOI: 10.1002/mco2.146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma (MM) is the second‐ranking malignancy in hematological tumors. The pathogenesis of MM is complex with high heterogeneity, and the development of the disease is a multistep process. Chromosomal translocations, aneuploidy, genetic mutations, and epigenetic aberrations are essential in disease initiation and progression. The correlation between MM cells and the bone marrow microenvironment is associated with the survival, progression, migration, and drug resistance of MM cells. In recent decades, there has been a significant change in the paradigm for the management of MM. With the development of proteasome inhibitors, immunomodulatory drugs, monoclonal antibodies, chimeric antigen receptor T‐cell therapies, and novel agents, the survival of MM patients has been significantly improved. In addition, nanotechnology acts as both a nanocarrier and a treatment tool for MM. The properties and responsive conditions of nanomedicine can be tailored to reach different goals. Nanomedicine with a precise targeting property has offered great potential for drug delivery and assisted in tumor immunotherapy. In this review, we summarize the pathogenesis and current treatment options of MM, then overview recent advances in nanomedicine‐based systems, aiming to provide more insights into the treatment of MM.
Collapse
Affiliation(s)
- Peipei Yang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Ying Qu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Mengyao Wang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Bingyang Chu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Wen Chen
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Yuhuan Zheng
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Ting Niu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Zhiyong Qian
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
50
|
Rodríguez F, Caruana P, De la Fuente N, Español P, Gámez M, Balart J, Llurba E, Rovira R, Ruiz R, Martín-Lorente C, Corchero JL, Céspedes MV. Nano-Based Approved Pharmaceuticals for Cancer Treatment: Present and Future Challenges. Biomolecules 2022; 12:biom12060784. [PMID: 35740909 PMCID: PMC9221343 DOI: 10.3390/biom12060784] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the main causes of death worldwide. To date, and despite the advances in conventional treatment options, therapy in cancer is still far from optimal due to the non-specific systemic biodistribution of antitumor agents. The inadequate drug concentrations at the tumor site led to an increased incidence of multiple drug resistance and the appearance of many severe undesirable side effects. Nanotechnology, through the development of nanoscale-based pharmaceuticals, has emerged to provide new and innovative drugs to overcome these limitations. In this review, we provide an overview of the approved nanomedicine for cancer treatment and the rationale behind their designs and applications. We also highlight the new approaches that are currently under investigation and the perspectives and challenges for nanopharmaceuticals, focusing on the tumor microenvironment and tumor disseminate cells as the most attractive and effective strategies for cancer treatments.
Collapse
Affiliation(s)
- Francisco Rodríguez
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
| | - Pablo Caruana
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
| | - Noa De la Fuente
- Servicio de Cirugía General y del Aparato Digestivo, Hospital HM Rosaleda, 15701 Santiago de Compostela, Spain;
| | - Pía Español
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (P.E.); (E.L.); (R.R.)
| | - María Gámez
- Department of Pharmacy, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Josep Balart
- Department of Radiation Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Elisa Llurba
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (P.E.); (E.L.); (R.R.)
| | - Ramón Rovira
- Department of Obstetrics and Gynecology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain; (P.E.); (E.L.); (R.R.)
| | - Raúl Ruiz
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
| | - Cristina Martín-Lorente
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina and CIBER-BBN, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Correspondence: (J.L.C.); (M.V.C.); Tel.: +34-93-5812148 (J.L.C.); +34-93-400000 (ext. 1427) (M.V.C.)
| | - María Virtudes Céspedes
- Grup d’Oncologia Ginecològica i Peritoneal, Institut d’Investigacions Biomédiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (F.R.); (P.C.); (R.R.)
- Correspondence: (J.L.C.); (M.V.C.); Tel.: +34-93-5812148 (J.L.C.); +34-93-400000 (ext. 1427) (M.V.C.)
| |
Collapse
|