1
|
Chen J, Zhang C, Liu R, Jia L, Niu Q, Fan S, Zhang Y. Visible Periodic Piezoelectric Domains in Silk Fibroin for Neurite-Orientated Extension. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415053. [PMID: 40123226 DOI: 10.1002/adma.202415053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/21/2025] [Indexed: 03/25/2025]
Abstract
The development of visible periodic piezoelectric domains is highly attractive but challenging to overcome the homogeneous distribution and lack of visualization of the electric field on traditional piezopolymers. This work reports an in situ synthesis to create customized silver patterns with micron-level distinguishability. This method serves to form visible periodic piezoelectric domains and endows the silk fibroin (SF) piezoelectric generator with maximum root mean square current, energy density, and voltage of 5.1 mA, 6.7 W m-2 and 529.5 mV, respectively, under an ultrasound intensity of 1.0 W cm-2. The oriented piezoelectric electric field is periodically distributed into the SF film with ultrasound-driven assistance and remarkably regulates neurite directional growth, length, and gene expression. Additionally, these piezoelectric domains enable the direct and timely observation of the electric field's effect on neurites by biological microscopy. This approach paves the way for great potential in tailored electric stimulation for cell biology and medical engineering.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chenjing Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Renwei Liu
- Shimadzu (China) Co., Ltd, Shanghai, 200233, China
| | - Longyang Jia
- Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qianqian Niu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Suna Fan
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yaopeng Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
2
|
Zhao X, Yao M, Wang Y, Feng C, Yang Y, Tian L, Bao C, Li X, Zhu X, Zhang X. Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7223-7250. [PMID: 39869030 DOI: 10.1021/acsami.4c16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The skeleton is highly innervated by numerous nerve fibers. These nerve fibers, in addition to transmitting information within the bone and mediating bone sensations, play a crucial role in regulating bone tissue formation and regeneration. Traditional bone tissue engineering (BTE) often fails to achieve satisfactory outcomes when dealing with large-scale bone defects, which is frequently related to the lack of effective reconstruction of the neurovascular network. In recent years, increasing research has revealed the critical role of nerves in bone metabolism. Nerve fibers regulate bone cells through neurotransmitters, neuropeptides, and peripheral glial cells. Furthermore, nerves also coordinate with the vascular and immune systems to jointly construct a microenvironment favorable for bone regeneration. As a signaling driver of bone formation, neuroregulation spans the entire process of bone physiological activities from the embryonic formation to postmaturity remodeling and repair. However, there is currently a lack of comprehensive summaries of these regulatory mechanisms. Therefore, this review sketches out the function of nerves during bone formation and regeneration. Then, we elaborate on the mechanisms of neurovascular coupling and neuromodulation of bone immunity. Finally, we discuss several novel strategies for neuro-bone tissue engineering (NBTE) based on neuroregulation of bone, focusing on the coordinated regeneration of nerve and bone tissue.
Collapse
Affiliation(s)
- Xiangrong Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Meilin Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuyi Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cong Feng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Luoqiang Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Sun X, Guo Y, Zheng X, Bai Y, Lu Y, Yang X, Cai Z, Xu E, He Y, Heng BC, Xu M, Deng X, Zhang X. Optimizing the Electrical Microenvironment Provided by 3D Micropillar Topography on a Piezoelectric BaTiO 3 Substrate to Enhance Osseointegration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414161. [PMID: 39564749 DOI: 10.1002/adma.202414161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Indexed: 11/21/2024]
Abstract
The electrical properties of bone implant scaffolds are a pivotal factor in regulating cellular behavior and promoting osteogenesis. The previous study shows that built-in electric fields established between electropositive nanofilms and electronegative bone defect walls are beneficial for promoting bone defect healing. Considering that the physiological electrical microenvironment is spatially distributed in 3D, it is imperative to establish a 3D spatial charged microenvironment on bone scaffolds to optimize the efficacy of osseointegration. Nevertheless, this still poses a formidable challenge. Here, a bone repair strategy that utilizes micro-scale 3D topography is developed on a piezoelectric BaTiO3 (BTO) substrate to provide 3D spatial electrical stimulation. The BTO micropillar arrays, especially with a height of 50 µm and positive-charge distribution (50 µm positive), promote the spreading, cytoskeletal reorganization, focal adhesion maturation, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). They enhanced the clustering of mechanosensing integrin α5 in BMSCs. The biomimetic 3D spatial electrical microenvironment accelerated bone repair and osseointegration in a rat femoral diaphysis defect repair model. The study thus reveals that implants with a 3D spatial electrical microenvironment can significantly enhance osseointegration, thereby providing a new strategy to optimize the performance of electroactive biomaterials for tissue regenerative therapies.
Collapse
Affiliation(s)
- Xiaowen Sun
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xiaona Zheng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Yixuan Lu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xue Yang
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Ziming Cai
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, 221116, P. R. China
| | - Erxiang Xu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Ying He
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Boon Chin Heng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Mingming Xu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Oral Translational Medicine Research Center, Joint Training base for Shanxi Provincial Key Laboratory in Oral and Maxillofacial Repair, Reconstruction and Regeneration, The First People's Hospital of Jinzhong, Jinzhong, Shanxi, 030600, P. R. China
| |
Collapse
|
4
|
Zhang J, Liu C, Li J, Yu T, Ruan J, Yang F. Advanced Piezoelectric Materials, Devices, and Systems for Orthopedic Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410400. [PMID: 39665130 PMCID: PMC11744659 DOI: 10.1002/advs.202410400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Harnessing the robust electromechanical couplings, piezoelectric materials not only enable efficient bio-energy harvesting, physiological sensing and actuating but also open enormous opportunities for therapeutic treatments through surface polarization directly interacting with electroactive cells, tissues, and organs. Known for its highly oriented and hierarchical structure, collagen in natural bones produces local electrical signals to stimulate osteoblasts and promote bone formation, inspiring the application of piezoelectric materials in orthopedic medicine. Recent studies showed that piezoelectricity can impact microenvironments by regulating molecular sensors including ion channels, cytoskeletal elements, cell adhesion proteins, and other signaling pathways. This review thus focuses on discussing the pioneering applications of piezoelectricity in the diagnosis and treatment of orthopedic diseases, aiming to offer valuable insights for advancing next-generation medical technologies. Beginning with an introduction to the principles of piezoelectricity and various piezoelectric materials, this review paper delves into the mechanisms through which piezoelectric materials accelerated osteogenesis. A comprehensive overview of piezoelectric materials, devices, and systems enhancing bone tissue repair, alleviating inflammation at infection sites, and monitoring bone health is then provided, respectively. Finally, the major challenges faced by applications of piezoelectricity in orthopedic conditions are thoroughly discussed, along with a critical outlook on future development trends.
Collapse
Affiliation(s)
- Jingkai Zhang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chang Liu
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
| | - Jun Li
- Department of Materials Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Tao Yu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jing Ruan
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
| | - Fan Yang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Research Institute of Frontier ScienceSouthwest Jiaotong UniversityChengduSichuan610031China
| |
Collapse
|
5
|
Wei Y, Liang Y, Qi K, Gu Z, Yan B, Xie H. Exploring the application of piezoelectric ceramics in bone regeneration. J Biomater Appl 2024; 39:409-420. [PMID: 39152927 DOI: 10.1177/08853282241274528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Piezoelectric ceramics are piezoelectric materials with polycrystalline structure and have been widely used in many fields such as medical imaging and sound sensors. As knowledge about this kind of material develops, researchers find piezoelectric ceramics possess favorable piezoelectricity, biocompatibility, mechanical properties, porous structure and antibacterial effect and endeavor to apply piezoelectric ceramics to the field of bone tissue engineering. However, clinically no piezoelectric ceramics have been exercised so far. Therefore, in this paper we present a comprehensive review of the research and development of various piezoelectric ceramics including barium titanate, potassium sodium niobate and zinc oxide ceramics and aims to explore the application of piezoelectric ceramics in bone regeneration by providing a detailed overview of the current knowledge and research of piezoelectric ceramics in bone tissue regeneration.
Collapse
Affiliation(s)
- Yige Wei
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaxian Liang
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kailong Qi
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Bing Yan
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huixu Xie
- State Key Laboratory of Oral Diseases, National Center for Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Zhou R, Liu Y, Li M, Cao J, Cheng J, Wei D, Li B, Wang Y, Jia D, Jiang B, Valiev RZ, Zhou Y. Electrical Responsive Coating with a Multilayered TiO 2-SnO 2-RuO 2 Heterostructure on Ti for Controlling Antibacterial Ability and Improving Osseointegration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39064-39078. [PMID: 39028896 DOI: 10.1021/acsami.4c07114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The bacterial infection and poor osseointegration of Ti implants could significantly compromise their applications in bone repair and replacement. Based on the carrier separation ability of the heterojunction and the redox reaction of pseudocapacitive metal oxides, we report an electrically responsive TiO2-SnO2-RuO2 coating with a multilayered heterostructure on a Ti implant. Owing to the band gap structure of the TiO2-SnO2-RuO2 coating, electron carriers are easily enriched at the coating surface, enabling a response to the endogenous electrical stimulation of the bone. With the formation of SnO2-RuO2 pseudocapacitance on the modified surface, the postcharging mode can significantly change the surface chemical state of the coating due to the redox reaction, enhancing the antibacterial ability and osteogenesis-related gene expression of the human bone marrow mesenchymal stem cells. Owing to the attraction for Ca2+, only the negatively postcharged SnO2@RuO2 can promote apatite deposition. The in vivo experiment reveals that the S-SnO2@RuO2-NP could effectively kill the bacteria colonized on the surface and promote osseointegration with the synostosis bonding interface. Thus, negatively charging the electrically responsive coating of TiO2-SnO2-RuO2 is a good strategy to endow modified Ti implants with excellent antibacterial ability and osseointegration.
Collapse
Affiliation(s)
- Rui Zhou
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yifei Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ming Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, PR China
| | - Jianyun Cao
- Key Laboratory of LCR Materials and Devices of Yunnan Province, School of Materials and Energy, Yunnan University, Kunming 650500, PR China
| | - Jiahui Cheng
- The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an 710004, PR China
| | - Daqing Wei
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Baoqiang Li
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Yaming Wang
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Dechang Jia
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Bailing Jiang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China
| | - Ruslan Z Valiev
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Institute of Physics of Advanced Materials, Ufa University of Science and Technology, Ufa 450076, Russia
| | - Yu Zhou
- Department of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| |
Collapse
|
7
|
Kong X, Zheng T, Wang Z, Zhou T, Shi J, Wang Y, Zhang B. Remote actuation and on-demand activation of biomaterials pre-incorporated with physical cues for bone repair. Theranostics 2024; 14:4438-4461. [PMID: 39113795 PMCID: PMC11303086 DOI: 10.7150/thno.97610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 08/10/2024] Open
Abstract
The high incidence of bone defect-related diseases caused by trauma, infection, and tumor resection has greatly stimulated research in the field of bone regeneration. Generally, bone healing is a long and complicated process wherein manipulating the biological activity of interventional scaffolds to support long-term bone regeneration is significant for treating bone-related diseases. It has been reported that some physical cues can act as growth factor substitutes to promote osteogenesis through continuous activation of endogenous signaling pathways. This review focuses on the latest progress in bone repair by remote actuation and on-demand activation of biomaterials pre-incorporated with physical cues (heat, electricity, and magnetism). As an alternative method to treat bone defects, physical cues show many advantages, including effectiveness, noninvasiveness, and remote manipulation. First, we introduce the impact of different physical cues on bone repair and potential internal regulatory mechanisms. Subsequently, biomaterials that mediate various physical cues in bone repair and their respective characteristics are summarized. Additionally, challenges are discussed, aiming to provide new insights and suggestions for developing intelligent biomaterials to treat bone defects and promote clinical translation.
Collapse
Affiliation(s)
- Xueping Kong
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chao Yang District, Beijing 100013, China
| | | | | | | | | | - Ying Wang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chao Yang District, Beijing 100013, China
| | - Ben Zhang
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., 14 Beisanhuan East Road, Chao Yang District, Beijing 100013, China
| |
Collapse
|
8
|
Zhang Y, Chen S, Huang C, Dai Y, Zhu S, Wang R, Gou X. Dynamic regulation of stem cell adhesion and differentiation on degradable piezoelectric poly (L-lactic acid) (PLLA) nanofibers. Biomed Eng Lett 2024; 14:775-784. [PMID: 38946806 PMCID: PMC11208363 DOI: 10.1007/s13534-024-00374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/25/2024] [Accepted: 03/19/2024] [Indexed: 07/02/2024] Open
Abstract
Degradable piezoelectric materials possess significant potential for application in the realm of bone tissue regeneration. However, the correlation between cell regulation mechanisms and the dynamic variation caused by material degradation has not been explained, hindering the optimization of material design and its in vivo application. Herein, piezoelectric poly (L-lactic acid) (PLLA) nanofibers with different molecular weights (MW) were fabricated, and the effects of their piezoelectric properties, structural morphology, and material products during degradation on the adhesion and osteogenic differentiation of mesenchymal stem cells (MSCs) were investigated. Our results demonstrated that cell adhesion-mediated piezoelectric stimulation could significantly enhance cell spreading, cell orientation, and upregulate the expression of calmodulin, which further triggers downstream signaling cascade to regulate osteogenic differentiation markers of type I collagen and runt-related transcription factor 2. Additionally, during the degradation of the nanofibers, the piezoelectric properties of PLLA weakened, the fibrous structure gradually diminished, and pH levels in the vicinity decreased, which resulting in reduced osteogenic differentiation capability of MSCs. However, nanofibers with higher MW (280 kDa) have the ability to maintain the fibrous morphology and piezoelectricity for a longer time, which can regulate the osteogenic differentiation of stem cells for more than 4 weeks. These findings have provide a new insight to correlate cell behavior with MW and the biodegradability of piezopolymers, which revealed an active method for cell regulation through material optimization for bone tissue engineering in near future.
Collapse
Affiliation(s)
- Yimeng Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031 China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 China
| | - Song Chen
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083 China
| | - Chenjun Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031 China
| | - Yujie Dai
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031 China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 China
| | - Shaomei Zhu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031 China
| | - Ran Wang
- BGI Research, Shenzhen, 518083 China
| | - Xue Gou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031 China
| |
Collapse
|
9
|
Lee KK, Celt N, Ardoña HAM. Looking both ways: Electroactive biomaterials with bidirectional implications for dynamic cell-material crosstalk. BIOPHYSICS REVIEWS 2024; 5:021303. [PMID: 38736681 PMCID: PMC11087870 DOI: 10.1063/5.0181222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Cells exist in natural, dynamic microenvironmental niches that facilitate biological responses to external physicochemical cues such as mechanical and electrical stimuli. For excitable cells, exogenous electrical cues are of interest due to their ability to stimulate or regulate cellular behavior via cascade signaling involving ion channels, gap junctions, and integrin receptors across the membrane. In recent years, conductive biomaterials have been demonstrated to influence or record these electrosensitive biological processes whereby the primary design criterion is to achieve seamless cell-material integration. As such, currently available bioelectronic materials are predominantly engineered toward achieving high-performing devices while maintaining the ability to recapitulate the local excitable cell/tissue microenvironment. However, such reports rarely address the dynamic signal coupling or exchange that occurs at the biotic-abiotic interface, as well as the distinction between the ionic transport involved in natural biological process and the electronic (or mixed ionic/electronic) conduction commonly responsible for bioelectronic systems. In this review, we highlight current literature reports that offer platforms capable of bidirectional signal exchange at the biotic-abiotic interface with excitable cell types, along with the design criteria for such biomaterials. Furthermore, insights on current materials not yet explored for biointerfacing or bioelectronics that have potential for bidirectional applications are also provided. Finally, we offer perspectives aimed at bringing attention to the coupling of the signals delivered by synthetic material to natural biological conduction mechanisms, areas of improvement regarding characterizing biotic-abiotic crosstalk, as well as the dynamic nature of this exchange, to be taken into consideration for material/device design consideration for next-generation bioelectronic systems.
Collapse
Affiliation(s)
- Kathryn Kwangja Lee
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, USA
| | - Natalie Celt
- Department of Biomedical Engineering, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
10
|
Sun J, Xu C, Wo K, Wang Y, Zhang J, Lei H, Wang X, Shi Y, Fan W, Zhao B, Wang J, Su B, Yang C, Luo Z, Chen L. Wireless Electric Cues Mediate Autologous DPSC-Loaded Conductive Hydrogel Microspheres to Engineer the Immuno-Angiogenic Niche for Homologous Maxillofacial Bone Regeneration. Adv Healthc Mater 2024; 13:e2303405. [PMID: 37949452 DOI: 10.1002/adhm.202303405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Stem cell therapy serves as an effective treatment for bone regeneration. Nevertheless, stem cells from bone marrow and peripheral blood are still lacking homologous properties. Dental pulp stem cells (DPSCs) are derived from neural crest, in coincidence with maxillofacial tissues, thus attracting great interest in in situ maxillofacial regenerative medicine. However, insufficient number and heterogenous alteration of seed cells retard further exploration of DPSC-based tissue engineering. Electric stimulation has recently attracted great interest in tissue regeneration. In this study, a novel DPSC-loaded conductive hydrogel microspheres integrated with wireless electric generator is fabricated. Application of exogenous electric cues can promote stemness maintaining and heterogeneity suppression for unpredictable differentiation of encapsulated DPSCs. Further investigations observe that electric signal fine-tunes regenerative niche by improvement on DPSC-mediated paracrine pattern, evidenced by enhanced angiogenic behavior and upregulated anti-inflammatory macrophage polarization. By wireless electric stimulation on implanted conductive hydrogel microspheres, loaded DPSCs facilitates the construction of immuno-angiogenic niche at early stage of tissue repair, and further contributes to advanced autologous mandibular bone defect regeneration. This novel strategy of DPSC-based tissue engineering exhibits promising translational and therapeutic potential for autologous maxillofacial tissue regeneration.
Collapse
Affiliation(s)
- Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Chao Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Keqi Wo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yifan Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Junyuan Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Haoqi Lei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xiaohan Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yunsong Shi
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Wenjie Fan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Baoying Zhao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Bin Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Cheng Yang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Zhiqiang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
11
|
Zhou S, Xiao C, Fan L, Yang J, Ge R, Cai M, Yuan K, Li C, Crawford RW, Xiao Y, Yu P, Deng C, Ning C, Zhou L, Wang Y. Injectable ultrasound-powered bone-adhesive nanocomposite hydrogel for electrically accelerated irregular bone defect healing. J Nanobiotechnology 2024; 22:54. [PMID: 38326903 PMCID: PMC10851493 DOI: 10.1186/s12951-024-02320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
The treatment of critical-size bone defects with irregular shapes remains a major challenge in the field of orthopedics. Bone implants with adaptability to complex morphological bone defects, bone-adhesive properties, and potent osteogenic capacity are necessary. Here, a shape-adaptive, highly bone-adhesive, and ultrasound-powered injectable nanocomposite hydrogel is developed via dynamic covalent crosslinking of amine-modified piezoelectric nanoparticles and biopolymer hydrogel networks for electrically accelerated bone healing. Depending on the inorganic-organic interaction between the amino-modified piezoelectric nanoparticles and the bio-adhesive hydrogel network, the bone adhesive strength of the prepared hydrogel exhibited an approximately 3-fold increase. In response to ultrasound radiation, the nanocomposite hydrogel could generate a controllable electrical output (-41.16 to 61.82 mV) to enhance the osteogenic effect in vitro and in vivo significantly. Rat critical-size calvarial defect repair validates accelerated bone healing. In addition, bioinformatics analysis reveals that the ultrasound-responsive nanocomposite hydrogel enhanced the osteogenic differentiation of bone mesenchymal stem cells by increasing calcium ion influx and up-regulating the PI3K/AKT and MEK/ERK signaling pathways. Overall, the present work reveals a novel wireless ultrasound-powered bone-adhesive nanocomposite hydrogel that broadens the therapeutic horizons for irregular bone defects.
Collapse
Affiliation(s)
- Shiqi Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Cairong Xiao
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Lei Fan
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jinghong Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Ruihan Ge
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Min Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Kaiting Yuan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Changhao Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Ross William Crawford
- Institute of Health and Biomedical Innovation & Australia-China Centre for Tissue Engineering and Regenerative Medicine, Centre for Biomedical Technologies, Queensland University of Technology, Queensland, 4059, Australia
| | - Yin Xiao
- School of Medicine and Dentistry & Menzies Health Institute Queensland, Griffith University, Queensland, 4111, Australia
| | - Peng Yu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Chunlin Deng
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Chengyun Ning
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510641, China.
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Spine Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510150, China.
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China.
| |
Collapse
|
12
|
Zhong J, Zhang X, Ruan Y, Huang Y. Photobiomodulation therapy's impact on angiogenesis and osteogenesis in orthodontic tooth movement: in vitro and in vivo study. BMC Oral Health 2024; 24:147. [PMID: 38297232 PMCID: PMC10832110 DOI: 10.1186/s12903-023-03824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/24/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND This study explores the effectiveness of Photobiomodulation Therapy (PBMT) in enhancing orthodontic tooth movement (OTM), osteogenesis, and angiogenesis through a comprehensive series of in vitro and in vivo investigations. The in vitro experiments involved co-culturing MC3T3-E1 and HUVEC cells to assess PBMT's impact on cell proliferation, osteogenesis, angiogenesis, and associated gene expression. Simultaneously, an in vivo experiment utilized an OTM rat model subjected to laser irradiation at specific energy densities. METHODS In vitro experiments involved co-culturing MC3T3-E1 and HUVEC cells treated with PBMT, enabling a comprehensive assessment of cell proliferation, osteogenesis, angiogenesis, and gene expression. In vivo, an OTM rat model was subjected to laser irradiation at specified energy densities. Statistical analyses were performed to evaluate the significance of observed differences. RESULTS The results revealed a significant increase in blood vessel formation and new bone generation within the PBMT-treated group compared to the control group. In vitro, PBMT demonstrated positive effects on cell proliferation, osteogenesis, angiogenesis, and gene expression in the co-culture model. In vivo, laser irradiation at specific energy densities significantly enhanced OTM, angiogenesis, and osteogenesis. CONCLUSIONS This study highlights the substantial potential of PBMT in improving post-orthodontic bone quality. The observed enhancements in angiogenesis and osteogenesis suggest a pivotal role for PBMT in optimizing treatment outcomes in orthodontic practices. The findings position PBMT as a promising therapeutic intervention that could be seamlessly integrated into orthodontic protocols, offering a novel dimension to enhance overall treatment efficacy. Beyond the laboratory, these results suggest practical significance for PBMT in clinical scenarios, emphasizing its potential to contribute to the advancement of orthodontic treatments. Further exploration of PBMT in orthodontic practices is warranted to unlock its full therapeutic potential.
Collapse
Affiliation(s)
- Jietong Zhong
- School of Stomatology, Southwest Medical University, Sichuang, Luzhou, China
| | - Xinyu Zhang
- The Second People's Hospital of Yibin, Yibin, Sichuang, China
| | - Yaru Ruan
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China.
| | - Yue Huang
- School of Stomatology, Southwest Medical University, Sichuang, Luzhou, China.
- School of Stomatology, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Alvarez-Lorenzo C, Zarur M, Seijo-Rabina A, Blanco-Fernandez B, Rodríguez-Moldes I, Concheiro A. Physical stimuli-emitting scaffolds: The role of piezoelectricity in tissue regeneration. Mater Today Bio 2023; 22:100740. [PMID: 37521523 PMCID: PMC10374602 DOI: 10.1016/j.mtbio.2023.100740] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/01/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Abstract
The imbalance between life expectancy and quality of life is increasing due to the raising prevalence of chronic diseases. Musculoskeletal disorders and chronic wounds affect a growing percentage of people and demand more efficient tools for regenerative medicine. Scaffolds that can better mimic the natural physical stimuli that tissues receive under healthy conditions and during healing may significantly aid the regeneration process. Shape, mechanical properties, pore size and interconnectivity have already been demonstrated to be relevant scaffold features that can determine cell adhesion and differentiation. Much less attention has been paid to scaffolds that can deliver more dynamic physical stimuli, such as electrical signals. Recent developments in the precise measurement of electrical fields in vivo have revealed their key role in cell movement (galvanotaxis), growth, activation of secondary cascades, and differentiation to different lineages in a variety of tissues, not just neural. Piezoelectric scaffolds can mimic the natural bioelectric potentials and gradients in an autonomous way by generating the electric stimuli themselves when subjected to mechanical loads or, if the patient or the tissue lacks mobility, ultrasound irradiation. This review provides an analysis on endogenous bioelectrical signals, recent developments on piezoelectric scaffolds for bone, cartilage, tendon and nerve regeneration, and their main outcomes in vivo. Wound healing with piezoelectric dressings is addressed in the last section with relevant examples of performance in animal models. Results evidence that a fine adjustment of material composition and processing (electrospinning, corona poling, 3D printing, annealing) provides scaffolds that act as true emitters of electrical stimuli that activate endogenous signaling pathways for more efficient and long-term tissue repair.
Collapse
Affiliation(s)
- Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Mariana Zarur
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alejandro Seijo-Rabina
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Barbara Blanco-Fernandez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Isabel Rodríguez-Moldes
- Grupo NEURODEVO, Departamento de Bioloxía Funcional, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
14
|
Omer SA, McKnight KH, Young LI, Song S. Stimulation strategies for electrical and magnetic modulation of cells and tissues. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:21. [PMID: 37391680 DOI: 10.1186/s13619-023-00165-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/01/2023] [Indexed: 07/02/2023]
Abstract
Electrical phenomena play an important role in numerous biological processes including cellular signaling, early embryogenesis, tissue repair and remodeling, and growth of organisms. Electrical and magnetic effects have been studied on a variety of stimulation strategies and cell types regarding cellular functions and disease treatments. In this review, we discuss recent advances in using three different stimulation strategies, namely electrical stimulation via conductive and piezoelectric materials as well as magnetic stimulation via magnetic materials, to modulate cell and tissue properties. These three strategies offer distinct stimulation routes given specific material characteristics. This review will evaluate material properties and biological response for these stimulation strategies with respect to their potential applications in neural and musculoskeletal research.
Collapse
Affiliation(s)
- Suleyman A Omer
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Kaitlyn H McKnight
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Lucas I Young
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Shang Song
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA.
- Departments of Neuroscience GIDP, Materials Science and Engineering, BIO5 Institute, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
15
|
Bai Y, Zheng X, Zhong X, Cui Q, Zhang S, Wen X, Heng BC, He S, Shen Y, Zhang J, Wei Y, Deng X, Zhang X. Manipulation of Heterogeneous Surface Electric Potential Promotes Osteogenesis by Strengthening RGD Peptide Binding and Cellular Mechanosensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209769. [PMID: 36934418 DOI: 10.1002/adma.202209769] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/12/2023] [Indexed: 06/16/2023]
Abstract
The heterogeneity of extracellular matrix (ECM) topology, stiffness, and architecture is a key factor modulating cellular behavior and osteogenesis. However, the effects of heterogeneous ECM electric potential at the micro- and nanoscale on osteogenesis remain to be elucidated. Here, the heterogeneous distribution of surface potential is established by incorporating ferroelectric BaTiO3 nanofibers (BTNF) into poly(vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) matrix based on phase-field and first-principles simulation. By optimizing the aspect ratios of BTNF fillers, the anisotropic distribution of surface potential on BTNF/P(VDF-TrFE) nanocomposite membranes can be achieved by strong spontaneous electric polarization of BTNF fillers. These results indicate that heterogeneous surface potential distribution leads to a meshwork pattern of fibronectin (FN) aggregation, which increased FN-III7-10 (FN fragment) focal flexibility and anchor points as predicted by molecular dynamics simulation. Furthermore, integrin clustering, focal adhesion formation, cell spreading, and adhesion are enhanced sequentially. Increased traction of actin fibers amplifies mechanotransduction by promoting nuclear translocation of YAP/Runx2, which enhances osteogenesis in vitro and bone regeneration in vivo. The work thus provides fundamental insights into the biological effects of surface potential heterogeneity at the micro- and nanoscale on osteogenesis, and also develops a new strategy to optimize the performance of electroactive biomaterials for tissue regenerative therapies.
Collapse
Affiliation(s)
- Yunyang Bai
- NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xiaona Zheng
- NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xianwei Zhong
- The School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Qun Cui
- NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Shuan Zhang
- The School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiufang Wen
- The School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Shan He
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, P. R. China
| | - Yang Shen
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, P. R. China
| | - Jinxing Zhang
- Department of Physics, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yan Wei
- NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xuliang Deng
- NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xuehui Zhang
- NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| |
Collapse
|
16
|
Li C, Zhang S, Yao Y, Wang Y, Xiao C, Yang B, Huang J, Li W, Ning C, Zhai J, Yu P, Wang Y. Piezoelectric Bioactive Glasses Composite Promotes Angiogenesis by the Synergistic Effect of Wireless Electrical Stimulation and Active Ions. Adv Healthc Mater 2023:e2300064. [PMID: 36854114 DOI: 10.1002/adhm.202300064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/09/2023] [Indexed: 03/02/2023]
Abstract
Insufficient angiogenesis frequently occurs after the implantation of orthopedic materials, which greatly increases the risk of bone defect reconstruction failure. Therefore, the development of bone implant with improved angiogenic properties is of great importance. Mimicking the extracellular matrix clues provides a more direct and effective strategy to modulate angiogenesis. Herein, inspired by the bioelectrical characteristics of the bone microenvironment, a piezoelectric bioactive glasses composite (P-KNN/BG) based on the incorporation of polarized potassium sodium niobate is constructed, which could effectively promote angiogenesis. It is found that P-KNN/BG has exceptional wireless electrical stimulation performance and sustained active ions release. In vitro cell experiments reveal that P-KNN/BG enhances endothelial cell adhesion, migration, and differentiation via activating the eNOS/NO signaling pathway, which might be contributed to cell membrane hyperpolarization induced by wireless electrical stimulation increase the influx of active ions into the cells. In vivo chick chorioallantoic membrane experiment demonstrates that P-KNN/BG shows excellent pro-angiogenic capacity and biocompatibility. This work broadens the current understanding of bioactive materials with bionic electrical properties, which brings new insights into the clinical treatment of bone defect repair.
Collapse
Affiliation(s)
- Changhao Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.,School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Siyu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yichen Yao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Yanlan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Cairong Xiao
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Bo Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jingyan Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Weichang Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Chengyun Ning
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Jinxia Zhai
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Peng Yu
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| |
Collapse
|
17
|
Nedelcu L, Ferreira JMF, Popa AC, Amarande L, Nan B, Bălescu LM, Geambașu CD, Cioangher MC, Leonat L, Grigoroscuță M, Cristea D, Stroescu H, Ciocoiu RC, Stan GE. Multi-Parametric Exploration of a Selection of Piezoceramic Materials for Bone Graft Substitute Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:901. [PMID: 36769908 PMCID: PMC9917895 DOI: 10.3390/ma16030901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
This work was devoted to the first multi-parametric unitary comparative analysis of a selection of sintered piezoceramic materials synthesised by solid-state reactions, aiming to delineate the most promising biocompatible piezoelectric material, to be further implemented into macro-porous ceramic scaffolds fabricated by 3D printing technologies. The piezoceramics under scrutiny were: KNbO3, LiNbO3, LiTaO3, BaTiO3, Zr-doped BaTiO3, and the (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 solid solution (BCTZ). The XRD analysis revealed the high crystallinity of all sintered ceramics, while the best densification was achieved for the BaTiO3-based materials via conventional sintering. Conjunctively, BCTZ yielded the best combination of functional properties-piezoelectric response (in terms of longitudinal piezoelectric constant and planar electromechanical coupling factor) and mechanical and in vitro osteoblast cell compatibility. The selected piezoceramic was further used as a base material for the robocasting fabrication of 3D macro-porous scaffolds (porosity of ~50%), which yielded a promising compressive strength of ~20 MPa (higher than that of trabecular bone), excellent cell colonization capability, and noteworthy cytocompatibility in osteoblast cell cultures, analogous to the biological control. Thereby, good prospects for the possible development of a new generation of synthetic bone graft substitutes endowed with the piezoelectric effect as a stimulus for the enhancement of osteogenic capacity were settled.
Collapse
Affiliation(s)
- Liviu Nedelcu
- National Institute of Materials Physics, 077125 Magurele, Romania
| | - José M. F. Ferreira
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Materials Institute, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | - Bo Nan
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Materials Institute, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | - Lucia Leonat
- National Institute of Materials Physics, 077125 Magurele, Romania
| | | | - Daniel Cristea
- Department of Materials Science, Faculty of Materials Science and Engineering, Transilvania University of Brasov, 500068 Brasov, Romania
| | - Hermine Stroescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest, Romania
| | - Robert Cătălin Ciocoiu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - George E. Stan
- National Institute of Materials Physics, 077125 Magurele, Romania
| |
Collapse
|
18
|
Yang C, Ji J, Lv Y, Li Z, Luo D. Application of Piezoelectric Material and Devices in Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4386. [PMID: 36558239 PMCID: PMC9785304 DOI: 10.3390/nano12244386] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Bone injuries are common in clinical practice. Given the clear disadvantages of autologous bone grafting, more efficient and safer bone grafts need to be developed. Bone is a multidirectional and anisotropic piezoelectric material that exhibits an electrical microenvironment; therefore, electrical signals play a very important role in the process of bone repair, which can effectively promote osteoblast differentiation, migration, and bone regeneration. Piezoelectric materials can generate electricity under mechanical stress without requiring an external power supply; therefore, using it as a bone implant capable of harnessing the body's kinetic energy to generate the electrical signals needed for bone growth is very promising for bone regeneration. At the same time, devices composed of piezoelectric material using electromechanical conversion technology can effectively monitor the structural health of bone, which facilitates the adjustment of the treatment plan at any time. In this paper, the mechanism and classification of piezoelectric materials and their applications in the cell, tissue, sensing, and repair indicator monitoring aspects in the process of bone regeneration are systematically reviewed.
Collapse
Affiliation(s)
- Chunyu Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jianying Ji
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Yujia Lv
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| |
Collapse
|
19
|
Ji J, Yang C, Shan Y, Sun M, Cui X, Xu L, Liang S, Li T, Fan Y, Luo D, Li Z. Research Trends of Piezoelectric Nanomaterials in Biomedical Engineering. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Jianying Ji
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning 530004 China
| | - Chunyu Yang
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- State Key Laboratory of Heavy Oil Processing College of New Energy and Materials Beijing Key Laboratory of Biogas Upgrading Utilization China University of Petroleum (Beijing) Beijing 102249 China
- Institute of Engineering Medicine School of Life Science Beijing Institute of Technology Beijing 100081 China
| | - Yizhu Shan
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
| | - Mingjun Sun
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- State Key Laboratory of Heavy Oil Processing College of New Energy and Materials Beijing Key Laboratory of Biogas Upgrading Utilization China University of Petroleum (Beijing) Beijing 102249 China
- Institute of Engineering Medicine School of Life Science Beijing Institute of Technology Beijing 100081 China
| | - Xi Cui
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
| | - Lingling Xu
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 China
| | - Shiyuan Liang
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
| | - Tong Li
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning 530004 China
| | - Yijie Fan
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
| | - Dan Luo
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhou Li
- Institute of Nanoenergy and Nanosystems Chinese Academy of Science Beijing 101400 China
- Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning 530004 China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
20
|
Caliogna L, Bina V, Brancato AM, Gastaldi G, Annunziata S, Mosconi M, Grassi FA, Benazzo F, Pasta G. The Role of PEMFs on Bone Healing: An In Vitro Study. Int J Mol Sci 2022; 23:14298. [PMID: 36430775 PMCID: PMC9693979 DOI: 10.3390/ijms232214298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Bone responses to pulsed electromagnetic fields (PEMFs) have been extensively studied by using devices that expose bone cells to PEMFs to stimulate extracellular matrix (ECM) synthesis for bone and cartilage repair. The aim of this work was to highlight in which bone healing phase PEMFs exert their action. Specifically, we evaluated the effects of PEMFs both on human adipose mesenchymal stem cells (hASCs) and on primary human osteoblasts (hOBs) by testing gene and protein expression of early bone markers (on hASCs) and the synthesis of late bone-specific proteins (on hOBs) as markers of bone remodeling. Our results indicate that PEMFs seem to exert their action on bone formation, acting on osteogenic precursors (hASCs) and inducing the commitment towards the differentiation pathways, unlike mature and terminally differentiated cells (hOBs), which are known to resist homeostasis perturbation more and seem to be much less responsive than mesenchymal stem cells. Understanding the role of PEMFs on bone regenerative processes provides important details for their clinical application.
Collapse
Affiliation(s)
- Laura Caliogna
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Valentina Bina
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Alice Maria Brancato
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Giulia Gastaldi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Annunziata
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Mario Mosconi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Federico Alberto Grassi
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
- Centre for Health Technologies, University of Pavia, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Francesco Benazzo
- Sezione di Chirurgia Protesica ad Indirizzo Robotico-Unità di Traumatologia dello Sport, U.O. Ortopedia e Traumatologia Fondazione Poliambulanza, 25124 Brescia, Italy
| | - Gianluigi Pasta
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| |
Collapse
|
21
|
Guillot-Ferriols M, García-Briega MI, Tolosa L, Costa CM, Lanceros-Méndez S, Gómez Ribelles JL, Gallego Ferrer G. Magnetically Activated Piezoelectric 3D Platform Based on Poly(Vinylidene) Fluoride Microspheres for Osteogenic Differentiation of Mesenchymal Stem Cells. Gels 2022; 8:680. [PMID: 36286181 PMCID: PMC9602007 DOI: 10.3390/gels8100680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) osteogenic commitment before injection enhances bone regeneration therapy results. Piezoelectric stimulation may be an effective cue to promote MSCs pre-differentiation, and poly(vinylidene) fluoride (PVDF) cell culture supports, when combined with CoFe2O4 (CFO), offer a wireless in vitro stimulation strategy. Under an external magnetic field, CFO shift and magnetostriction deform the polymer matrix varying the polymer surface charge due to the piezoelectric effect. To test the effect of piezoelectric stimulation on MSCs, our approach is based on a gelatin hydrogel with embedded MSCs and PVDF-CFO electroactive microspheres. Microspheres were produced by electrospray technique, favouring CFO incorporation, crystallisation in β-phase (85%) and a crystallinity degree of around 55%. The absence of cytotoxicity of the 3D construct was confirmed 24 h after cell encapsulation. Cells were viable, evenly distributed in the hydrogel matrix and surrounded by microspheres, allowing local stimulation. Hydrogels were stimulated using a magnetic bioreactor, and no significant changes were observed in MSCs proliferation in the short or long term. Nevertheless, piezoelectric stimulation upregulated RUNX2 expression after 7 days, indicating the activation of the osteogenic differentiation pathway. These results open the door for optimising a stimulation protocol allowing the application of the magnetically activated 3D electroactive cell culture support for MSCs pre-differentiation before transplantation.
Collapse
Affiliation(s)
- Maria Guillot-Ferriols
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine, Carlos III Health Institute (CIBER-BBN, ISCIII), 46022 Valencia, Spain
| | - María Inmaculada García-Briega
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine, Carlos III Health Institute (CIBER-BBN, ISCIII), 46022 Valencia, Spain
| | - Laia Tolosa
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine, Carlos III Health Institute (CIBER-BBN, ISCIII), 46022 Valencia, Spain
- Experimental Hepatology Unit, Health Research Institute La Fe (IIS La Fe), 46026 Valencia, Spain
| | - Carlos M. Costa
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - José Luis Gómez Ribelles
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine, Carlos III Health Institute (CIBER-BBN, ISCIII), 46022 Valencia, Spain
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine, Carlos III Health Institute (CIBER-BBN, ISCIII), 46022 Valencia, Spain
| |
Collapse
|
22
|
Qiao Z, Lian M, Liu X, Zhang X, Han Y, Ni B, Xu R, Yu B, Xu Q, Dai K. Electreted Sandwich Membranes with Persistent Electrical Stimulation for Enhanced Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31655-31666. [PMID: 35797478 DOI: 10.1021/acsami.2c06665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Physiologically relevant electrical microenvironments play an indispensable role in manipulating bone metabolism. Although implanted biomaterials that simulate the electrical properties of natural tissues using conductive or piezoelectric materials have been introduced in the field of bone regeneration, the application of electret materials to provide stable and persistent electrical stimulation has rarely been studied in biomaterial design. In this study, a silicon dioxide electret-incorporated poly(dimethylsiloxane) (SiO2/PDMS) composite electroactive membrane was designed and fabricated to explore its bone regeneration efficacy. SiO2 electrets were homogeneously dispersed in the PDMS matrix, and sandwich-like composite membranes were fabricated using a facile layer-by-layer blade-coating method. Following the encapsulation, electret polarization was conducted to obtain the electreted composite membranes. The surface potential of the composite membrane could be adjusted to a bone-promotive biopotential by tuning the electret concentration, and the prepared membranes exhibited favorable electrical stability during an observation period of up to 42 days. In vitro biological experiments indicated that the electreted SiO2/PDMS membrane promoted cellular activity and osteogenic differentiation of mesenchymal stem cells. In vivo, the electreted composite membrane remarkably facilitated bone regeneration through persistent endogenous electrical stimulation. These findings suggest that the electreted sandwich-like membranes, which maintain a stable and physiological electrical microenvironment, are promising candidates for enhancing bone regeneration.
Collapse
Affiliation(s)
- Zhiguang Qiao
- Department of Orthopaedic Surgery, Renji Hospital, South Campus, Shanghai Jiao Tong University School of Medicine, Shanghai 201112, China
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Meifei Lian
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- Department of Prosthodontics, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xingzhou Liu
- Department of Rehabilitation, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Xing Zhang
- State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Han
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bing Ni
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Ruida Xu
- Department of Orthopaedic Surgery, Renji Hospital, South Campus, Shanghai Jiao Tong University School of Medicine, Shanghai 201112, China
| | - Bin Yu
- State Key Laboratory for Modification of Chemical Fibers & Polymer Materials, College of Materials Science & Engineering, Donghua University, Shanghai 201620, China
| | - Qingrong Xu
- Department of Orthopaedic Surgery, Renji Hospital, South Campus, Shanghai Jiao Tong University School of Medicine, Shanghai 201112, China
| | - Kerong Dai
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| |
Collapse
|
23
|
Guillot-Ferriols M, Lanceros-Méndez S, Gómez Ribelles JL, Gallego Ferrer G. Electrical stimulation: Effective cue to direct osteogenic differentiation of mesenchymal stem cells? BIOMATERIALS ADVANCES 2022; 138:212918. [PMID: 35913228 DOI: 10.1016/j.bioadv.2022.212918] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Mesenchymal stem cells (MSCs) play a major role in bone tissue engineering (BTE) thanks to their capacity for osteogenic differentiation and being easily available. In vivo, MSCs are exposed to an electroactive microenvironment in the bone niche, which has piezoelectric properties. The correlation between the electrically active milieu and bone's ability to adapt to mechanical stress and self-regenerate has led to using electrical stimulation (ES) as physical cue to direct MSCs differentiation towards the osteogenic lineage in BTE. This review summarizes the different techniques to electrically stimulate MSCs to induce their osteoblastogenesis in vitro, including general electrical stimulation and substrate mediated stimulation by means of conductive or piezoelectric cell culture supports. Several aspects are covered, including stimulation parameters, treatment times and cell culture media to summarize the best conditions for inducing MSCs osteogenic commitment by electrical stimulation, from a critical point of view. Electrical stimulation activates different signaling pathways, including bone morphogenetic protein (BMP) Smad-dependent or independent, regulated by mitogen activated protein kinases (MAPK), extracellular signal-regulated kinases (ERK) and p38. The roles of voltage gate calcium channels (VGCC) and integrins are also highlighted according to their application technique and parameters, mainly converging in the expression of RUNX2, the master regulator of the osteogenic differentiation pathway. Despite the evident lack of homogeneity in the approaches used, the ever-increasing scientific evidence confirms ES potential as an osteoinductive cue, mimicking aspects of the in vivo microenvironment and moving one step forward to the translation of this approach into clinic.
Collapse
Affiliation(s)
- M Guillot-Ferriols
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| | - S Lanceros-Méndez
- Centre of Physics of Minho and Porto Universities, Universidade do Minho, 4710-058 Braga, Portugal; BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - J L Gómez Ribelles
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| | - G Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| |
Collapse
|
24
|
Najjari A, Mehdinavaz Aghdam R, Ebrahimi SAS, Suresh K S, Krishnan S, Shanthi C, Ramalingam M. Smart piezoelectric biomaterials for tissue engineering and regenerative medicine: a review. BIOMED ENG-BIOMED TE 2022; 67:71-88. [PMID: 35313098 DOI: 10.1515/bmt-2021-0265] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/01/2022] [Indexed: 01/06/2023]
Abstract
Due to the presence of electric fields and piezoelectricity in various living tissues, piezoelectric materials have been incorporated into biomedical applications especially for tissue regeneration. The piezoelectric scaffolds can perfectly mimic the environment of natural tissues. The ability of scaffolds which have been made from piezoelectric materials in promoting cell proliferation and regeneration of damaged tissues has encouraged researchers in biomedical areas to work on various piezoelectric materials for fabricating tissue engineering scaffolds. In this review article, the way that cells of different tissues like cardio, bone, cartilage, bladder, nerve, skin, tendon, and ligament respond to electric fields and the mechanism of tissue regeneration with the help of piezoelectric effect will be discussed. Furthermore, all of the piezoelectric materials are not suitable for biomedical applications even if they have high piezoelectricity since other properties such as biocompatibility are vital. Seen in this light, the proper piezoelectric materials which are approved for biomedical applications are mentioned. Totally, the present review introduces the recent materials and technologies that have been used for tissue engineering besides the role of electric fields in living tissues.
Collapse
Affiliation(s)
- Aryan Najjari
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - S A Seyyed Ebrahimi
- Advanced Magnetic Materials Research Center, College of Engineering, University of Tehran, Tehran, Iran
| | - Shoma Suresh K
- Advanced Magnetic Materials Research Center, College of Engineering, University of Tehran, Tehran, Iran
| | - Sasirekha Krishnan
- Advanced Magnetic Materials Research Center, College of Engineering, University of Tehran, Tehran, Iran
| | - Chittibabu Shanthi
- Biomaterials & Organ Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India
| | - Murugan Ramalingam
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
25
|
Deng W, Zhou Y, Libanori A, Chen G, Yang W, Chen J. Piezoelectric nanogenerators for personalized healthcare. Chem Soc Rev 2022; 51:3380-3435. [PMID: 35352069 DOI: 10.1039/d1cs00858g] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of flexible piezoelectric nanogenerators has experienced rapid progress in the past decade and is serving as the technological foundation of future state-of-the-art personalized healthcare. Due to their highly efficient mechanical-to-electrical energy conversion, easy implementation, and self-powering nature, these devices permit a plethora of innovative healthcare applications in the space of active sensing, electrical stimulation therapy, as well as passive human biomechanical energy harvesting to third party power on-body devices. This article gives a comprehensive review of the piezoelectric nanogenerators for personalized healthcare. After a brief introduction to the fundamental physical science of the piezoelectric effect, material engineering strategies, device structural designs, and human-body centered energy harvesting, sensing, and therapeutics applications are also systematically discussed. In addition, the challenges and opportunities of utilizing piezoelectric nanogenerators for self-powered bioelectronics and personalized healthcare are outlined in detail.
Collapse
Affiliation(s)
- Weili Deng
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA. .,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Alberto Libanori
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Weiqing Yang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| |
Collapse
|
26
|
Engelbrecht L, Ollewagen T, de Swardt D. Advances in fluorescence microscopy can reveal important new aspects of tissue regeneration. Biochimie 2022; 196:194-202. [DOI: 10.1016/j.biochi.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/19/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
|
27
|
Hatt LP, Thompson K, Helms JA, Stoddart MJ, Armiento AR. Clinically relevant preclinical animal models for testing novel cranio-maxillofacial bone 3D-printed biomaterials. Clin Transl Med 2022; 12:e690. [PMID: 35170248 PMCID: PMC8847734 DOI: 10.1002/ctm2.690] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022] Open
Abstract
Bone tissue engineering is a rapidly developing field with potential for the regeneration of craniomaxillofacial (CMF) bones, with 3D printing being a suitable fabrication tool for patient-specific implants. The CMF region includes a variety of different bones with distinct functions. The clinical implementation of tissue engineering concepts is currently poor, likely due to multiple reasons including the complexity of the CMF anatomy and biology, and the limited relevance of the currently used preclinical models. The 'recapitulation of a human disease' is a core requisite of preclinical animal models, but this aspect is often neglected, with a vast majority of studies failing to identify the specific clinical indication they are targeting and/or the rationale for choosing one animal model over another. Currently, there are no suitable guidelines that propose the most appropriate animal model to address a specific CMF pathology and no standards are established to test the efficacy of biomaterials or tissue engineered constructs in the CMF field. This review reports the current clinical scenario of CMF reconstruction, then discusses the numerous limitations of currently used preclinical animal models employed for validating 3D-printed tissue engineered constructs and the need to reduce animal work that does not address a specific clinical question. We will highlight critical research aspects to consider, to pave a clinically driven path for the development of new tissue engineered materials for CMF reconstruction.
Collapse
Affiliation(s)
- Luan P. Hatt
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
- Department of Health Sciences and TechonologyInstitute for BiomechanicsETH ZürichZürichSwitzerland
| | - Keith Thompson
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
| | - Jill A. Helms
- Division of Plastic and Reconstructive SurgeryDepartment of Surgery, Stanford School of MedicineStanford UniversityPalo AltoCalifornia
| | - Martin J. Stoddart
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
| | - Angela R. Armiento
- Regenerative Orthopaedics ProgramAO Research Institute DavosDavos, PlatzSwitzerland
| |
Collapse
|
28
|
Zhang J, He X, Zhou Z, Chen X, Shao J, Huang D, Dong L, Lin J, Wang H, Weng W, Cheng K. The osteogenic response to chirality-patterned surface potential distribution of CFO/P(VDF-TrFE) membranes. Biomater Sci 2022; 10:4576-4587. [PMID: 35791864 DOI: 10.1039/d2bm00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Piezoelectric poly(vinylidene fluoride-trifluoroethylene) has demonstrated an ability to promote osteogenesis, and the biomaterials with a chirality-patterned topological surface could enhance cellular osteogenic differentiation. In this work, we created a chirality-patterned...
Collapse
Affiliation(s)
- Jiamin Zhang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
| | - Xuzhao He
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
| | - Zhiyuan Zhou
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
| | - Xiaoyi Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Province Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Jiaqi Shao
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Donghua Huang
- Department of Orthopaedic Surgery, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Lingqing Dong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Province Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Jun Lin
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Province Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
29
|
Sharma V, Chowdhury S, Bose S, Basu B. Polydopamine Codoped BaTiO 3-Functionalized Polyvinylidene Fluoride Coating as a Piezo-Biomaterial Platform for an Enhanced Cellular Response and Bioactivity. ACS Biomater Sci Eng 2021; 8:170-184. [PMID: 34964600 DOI: 10.1021/acsbiomaterials.1c00879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For a number of clinical applications, Ti6Al4V implants with bioactive coatings are used. However, the deposition of a functional polymeric coating with desired physical properties, biocompatibility, and long-term stability remains largely unexplored. Among widely investigated synthetic biomaterials, polyvinylidene fluoride (PVDF) with β-polymorph and barium titanate (BaTiO3, BT) are considered as good examples of piezo-biopolymers and bioceramics, respectively. In this work, an adherent PVDF-based nanocomposite coating is deposited onto a Ti6Al4V substrate to explore the impact of its functional characteristics (piezoactivity) on cellular behavior and bioactivity (apatite growth and mineralized matrix formation). The precursor solution was prepared by physically grafting PVDF with polydopamine (pDOPA), forming mPVDF. Subsequently, mPVDF was reinforced with BaTiO3 nanoparticles in dimethylformamide/acetone solution, and the resulting nanocomposite (mPVDF-BT) was then spray-coated onto a roughened Ti6Al4V substrate using an airbrush at 140 °C under a pressure of 2 bar. The reproducibility of this simple yet effective processing approach to deposit chemically stable and adherent coatings was established. Remarkably, the modification with pDOPA and reinforcement with BaTiO3 nanoparticles resulted in an enhanced β-fraction of PVDF up to 96%. This nanocomposite encouraged cellular viability of preosteoblasts (∼158% at day 5) and characteristic spreading, in vitro. Our findings indicate that the mPVDF-BT coating facilitated faster nucleation and growth of the biomineralized apatite layer with ∼70% coverage within 3 days of incubation in the simulated body fluid. In addition, the coupling among surface polar energy (5.5 mN/m), fractional polarity (∼117%), roughness (8.7 μm), and fibrous morphology also endorsed better cellular behavior. Taken together, this coating deposition strategy will pave the pathway toward designing cell-instructive surface-modified Ti6Al4V biomaterials with tailored biomineralization and bioactivity properties for musculoskeletal reconstruction and regeneration applications.
Collapse
Affiliation(s)
- Vidushi Sharma
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, Karnataka 560012, India.,Centre of Excellence for Dental and Orthopedic Applications, Material Research Centre, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sheetal Chowdhury
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, Karnataka 560012, India.,Centre of Excellence for Dental and Orthopedic Applications, Material Research Centre, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, Karnataka 560012, India.,Centre of Excellence for Dental and Orthopedic Applications, Material Research Centre, Indian Institute of Science, Bangalore, Karnataka 560012, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
30
|
Shi X, Chen Y, Zhao Y, Ye M, Zhang S, Gong S. Ultrasound-activable piezoelectric membranes for accelerating wound healing. Biomater Sci 2021; 10:692-701. [PMID: 34919105 DOI: 10.1039/d1bm01062j] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ultrasonic energy harvesting technologies have gained much attention for biomedical applications due to their several desirable features including low-energy attenuation and strong penetration capability. In this work, flexible piezoelectric poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE))/barium titanate (BaTiO3, BT) membranes, capable of converting ultrasound energy to electric energy, were fabricated by an electrospinning process and their effects on the wound healing behaviors with/without ultrasonic stimulation were investigated. The piezoelectric membranes showed excellent electric outputs and can be used as a sustainable power source to quickly charge LEDs and capacitors. The penetration capability of ultrasound waves was investigated by implanting the membranes at different depths of porcine tissue. The membrane was able to generate a high voltage of 8.22 V even at a depth of 4.5 cm. Furthermore, ultrasonic stimulation on the piezoelectric membranes facilitated the proliferation and migration of the fibroblasts, and a cell migration rate of 92.6% was obtained after 24 h in the cell migration test. Under ultrasonic vibration, the electric field generated from the membranes accelerated the wound closure rate in an animal wound model. These results demonstrated the effectiveness of the flexible piezoelectric membranes in stimulating cellular behaviors, which may provide a new therapeutic strategy for wound care.
Collapse
Affiliation(s)
- Xingxing Shi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. .,School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yingxin Chen
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. .,Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Yi Zhao
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Mingzhou Ye
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Shuidong Zhang
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Shaoqin Gong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
31
|
Hao Z, Xu Z, Wang X, Wang Y, Li H, Chen T, Hu Y, Chen R, Huang K, Chen C, Li J. Biophysical Stimuli as the Fourth Pillar of Bone Tissue Engineering. Front Cell Dev Biol 2021; 9:790050. [PMID: 34858997 PMCID: PMC8630705 DOI: 10.3389/fcell.2021.790050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023] Open
Abstract
The repair of critical bone defects remains challenging worldwide. Three canonical pillars (biomaterial scaffolds, bioactive molecules, and stem cells) of bone tissue engineering have been widely used for bone regeneration in separate or combined strategies, but the delivery of bioactive molecules has several obvious drawbacks. Biophysical stimuli have great potential to become the fourth pillar of bone tissue engineering, which can be categorized into three groups depending on their physical properties: internal structural stimuli, external mechanical stimuli, and electromagnetic stimuli. In this review, distinctive biophysical stimuli coupled with their osteoinductive windows or parameters are initially presented to induce the osteogenesis of mesenchymal stem cells (MSCs). Then, osteoinductive mechanisms of biophysical transduction (a combination of mechanotransduction and electrocoupling) are reviewed to direct the osteogenic differentiation of MSCs. These mechanisms include biophysical sensing, transmission, and regulation. Furthermore, distinctive application strategies of biophysical stimuli are presented for bone tissue engineering, including predesigned biomaterials, tissue-engineered bone grafts, and postoperative biophysical stimuli loading strategies. Finally, ongoing challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhenhua Xu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hanke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kegang Huang
- Wuhan Institute of Proactive Health Management Science, Wuhan, China
| | - Chao Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Orthopedics, Hefeng Central Hospital, Enshi, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
32
|
Liu Z, Wan X, Wang ZL, Li L. Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007429. [PMID: 34117803 DOI: 10.1002/adma.202007429] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
During natural tissue regeneration, tissue microenvironment and stem cell niche including cell-cell interaction, soluble factors, and extracellular matrix (ECM) provide a train of biochemical and biophysical cues for modulation of cell behaviors and tissue functions. Design of functional biomaterials to mimic the tissue/cell microenvironment have great potentials for tissue regeneration applications. Recently, electroactive biomaterials have drawn increasing attentions not only as scaffolds for cell adhesion and structural support, but also as modulators to regulate cell/tissue behaviors and function, especially for electrically excitable cells and tissues. More importantly, electrostimulation can further modulate a myriad of biological processes, from cell cycle, migration, proliferation and differentiation to neural conduction, muscle contraction, embryogenesis, and tissue regeneration. In this review, endogenous bioelectricity and piezoelectricity are introduced. Then, design rationale of electroactive biomaterials is discussed for imitating dynamic cell microenvironment, as well as their mediated electrostimulation and the applying pathways. Recent advances in electroactive biomaterials are systematically overviewed for modulation of stem cell fate and tissue regeneration, mainly including nerve regeneration, bone tissue engineering, and cardiac tissue engineering. Finally, the significance for simulating the native tissue microenvironment is emphasized and the open challenges and future perspectives of electroactive biomaterials are concluded.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
33
|
Swain S, Bowen C, Rautray T. Dual response of osteoblast activity and antibacterial properties of polarized strontium substituted hydroxyapatite-Barium strontium titanate composites with controlled strontium substitution. J Biomed Mater Res A 2021; 109:2027-2035. [PMID: 33825314 DOI: 10.1002/jbm.a.37195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/14/2021] [Accepted: 03/24/2021] [Indexed: 11/09/2022]
Abstract
To mimic the electrical properties of natural bone, controlled strontium substitution of both hydroxyapatite and ferroelectric barium titanate were achieved by mixing in the ratio 30:70 by weight. The composites were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy to investigate the phase composition and microstructure of the composites. Unpolarized and polarized strontium hydroxyapatite (SrHA)-barium strontium titanate (BST) composites with controlled degree of Sr substitution were examined, including 5SrHA-5BST (5% Sr substitution in both components) and 10SrHA-10BST composites. The 10SrHA-10BST composite showed a higher osteoblast activity, as observed from the cell viability studies performed using CCK-8 assay. The polarized composites showed promise against Staphylococcus aureus bacteria by minimizing the adhesion and growth of bacteria, as compared with their unpolarized counterparts. The polarized 10SrHA-10BST was found to be superior than all other composites. As a result, the approach of polarization of SrHA-BST composites has been found to be an effective bone substitute material in controlled enhancement of osteoblast growth with simultaneous reduction of bacterial infection.
Collapse
Affiliation(s)
- Subhasmita Swain
- Biomaterials and Tissue Regeneration Laboratory, Centre of Excellence in TM Sciences, Siksha 'O' Anusandhan (Deemed to be University), Khandagiri Square, Bhubaneswar, India, 751030, India
| | - Chris Bowen
- Dept of Mechanical Engineering, University of Bath, Bath, UK
| | - Tapash Rautray
- Biomaterials and Tissue Regeneration Laboratory, Centre of Excellence in TM Sciences, Siksha 'O' Anusandhan (Deemed to be University), Khandagiri Square, Bhubaneswar, India, 751030, India
| |
Collapse
|
34
|
Montoya C, Du Y, Gianforcaro AL, Orrego S, Yang M, Lelkes PI. On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook. Bone Res 2021; 9:12. [PMID: 33574225 PMCID: PMC7878740 DOI: 10.1038/s41413-020-00131-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/31/2023] Open
Abstract
The demand for biomaterials that promote the repair, replacement, or restoration of hard and soft tissues continues to grow as the population ages. Traditionally, smart biomaterials have been thought as those that respond to stimuli. However, the continuous evolution of the field warrants a fresh look at the concept of smartness of biomaterials. This review presents a redefinition of the term "Smart Biomaterial" and discusses recent advances in and applications of smart biomaterials for hard tissue restoration and regeneration. To clarify the use of the term "smart biomaterials", we propose four degrees of smartness according to the level of interaction of the biomaterials with the bio-environment and the biological/cellular responses they elicit, defining these materials as inert, active, responsive, and autonomous. Then, we present an up-to-date survey of applications of smart biomaterials for hard tissues, based on the materials' responses (external and internal stimuli) and their use as immune-modulatory biomaterials. Finally, we discuss the limitations and obstacles to the translation from basic research (bench) to clinical utilization that is required for the development of clinically relevant applications of these technologies.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
| | - Yu Du
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anthony L Gianforcaro
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Maobin Yang
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Peter I Lelkes
- Department of Endodontology, Kornberg School of Dentistry, Temple University, Philadelphia, PA, 19140, USA.
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
35
|
|
36
|
Zheng T, Huang Y, Zhang X, Cai Q, Deng X, Yang X. Mimicking the electrophysiological microenvironment of bone tissue using electroactive materials to promote its regeneration. J Mater Chem B 2020; 8:10221-10256. [PMID: 33084727 DOI: 10.1039/d0tb01601b] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The process of bone tissue repair and regeneration is complex and requires a variety of physiological signals, including biochemical, electrical and mechanical signals, which collaborate to ensure functional recovery. The inherent piezoelectric properties of bone tissues can convert mechanical stimulation into electrical effects, which play significant roles in bone maturation, remodeling and reconstruction. Electroactive materials, including conductive materials, piezoelectric materials and electret materials, can simulate the physiological and electrical microenvironment of bone tissue, thereby promoting bone regeneration and reconstruction. In this paper, the structures and performances of different types of electroactive materials and their applications in the field of bone repair and regeneration are reviewed, particularly by providing the results from in vivo evaluations using various animal models. Their advantages and disadvantages as bone repair materials are discussed, and the methods for tuning their performances are also described, with the aim of providing an up-to-date account of the proposed topics.
Collapse
Affiliation(s)
- Tianyi Zheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
37
|
Das R, Curry EJ, Le TT, Awale G, Liu Y, Li S, Contreras J, Bednarz C, Millender J, Xin X, Rowe D, Emadi S, Lo KWH, Nguyen TD. Biodegradable Nanofiber Bone-Tissue Scaffold as Remotely-Controlled and Self-Powering Electrical Stimulator. NANO ENERGY 2020; 76:105028. [PMID: 38074984 PMCID: PMC10703347 DOI: 10.1016/j.nanoen.2020.105028] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2023]
Abstract
Electrical stimulation (ES) has been shown to induce and enhance bone regeneration. By combining this treatment with tissue-engineering approaches (which rely on biomaterial scaffolds to construct artificial tissues), a replacement bone-graft with strong regenerative properties can be achieved while avoiding the use of potentially toxic levels of growth factors. Unfortunately, there is currently a lack of safe and effective methods to induce electrical cues directly on cells/tissues grown on the biomaterial scaffolds. Here, we present a novel bone regeneration method which hybridizes ES and tissue-engineering approaches by employing a biodegradable piezoelectric PLLA (Poly(L-lactic acid)) nanofiber scaffold which, together with externally-controlled ultrasound (US), can generate surface-charges to drive bone regeneration. We demonstrate that the approach of using the piezoelectric scaffold and US can enhance osteogenic differentiation of different stem cells in vitro, and induce bone growth in a critical-sized calvarial defect in vivo. The biodegradable piezoelectric scaffold with applied US could significantly impact the field of tissue engineering by offering a novel biodegradable, battery-free and remotely-controlled electrical stimulator.
Collapse
Affiliation(s)
- Ritopa Das
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Eli J. Curry
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Thinh T. Le
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Guleid Awale
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Yang Liu
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Shunyi Li
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Joemart Contreras
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Casey Bednarz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Jayla Millender
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Xiaonan Xin
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - David Rowe
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Sharareh Emadi
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Kevin W.-H. Lo
- The Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Thanh D. Nguyen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
38
|
Li C, Li Y, Yao T, Zhou L, Xiao C, Wang Z, Zhai J, Xing J, Chen J, Tan G, Zhou Y, Qi S, Yu P, Ning C. Wireless Electrochemotherapy by Selenium-Doped Piezoelectric Biomaterials to Enhance Cancer Cell Apoptosis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34505-34513. [PMID: 32508084 DOI: 10.1021/acsami.0c04666] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cancer residues around the surgical site remain a significant cause of treatment failure with cancer recurrence. To prevent cancer recurrence and simultaneously repair surgery-caused defects, it is urgent to develop implantable biomaterials with anticancer ability and good biological activity. In this work, a functionalized implant is successfully fabricated by doping the effective anticancer element selenium (Se) into the potassium-sodium niobate piezoceramic, which realizes the wireless combination of electrotherapy and chemotherapy. Herein, we demonstrate that the Se-doped piezoelectric implant can cause mitochondrial damage by increasing intracellular reactive oxygen species levels and then trigger the caspase-3 pathway to significantly promote apoptosis of osteosarcoma cells in vitro. Meanwhile, its good biocompatibility has been verified. These results are of great importance for future deployment of wireless electro- and chemostimulation to modulate biological process around the defective tissue.
Collapse
Affiliation(s)
- Changhao Li
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yangfan Li
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Tiantian Yao
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Lei Zhou
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Cairong Xiao
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zhengao Wang
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jinxia Zhai
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jun Xing
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Junqi Chen
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yahong Zhou
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Suijian Qi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Peng Yu
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chengyun Ning
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
39
|
Chu YC, Lim J, Hwang WH, Lin YX, Wang JL. Piezoelectric stimulation by ultrasound facilitates chondrogenesis of mesenchymal stem cells. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:EL58. [PMID: 32752766 DOI: 10.1121/10.0001590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A cellular stimulation device utilizing an AT-cut quartz coverslip mounted on an ultrasonic live imaging chamber is developed to investigate the effect of piezoelectric stimulation. Two types of chambers deliver ultrasound at intensities ranging from 1 to 20 mW/cm2 to mesenchymal stem cells (MSCs) seeded on the quartz coverslip. The quartz coverslip imposes additionally localized electric charges as it vibrates with the stimulation. The device was applied to explore whether piezoelectric stimulation can facilitate chondrogenesis of MSCs. The results suggest piezoelectric stimulation drove clustering of MSCs and consequently facilitated chondrogenesis of MSCs without the use of differentiation media.
Collapse
Affiliation(s)
- Ya-Cherng Chu
- Department of Biomedical Engineering, National Taiwan University, Taipei, , , , ,
| | - Jormay Lim
- Department of Biomedical Engineering, National Taiwan University, Taipei, , , , ,
| | - Wen-Hao Hwang
- Department of Biomedical Engineering, National Taiwan University, Taipei, , , , ,
| | - Yu-Xuan Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei, , , , ,
| | - Jaw-Lin Wang
- Department of Biomedical Engineering, National Taiwan University, Taipei, , , , ,
| |
Collapse
|
40
|
3D Printing of Piezoelectric Barium Titanate-Hydroxyapatite Scaffolds with Interconnected Porosity for Bone Tissue Engineering. MATERIALS 2020; 13:ma13071773. [PMID: 32283869 PMCID: PMC7179021 DOI: 10.3390/ma13071773] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 11/16/2022]
Abstract
The prevalence of large bone defects is still a major problem in surgical clinics. It is, thus, not a surprise that bone-related research, especially in the field of bone tissue engineering, is a major issue in medical research. Researchers worldwide are searching for the missing link in engineering bone graft materials that mimic bones, and foster osteogenesis and bone remodeling. One approach is the combination of additive manufacturing technology with smart and additionally electrically active biomaterials. In this study, we performed a three-dimensional (3D) printing process to fabricate piezoelectric, porous barium titanate (BaTiO3) and hydroxyapatite (HA) composite scaffolds. The printed scaffolds indicate good cytocompatibility and cell attachment as well as bone mimicking piezoelectric properties with a piezoelectric constant of 3 pC/N. This work represents a promising first approach to creating an implant material with improved bone regenerating potential, in combination with an interconnected porous network and a microporosity, known to enhance bone growth and vascularization.
Collapse
|
41
|
Wang X, Peng X, Yue P, Qi H, Liu J, Li L, Guo C, Xie H, Zhou X, Yu X. A novel CPC composite cement reinforced by dopamine coated SCPP fibers with improved physicochemical and biological properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110544. [PMID: 32228928 DOI: 10.1016/j.msec.2019.110544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 11/13/2019] [Accepted: 12/11/2019] [Indexed: 02/05/2023]
Abstract
Traditional CPC cements have attracted wide attentions in repairing bone defects for injectability, easy plasticity and good osseointegration. However, its further application was limited by poor mechanical properties, long setting time and unsatisfactory biocompatibility. To solve these problems, polydopamine (DOPA) coated strontium-doped calcium polyphosphate (SCPP) fibers were added into CPC cements for the first time. A doping amount at fiber weight fraction of 0%, 1%, 2% and 5% was designed to develop a multifunctional composite fitting for bone tissues' regeneration and reconstruction and the optimum amount was selected through subsequent physicochemical and biological characterizations. The results implied DOPA coating successfully formed stable connections between SCPP fibers and CPC matrix, which simultaneously reinforced biomechanical strength and tenacity (5% SCPP/D/CPC samples exhibited more prominent mechanical property than others). In addition, 5% D/SCPP fibers doped composite cements were characterized as markedly-improved cytocompatibility: Sr2+ introduction induced cytoactive and significantly accelerated proliferation, attachment and spreading of osteoblasts. Besides, it also stimulated the secretion of OT, Col-I and ALP from seeded MG63, which was a critical character for further inducing osteogenic process, mineralization and bone tissues formation. The promoted cytocompatibility and improved osteogenesis-related growth factors' secretion could be attributed to constant and controllable release of Sr2+ and this deduction was approved by ICP analysis. In addition, Sr doping made this novel cement had a potential efficacy to inhibit aseptic loosening. In a word, present studies all demonstrated 5% SCPP/D/CPC composites could be a potential candidate material employed in bone regeneration and reconstruction for excellent mechanical property and cytocompatibility.
Collapse
Affiliation(s)
- Xu Wang
- Sichuan University, College of Polymer Science and Engineering, Chengdu, Sichuan province, 610065, PR China; Chengdu University of TCM, College of Acupuncture and Massage College,No. 37, Twelve Bridge Road, Chengdu,Sichuan province,610075,PR China
| | - Xu Peng
- Sichuan University, College of Polymer Science and Engineering, Chengdu, Sichuan province, 610065, PR China; Sichuan University,Laboratory animal center, No.24 South Section 1, Yihuan Road, Chengdu ,Sichuan province,610065, PR China
| | - Pengfei Yue
- West China Hospital of Sichuan University, Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, No.17 People's South Road,Chengdu,Sichuan province,610041, PR China
| | - Hao Qi
- Sichuan University, College of Polymer Science and Engineering, Chengdu, Sichuan province, 610065, PR China
| | - Jingwang Liu
- Sichuan University, College of Polymer Science and Engineering, Chengdu, Sichuan province, 610065, PR China
| | - Li Li
- The 452 Hospital of Chinese PLA, Department of Oncology, No.317 Jiuyanqiao shunjiang Road,Chengdu, Sichuan province, 610021, PR China
| | - Chengrui Guo
- Sichuan University, College of Polymer Science and Engineering, Chengdu, Sichuan province, 610065, PR China
| | - Huixu Xie
- West China Hospital of Sichuan University, Department of Head and neck oncology, No.17 People's South Road,Chengdu, Sichuan province, 610021, PR China
| | - Xiong Zhou
- Sichuan University, College of Polymer Science and Engineering, Chengdu, Sichuan province, 610065, PR China
| | - Xixun Yu
- Sichuan University, College of Polymer Science and Engineering, Chengdu, Sichuan province, 610065, PR China.
| |
Collapse
|
42
|
Recent Developments and Prospects of M13- Bacteriophage Based Piezoelectric Energy Harvesting Devices. NANOMATERIALS 2020; 10:nano10010093. [PMID: 31906516 PMCID: PMC7022932 DOI: 10.3390/nano10010093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Recently, biocompatible energy harvesting devices have received a great deal of attention for biomedical applications. Among various biomaterials, viruses are expected to be very promising biomaterials for the fabrication of functional devices due to their unique characteristics. While other natural biomaterials have limitations in mass-production, low piezoelectric properties, and surface modification, M13 bacteriophages (phages), which is one type of virus, are likely to overcome these issues with their mass-amplification, self-assembled structure, and genetic modification. Based on these advantages, many researchers have started to develop virus-based energy harvesting devices exhibiting superior properties to previous biomaterial-based devices. To enhance the power of these devices, researchers have tried to modify the surface properties of M13 phages, form biomimetic hierarchical structures, control the dipole alignments, and more. These methods for fabricating virus-based energy harvesting devices can form a powerful strategy to develop high-performance biocompatible energy devices for a wide range of practical applications in the future. In this review, we discuss all these issues in detail.
Collapse
|
43
|
Araújo R, Carneiro TJ, Marinho P, da Costa MM, Roque A, da Cruz E Silva OAB, Fernandes MH, Vilarinho PM, Gil AM. NMR metabolomics to study the metabolic response of human osteoblasts to non-poled and poled poly (L-lactic) acid. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:919-933. [PMID: 31058384 DOI: 10.1002/mrc.4883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Untargeted nuclear magnetic resonance (NMR) metabolomics was employed, for the first time to our knowledge, to characterize the metabolome of human osteoblast (HOb) cells and extracts in the presence of non-poled or negatively poled poly-L-lactic acid (PLLA). The metabolic response of these cells to this polymer, extensively used in bone regeneration strategies, may potentially translate into useful markers indicative of in vivo biomaterial performance. We present preliminary results of multivariate and univariate analysis of NMR spectra, which have shown the complementarity of lysed cells and extracts in terms of information on cell metabolome, and unveil that, irrespective of poling state, PLLA-grown cells seem to experience enhanced oxidative stress and activated energy metabolism, at the cost of storage lipids and glucose. Possible changes in protein and nucleic acid metabolisms were also suggested, as well as enhanced membrane biosynthesis. Therefore, the presence of PLLA seems to trigger cell catabolism and anti-oxidative protective mechanisms in HOb cells, while directing them towards cellular growth. This was not sufficient, however, to lead to a visible cell proliferation enhancement in the presence of PLLA, although a qualitative tendency for negatively poled PLLA to be more effective in sustaining cell growth than non-poled PLLA was suggested. These preliminary results indicate the potential of NMR metabolomics in enlightening cell metabolism in response to biomaterials and their properties, justifying further studies of the fine effects of poled PLLA on these and other cells of significance in tissue regeneration strategies.
Collapse
Affiliation(s)
- Rita Araújo
- Department of Chemistry and CICECO-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Aveiro, Portugal
| | - Tatiana J Carneiro
- Department of Chemistry and CICECO-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Aveiro, Portugal
| | - Paula Marinho
- Department of Chemistry and CICECO-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Aveiro, Portugal
| | - Marisa Maltez da Costa
- Department of Chemistry and CICECO-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Aveiro, Portugal
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Aveiro, Portugal
| | - Ana Roque
- Department of Medical Sciences, iBIMED-Institute for Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Department of Medical Sciences, iBIMED-Institute for Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Maria Helena Fernandes
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Aveiro, Portugal
| | - Paula M Vilarinho
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Aveiro, Portugal
| | - Ana M Gil
- Department of Chemistry and CICECO-Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
44
|
Zhou Z, Yu P, Zhou L, Tu L, Fan L, Zhang F, Dai C, Liu Y, Ning C, Du J, Tan G. Polypyrrole Nanocones and Dynamic Piezoelectric Stimulation-Induced Stem Cell Osteogenic Differentiation. ACS Biomater Sci Eng 2019; 5:4386-4392. [PMID: 33438404 DOI: 10.1021/acsbiomaterials.9b00812] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Imitating the physiological microenvironment of living cell and tissues opens new avenues of research into the application of electricity to medical therapies. In this study, dynamic piezoelectric stimulation is generated in a dynamic culture because of the piezoelectric effect of the poly(vinylidene fluoride)-polypyrrole (PVDF-PPy) electroactive composite. Combined with PPy nanocones, dynamic piezoelectric signals are effectively and continuously provided to cells. In the presence of dynamic piezoelectric stimulation and PPy nanocones, PPy-PVDF NS samples show promoted bone mesenchymal stem cell (BMSCs) adhesion, spreadin, and osteogenic differentiation. On the basis of the results of this study, PPy nanocones and dynamic piezoelectric stimulation can be administered to modulate cell behavior, paving the way for the exploration of cellular responses to dynamic electrical stimulation.
Collapse
Affiliation(s)
- Zhengnan Zhou
- Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Peng Yu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lei Zhou
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lingjie Tu
- Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Lei Fan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Fengmiao Zhang
- Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Cong Dai
- Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Liu
- Orthopedics Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Chengyun Ning
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,Guangdong Key Laboratory of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jianqiang Du
- Department of Nuclear Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Guoxin Tan
- Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
45
|
Zhang K, Xing J, Chen J, Wang Z, Zhai J, Yao T, Tan G, Qi S, Chen D, Yu P, Ning C. A spatially varying charge model for regulating site-selective protein adsorption and cell behaviors. Biomater Sci 2019; 7:876-888. [PMID: 30556087 DOI: 10.1039/c8bm01158c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Implanted materials that enter the body first interact with proteins in body fluids, and cells then perceive and respond to the foreign implant through this layer of adsorbed proteins. Thus, spatially specific regulation of protein adsorption on an implant surface is pivotal for mediating subsequent cellular behaviors. Unlike the surface modulation strategy for traditional biomaterials, in this research, materials with a nonuniform spatial distribution of surface charges were designed to achieve site-selective protein adsorption and further influence cell behavior by charge regulation. Spatially varying microdomains with different levels of piezoelectricity were generated via a focus laser beam-induced phase transition. In addition, after polarization, the zones with different levels of piezoelectricity showed significant differences in surface charge density. The results of scanning Kelvin probe force microscopy (SKPM) showed that the surface charge on the material exhibits a nonuniform spatial distribution after laser irradiation and polarization. Site-specific charge-mediated selective protein adsorption was demonstrated through a protein adsorption experiment. Cell behavior analysis showed that the increase in charge density was conducive to promoting cell adhesion and the formation of filopodia while the nonuniform spatial distribution of charge promoted an oriented arrangement of cells; both features accelerated cell migration. This study provides a new method for spatially regulating protein adsorption through surface charges to further influence cell behaviors.
Collapse
Affiliation(s)
- Kejia Zhang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bai Y, Dai X, Yin Y, Wang J, Sun X, Liang W, Li Y, Deng X, Zhang X. Biomimetic piezoelectric nanocomposite membranes synergistically enhance osteogenesis of deproteinized bovine bone grafts. Int J Nanomedicine 2019; 14:3015-3026. [PMID: 31118619 PMCID: PMC6503198 DOI: 10.2147/ijn.s197824] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/03/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose: The combination of a bone graft with a barrier membrane is the classic method for guided bone regeneration (GBR) treatment. However, the insufficient osteoinductivity of currently-available barrier membranes and the consequent limited bone regeneration often inhibit the efficacy of bone repair. In this study, we utilized the piezoelectric properties of biomaterials to enhance the osteoinductivity of barrier membranes. Methods: A flexible nanocomposite membrane mimicking the piezoelectric properties of natural bone was utilized as the barrier membrane. Its therapeutic efficacy in repairing critical-sized rabbit mandible defects in combination with xenogenic grafts of deproteinized bovine bone (DBB) was explored. The nanocomposite membranes were fabricated with a homogeneous distribution of piezoelectric BaTiO3 nanoparticles (BTO NPs) embedded within a poly(vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) matrix. Results: The piezoelectric coefficient of the polarized nanocomposite membranes was close to that of human bone. The piezoelectric coefficient of the polarized nanocomposite membranes was highly stable, with more than 90% of the original piezoelectric coefficient (d33) remaining up to 28 days after immersion in culture medium. Compared with commercially-available polytetrafluoroethylene (PTFE) membranes, the polarized BTO/P(VDF-TrFE) nanocomposite membranes exhibited higher osteoinductivity (assessed by immunofluorescence staining for runt-related transcription factor 2 (RUNX-2) expression) and induced significantly earlier neovascularization and complete mature bone-structure formation within the rabbit mandible critical-sized defects after implantation with DBB Bio-Oss® granules. Conclusion: Our findings thus demonstrated that the piezoelectric BTO/P(VDF-TrFE) nanocomposite membranes might be suitable for enhancing the clinical efficacy of GBR.
Collapse
Affiliation(s)
- Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Xiaohan Dai
- Xiangya Stomatological Hospital, Central South University, Changsha 410078, People's Republic of China
| | - Ying Yin
- Xiangya Stomatological Hospital, Central South University, Changsha 410078, People's Republic of China
| | - Jiaqi Wang
- Xiangya Stomatological Hospital, Central South University, Changsha 410078, People's Republic of China
| | - Xiaowen Sun
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Weiwei Liang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Yiping Li
- Xiangya Stomatological Hospital, Central South University, Changsha 410078, People's Republic of China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China.,Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| |
Collapse
|
47
|
The antibacterial effect of potassium-sodium niobate ceramics based on controlling piezoelectric properties. Colloids Surf B Biointerfaces 2018; 175:463-468. [PMID: 30572154 DOI: 10.1016/j.colsurfb.2018.12.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/16/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
The implant infection is one of the most serious postsurgical complications of medical device implantation. Therefore, the development of biocompatible materials with improved antibacterial properties is of great importance. It might be a new insight to apply the intrinsic electrical properties of biomaterials to solve this problem. Here, potassium-sodium niobate piezoceramics (K0.5Na0.5NbO3, KNN) with different piezoelectric constants were prepared, and the microstructures and piezoelectric properties of these piezoceramics were evaluated. Moreover, the antibacterial effect and biocompatibility of these piezoceramics were assayed. Results showed that these piezoceramics were able to decrease the colonies of bacteria staphylococcus aureus (S. aureus), favor the rat bone marrow mesenchymal stem cells (rBMSCs) proliferation and promote the cell adhesion and spreading. The above effects were found closely related to the surface positive charges of the piezoceramics, and the sample bearing the most positive charges on its surface (sample 80KNN) had the best performance in both antibacterial effect and biocompatibility. Based on our work, it is feasible to develop biocompatible antibacterial materials by controlling piezoelectric properties.
Collapse
|
48
|
Li T, Zeng K. Probing of Local Multifield Coupling Phenomena of Advanced Materials by Scanning Probe Microscopy Techniques. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803064. [PMID: 30306656 DOI: 10.1002/adma.201803064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/22/2018] [Indexed: 06/08/2023]
Abstract
The characterization of the local multifield coupling phenomenon (MCP) in various functional/structural materials by using scanning probe microscopy (SPM)-based techniques is comprehensively reviewed. Understanding MCP has great scientific and engineering significance in materials science and engineering, as in many practical applications, materials and devices are operated under a combination of multiple physical fields, such as electric, magnetic, optical, chemical and force fields, and working environments, such as different atmospheres, large temperature fluctuations, humidity, or acidic space. The materials' responses to the synergetic effects of the multifield (physical and environmental) determine the functionalities, performance, lifetime of the materials, and even the devices' manufacturing. SPM techniques are effective and powerful tools to characterize the local effects of MCP. Here, an introduction of the local MCP, the descriptions of several important SPM techniques, especially the electrical, mechanical, chemical, and optical related techniques, and the applications of SPM techniques to investigate the local phenomena and mechanisms in oxide materials, energy materials, biomaterials, and supramolecular materials are covered. Finally, an outlook of the MCP and SPM techniques in materials research is discussed.
Collapse
Affiliation(s)
- Tao Li
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
- Center for Spintronics and Quantum System, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Shaanxi, 710049, Xi'an, China
| | - Kaiyang Zeng
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| |
Collapse
|
49
|
Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater 2018; 73:1-20. [PMID: 29673838 DOI: 10.1016/j.actbio.2018.04.026] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/19/2018] [Accepted: 04/15/2018] [Indexed: 12/14/2022]
Abstract
The process of bone repair and regeneration requires multiple physiological cues including biochemical, electrical and mechanical - that act together to ensure functional recovery. Myriad materials have been explored as bioactive scaffolds to deliver these cues locally to the damage site, amongst these piezoelectric materials have demonstrated significant potential for tissue engineering and regeneration, especially for bone repair. Piezoelectric materials have been widely explored for power generation and harvesting, structural health monitoring, and use in biomedical devices. They have the ability to deform with physiological movements and consequently deliver electrical stimulation to cells or damaged tissue without the need of an external power source. Bone itself is piezoelectric and the charges/potentials it generates in response to mechanical activity are capable of enhancing bone growth. Piezoelectric materials are capable of stimulating the physiological electrical microenvironment, and can play a vital role to stimulate regeneration and repair. This review gives an overview of the association of piezoelectric effect with bone repair, and focuses on state-of-the-art piezoelectric materials (polymers, ceramics and their composites), the fabrication routes to produce piezoelectric scaffolds, and their application in bone repair. Important characteristics of these materials from the perspective of bone tissue engineering are highlighted. Promising upcoming strategies and new piezoelectric materials for this application are presented. STATEMENT OF SIGNIFICANCE Electrical stimulation/electrical microenvironment are known effect the process of bone regeneration by altering the cellular response and are crucial in maintaining tissue functionality. Piezoelectric materials, owing to their capability of generating charges/potentials in response to mechanical deformations, have displayed great potential for fabricating smart stimulatory scaffolds for bone tissue engineering. The growing interest of the scientific community and compelling results of the published research articles has been the motivation of this review article. This article summarizes the significant progress in the field with a focus on the fabrication aspects of piezoelectric materials. The review of both material and cellular aspects on this topic ensures that this paper appeals to both material scientists and tissue engineers.
Collapse
|
50
|
Zhang C, Liu W, Cao C, Zhang F, Tang Q, Ma S, Zhao J, Hu L, Shen Y, Chen L. Modulating Surface Potential by Controlling the β Phase Content in Poly(vinylidene fluoridetrifluoroethylene) Membranes Enhances Bone Regeneration. Adv Healthc Mater 2018; 7:e1701466. [PMID: 29675849 DOI: 10.1002/adhm.201701466] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/07/2018] [Indexed: 12/11/2022]
Abstract
Bioelectricity plays a vital role in living organisms. Although electrical stimulation is introduced in the field of bone regeneration, the concept of a dose-response relationship between surface potential and osteogenesis is not thoroughly studied. To optimize the osteogenic properties of different surface potentials, a flexible piezoelectric membrane, poly(vinylidene fluoridetrifluoroethylene) [P(VDF-TrFE)], is fabricated by annealing treatment to control its β phases. The surface potential and piezoelectric coefficients (d33 ) of the membranes can be regulated by increasing β phase contents. Compared with d33 = 20 pC N-1 (surface potential = -78 mV) and unpolarized membranes, bone marrow mesenchymal stem cells (BM-MSCs) cultured on the d33 = 10 pC N-1 (surface potential = -53 mV) membranes have better osteogenic properties. In vivo, d33 = 10 pC N-1 membranes result in rapid bone regeneration and complete mature bone-structure formation. BM-MSCs on d33 = 10 pC N-1 membranes have the lowest reactive oxygen species level and the highest mitochondrial membrane electric potential, implying that these membranes provide the best electrical qunantity for BM-MSCs' proliferation and energy metabolism. This study establishes an effective method to control the surface potential of P(VDF-Trfe) membranes and highlights the importance of optimized electrical stimulation in bone regeneration.
Collapse
Affiliation(s)
- Chenguang Zhang
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Wenwen Liu
- Department of Geriatric Dentistry; Peking University School and Hospital of Stomatology; Beijing 100081 China
| | - Cen Cao
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Fengyi Zhang
- Department of Geriatric Dentistry; Peking University School and Hospital of Stomatology; Beijing 100081 China
| | - Qingming Tang
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Siqin Ma
- Department of Geriatric Dentistry; Peking University School and Hospital of Stomatology; Beijing 100081 China
| | - JiaJia Zhao
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Li Hu
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| | - Yang Shen
- State Key Laboratory of New Ceramics and Fine Processing; Department of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
| | - Lili Chen
- Department of Stomatology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430022 China
| |
Collapse
|