1
|
Liu Z, Wang Y, Li L, Liu L, Li Y, Li Z, Xie Y, Yu F. SNAI2, a potential crossing point between cancer and cardiovascular disease. FASEB J 2025; 39:e70459. [PMID: 40059450 DOI: 10.1096/fj.202500198r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 05/13/2025]
Abstract
Cancer and cardiovascular disease remain the leading causes of morbidity and mortality worldwide, and the two separate disease entities share several similarities and possible interactions. Patients with cancer may have underlying cardiovascular disease, which is often exacerbated by the stress of tumor growth or treatment. At the same time, cardiotoxicity induced by anti-cancer therapies or the malignant process itself can lead to new cardiovascular diseases. Efforts have been made to find a rational explanation for this phenomenon. As a classical tumor-promoting factor, we notice that SNAI2 simultaneously plays an important pathogenic role in cardiovascular diseases. Moreover, there are several striking parallels in the mechanisms of cancer and CVD, such as shared risk factors (e.g., smoking and diabetes), cellular phenotypic switching, and metabolic remodeling, all of which are mediated by SNAI2. This review aims to summarize SNAI2's role in the core mechanisms linking cancer and CVD, as well as explore therapeutic approaches targeting SNAI2 and also seeks to provide insights into the common mechanisms underlying both cancer and CVD.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yingzi Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lei Li
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Linlu Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhao Li
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhixin Li
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yucheng Xie
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fengxu Yu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Cardiovascular Remodeling and Dysfunction Key Laboratory of Luzhou, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Hussain MS, Agrawal M, Shaikh NK, Saraswat N, Bahl G, Maqbool Bhat M, Khurana N, Bisht AS, Tufail M, Kumar R. Beyond the Genome: Deciphering the Role of MALAT1 in Breast Cancer Progression. Curr Genomics 2024; 25:343-357. [PMID: 39323624 PMCID: PMC11420562 DOI: 10.2174/0113892029305656240503045154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 09/27/2024] Open
Abstract
The MALAT1, a huge non-coding RNA, recently came to light as a multifaceted regulator in the intricate landscape of breast cancer (BC) progression. This review explores the multifaceted functions and molecular interactions of MALAT1, shedding light on its profound implications for understanding BC pathogenesis and advancing therapeutic strategies. The article commences by acknowledging the global impact of BC and the pressing need for insights into its molecular underpinnings. It is stated that the core lncRNA MALAT1 has a range of roles in both healthy and diseased cell functions. The core of this review unravels MALAT1's multifaceted role in BC progression, elucidating its participation in critical processes like resistance, invasion, relocation, and proliferating cells to therapy. It explores the intricate mechanisms through which MALAT1 modulates gene expression, interacts with other molecules, and influences signalling pathways. Furthermore, the paper emphasizes MALAT1's clinical significance as a possible prognostic and diagnostic biomarker. Concluding on a forward-looking note, the review highlights the broader implications of MALAT1 in BC biology, such as its connections to therapy resistance and metastasis. It underscores the significance of deeper investigations into these intricate molecular interactions to pave the way for precision medicine approaches. This review highlights the pivotal role of MALAT1 in BC progression by deciphering its multifaceted functions beyond the genome, offering profound insights into its implications for disease understanding and the potential for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan (302017), India
| | - Mohit Agrawal
- Department of Pharmacology, School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram 122103, India
| | - Nusratbanu K. Shaikh
- Department of Quality Assurance, Smt. N. M. Padalia Pharmacy College, Ahmedabad, 382210, Gujarat, India
| | - Nikita Saraswat
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan (302017), India
| | - Gurusha Bahl
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan (302017), India
| | - Mudasir Maqbool Bhat
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand (248001), India
| | - Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Nousiopoulou E, Vrettou K, Damaskos C, Garmpis N, Garmpi A, Tsikouras P, Nikolettos N, Nikolettos K, Psilopatis I. The Role of Urothelial Cancer-Associated 1 in Gynecological Cancers. Curr Issues Mol Biol 2024; 46:2772-2797. [PMID: 38534790 DOI: 10.3390/cimb46030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
Gynecological cancers (GC) represent some of the most frequently diagnosed malignancies in women worldwide. Long-non-coding RNAs (lncRNAs) are regulatory RNAs increasingly being recognized for their role in tumor progression and metastasis in various cancers. Urothelial cancer-associated 1 (UCA1) is a lncRNA, first found deregulated in bladder cancer, and many studies have exposed its oncogenic effects in more tumors since. However, the role of UCA1 in gynecological malignancies is still unclear. This review aims to analyze and define the role of UCA1 in GC, in order to identify its potential use as a diagnostic, prognostic, or therapeutic biomarker of GC. By employing the search terms "UCA1", "breast cancer", "endometrial cancer", "ovarian cancer", "cervical cancer", "vaginal cancer", and "vulvar cancer" in the PubMed database for the literature review, we identified a total of sixty-three relevant research articles published between 2014 and 2024. Although there were some opposing results, UCA1 was predominantly found to be upregulated in most of the breast, endometrial, ovarian, cervical, and vulvar cancer cells, tissue samples, and mouse xenograft models. UCA1 overexpression mainly accounts for enhanced tumor proliferation and increased drug resistance, while also being associated with some clinicopathological features, such as a high histological grade or poor prognosis. Nonetheless, no reviews were identified about the involvement of UCA1 in vaginal carcinogenesis. Therefore, further clinical trials are required to explore the role of UCA1 in these malignancies and, additionally, examine its possible application as a target for upcoming treatments, or as a novel biomarker for GC diagnosis and prognosis.
Collapse
Affiliation(s)
- Eleni Nousiopoulou
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Kleio Vrettou
- Department of Cytopathology, Sismanogleio General Hospital, 15126 Athens, Greece
| | - Christos Damaskos
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Nikolaos Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Anna Garmpi
- First Department of Propedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Panagiotis Tsikouras
- Obstetric and Gynecologic Clinic, Medical School, Democritus University of Thrace, 68110 Alexandroupolis, Greece
| | - Nikolaos Nikolettos
- Obstetric and Gynecologic Clinic, Medical School, Democritus University of Thrace, 68110 Alexandroupolis, Greece
| | - Konstantinos Nikolettos
- Obstetric and Gynecologic Clinic, Medical School, Democritus University of Thrace, 68110 Alexandroupolis, Greece
| | - Iason Psilopatis
- Universitätsklinikum Erlangen-Frauenklinik, Universitätsstraße 21/23, 91054 Erlangen, Germany
| |
Collapse
|
4
|
Yang F, Yang Y, Qiu Y, Tang L, Xie L, Guan X. Long Non-Coding RNAs as Regulators for Targeting Breast Cancer Stem Cells and Tumor Immune Microenvironment: Biological Properties and Therapeutic Potential. Cancers (Basel) 2024; 16:290. [PMID: 38254782 PMCID: PMC10814583 DOI: 10.3390/cancers16020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer stem cells (BCSCs) is a subpopulation of cancer cells with self-renewal and differentiation capacity, have been suggested to give rise to tumor heterogeneity and biologically aggressive behavior. Accumulating evidence has shown that BCSCs play a fundamental role in tumorigenesis, progression, and recurrence. The development of immunotherapy, primarily represented by programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors, has greatly changed the treatment landscape of multiple malignancies. Recent studies have identified pervasive negative associations between cancer stemness and anticancer immunity. Stemness seems to play a causative role in the formation of cold tumor immune microenvironment (TIME). The multiple functions of long non-coding RNAs (lncRNAs) in regulating stemness and immune responses has been recently highlighted in breast cancer. The review focus on lncRNAs and keys pathways involved in the regulation of BCSCs and TIME. Potential clinical applications using lncRNAs as biomarkers or therapies will be discussed.
Collapse
Affiliation(s)
- Fang Yang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (F.Y.); (Y.Y.); (Y.Q.)
- Clinical Cancer Institute, Nanjing University, Nanjing 210008, China
| | - Yiqi Yang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (F.Y.); (Y.Y.); (Y.Q.)
- Clinical Cancer Institute, Nanjing University, Nanjing 210008, China
| | - Yuling Qiu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (F.Y.); (Y.Y.); (Y.Q.)
- Clinical Cancer Institute, Nanjing University, Nanjing 210008, China
| | - Lin Tang
- Department of Rheumatology and Immunology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China;
| | - Li Xie
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; (F.Y.); (Y.Y.); (Y.Q.)
- Clinical Cancer Institute, Nanjing University, Nanjing 210008, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
5
|
El-Ashmawy NE, Khedr EG, Abo-Saif MA, Hamouda SM. Long noncoding RNAs as regulators of epithelial mesenchymal transition in breast cancer: A recent review. Life Sci 2024; 336:122339. [PMID: 38097110 DOI: 10.1016/j.lfs.2023.122339] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
AIMS Breast cancer (BC) is the most frequently occurring cancer in women worldwide. BC patients are often diagnosed at advanced stages which are characterized by low survival rates. Distant metastasis is considered a leading cause of mortalities among BC patients. Epithelial-to-mesenchymal transition (EMT) is a transdifferentiation program that is necessary for cancer cells to acquire metastatic potential. In the last decade, long noncoding RNAs (lncRNAs) proved their significant contribution to different hallmarks of cancer, including EMT and metastasis. The primary aim of our review is to analyze recent studies concerning the molecular mechanisms of lncRNAs implicated in EMT regulation in BC. MATERIALS AND METHODS We adopted a comprehensive search on databases of PubMed, Web of Science, and Google Scholar using the following keywords: lncRNAs, EMT, breast cancer, and therapeutic targeting. KEY FINDINGS The different roles of lncRNAs in the mechanisms and signaling pathways governing EMT in BC were summarized. LncRNAs could induce or inhibit EMT through WNT/β-catenin, transforming growth factor-β (TGF-β), Notch, phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), signal transducer and activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) pathways as well as via their interaction with histone modifying complexes and miRNAs. SIGNIFICANCE LncRNAs are key regulators of EMT and BC metastasis, presenting potential targets for therapeutic interventions. Further research is necessary to investigate the practical application of lncRNAs in clinical therapeutics.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| | - Eman G Khedr
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| | - Mariam A Abo-Saif
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| | - Sara M Hamouda
- Faculty of Pharmacy, Tanta University, Al-Geish Street, Tanta, El-Gharbia, Egypt.
| |
Collapse
|
6
|
Chen C, Wang N, Huang T, Cheng G, Hu Y, Wang B, Zhang Y, Wang C. Chloroprocaine antagonizes progression of breast cancer by regulating LINC00494/miR-3619-5p/MED19 axis. J Biochem Mol Toxicol 2024; 38:e23524. [PMID: 37650745 DOI: 10.1002/jbt.23524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/03/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Breast cancer, as the most prevalent female malignancy, leads the cancer-related death in women worldwide. Local anesthetic chloroprocaine exhibits antitumor potential, but its specific functions and underlying molecular mechanisms in breast cancer remain unclear. Here, we demonstrated chloroprocaine significantly inhibited proliferation, invasion and induced apoptosis of breast cancer cells in vitro. Tumor growth and pulmonary metastasis were also suppressed in BABL/c nude mice model with chloroprocaine treatment. LINC00494 was identified as one of the most downregulated long noncoding RNAs in chloroprocaine-treated breast cancer cells by high-throughput sequencing. Futhermore, high level of LINC00494 was positively associated with poor outcome of breast cancer patients. LINC00494 acted as a "miRNAs sponge" to compete with MED19 for the biding of miR-3619-5p, led to the upregulation of MED19. LINC00494/miR-3619-5p/MED19 axis participated in chloroprocaine-mediated inhibition of proliferation, invasion and promotion of apoptosis of breast cancer cells. Consequently, our finding suggested local anesthetic chloroprocaine attenuated breast cancer aggressiveness through LINC00494-mediated signaling pathway, which detailly revealed the clinical value of chloroprocaine during breast cancer treatment.
Collapse
Affiliation(s)
- Chen Chen
- Department of Anesthesiology, The First Affifiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
| | - Ning Wang
- Department of Anesthesiology, The First Affifiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tingting Huang
- Department of Anesthesiology, The First Affifiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Gao Cheng
- Department of Anesthesiology, The First Affifiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Yuexia Hu
- Department of Anesthesiology, The First Affifiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Bingjie Wang
- Department of Anesthesiology, The First Affifiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
| | - Chunhui Wang
- Department of Anesthesiology, The First Affifiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| |
Collapse
|
7
|
孙 建, 张 逸, 杨 丽, 周 立, 卢 喜, 李 久, 陈 萍. [High expression of long noncoding RNA UCA1 promotes invasion, migration and epithelial-mesenchymal transition of trophoblasts in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1984-1988. [PMID: 38081619 PMCID: PMC10713461 DOI: 10.12122/j.issn.1673-4254.2023.11.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Indexed: 12/18/2023]
Abstract
OBJECTIVE To investigate the role of urothelial carcinoma antigen 1 (UCA1) in regulation of invasion, migration and epithelial-mesenchymal transition (EMT) of trophoblast HTR-8/SVneo cells and its association with tubal pregnancy. METHODS Cultured HTR- 8/SVneo cells stimulated with interleukin-6 (IL-6) were examined for changes in UCA1 expression and cell migration ability using qRT-PCR and scratch assay, respectively. A HTR-8/SVneo cell model with UCA1 silencing was constructed by transient transfection, and the migration and invasion abilities of the cells were assessed using Scratch assay and Transwell assay; qRT-PCR and Western blotting were performed to detect the mRNA and protein expression levels of EMT markers. RESULTS HTR-8/SVneo cells stimulated with IL-6 exhibited significantly increased migration ability and up-regulated expression of UCA1 (P < 0.01). UCA1 silencing obviously suppressed migration and invasion abilities of HTR-8/SVneo cells (P < 0.01), significantly up-regulated the mRNA and protein expressions of EMT epithelial marker E-cadherin (P < 0.01), and down-regulated the expressions of the mesenchymal markers integrin β3, vimentin and N-cadherin (P < 0.05). CONCLUSION UCA1 may be a key gene that promotes the occurrence of tubal pregnancy and thus provides a new therapeutic target for tubal pregnancy.
Collapse
Affiliation(s)
- 建华 孙
- 河南中医药大学第一临床医学院,河南 郑州 450046First Clinical College of Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
- 河南中医药大学第一附属医院妇产科,河南 郑州 450099Department of Obstetrics and Gynecology, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450099, China
| | - 逸 张
- 河南中医药大学第一临床医学院,河南 郑州 450046First Clinical College of Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - 丽萍 杨
- 河南中医药大学第一临床医学院,河南 郑州 450046First Clinical College of Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - 立 周
- 河南中医药大学第一临床医学院,河南 郑州 450046First Clinical College of Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
- 河南中医药大学第一附属医院妇产科,河南 郑州 450099Department of Obstetrics and Gynecology, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450099, China
| | - 喜洋 卢
- 河南中医药大学第一附属医院妇产科,河南 郑州 450099Department of Obstetrics and Gynecology, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450099, China
| | - 久现 李
- 河南中医药大学第一附属医院妇产科,河南 郑州 450099Department of Obstetrics and Gynecology, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450099, China
| | - 萍 陈
- 河南中医药大学第一临床医学院,河南 郑州 450046First Clinical College of Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
8
|
Hussen BM, Hidayat HJ, Abdullah SR, Mohamadtahr S, Rasul MF, Samsami M, Taheri M. Role of long non-coding RNAs and TGF-β signaling in the regulation of breast cancer pathogenesis and therapeutic targets. Cytokine 2023; 170:156351. [PMID: 37657235 DOI: 10.1016/j.cyto.2023.156351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
The cytokine known as transforming growth factor (TGF) is essential for cell development, differentiation, and apoptosis in BC. TGF-β dysregulation can either promote or inhibit tumor development, and it is a key signaling pathway in BC spread. A recently identified family of ncRNAs known as lncRNAs has received a great deal of effort and is an important regulator of many cellular processes, including transcription of genes, chromatin remodeling, progression of the cell cycle, and posttranscriptional processing. Furthermore, both TGF-β signaling and lncRNAs serve as important early-stage biomarkers for BC diagnosis and prognosis and also play a significant role in BC drug resistance. According to recent studies, lncRNAs can regulate TGF-β by modulating its cofactors in BC. However, the particular functions of lncRNAs and the TGF-β pathway in controlling BC progression are not well understood yet. This review explores the lncRNAs' functional properties in BC as tumor suppressors or oncogenes in the regulation of genes, with a focus on dysregulated TGF-β signaling. Further, we emphasize the functional roles of lncRNAs and TGF-β pathway in the progression of BC to discover new treatment strategies and better comprehend the fundamental cellular pathways.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Kurdistan Region 44001, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Sayran Mohamadtahr
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Maharati A, Moghbeli M. Long non-coding RNAs as the critical regulators of PI3K/AKT, TGF-β, and MAPK signaling pathways during breast tumor progression. J Transl Med 2023; 21:556. [PMID: 37596669 PMCID: PMC10439650 DOI: 10.1186/s12967-023-04434-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 08/20/2023] Open
Abstract
Breast cancer (BC) as one of the most common causes of human deaths among women, is always considered one of the global health challenges. Despite various advances in diagnostic and therapeutic methods, a significant percentage of BC patients have a poor prognosis due to the lack of therapeutic response. Therefore, investigating the molecular mechanisms involved in BC progression can improve the therapeutic and diagnostic strategies in these patients. Cytokine and growth factor-dependent signaling pathways play a key role during BC progression. In addition to cytokines and growth factors, long non-coding RNAs (lncRNAs) have also important roles in regulation of such signaling pathways. Therefore, in the present review we discussed the role of lncRNAs in regulation of PI3K/AKT, MAPK, and TGF-β signaling pathways in breast tumor cells. It has been shown that lncRNAs mainly have an oncogenic role through the promotion of these signaling pathways in BC. This review can be an effective step in introducing the lncRNAs inhibition as a probable therapeutic strategy to reduce tumor growth by suppression of PI3K/AKT, MAPK, and TGF-β signaling pathways in BC patients. In addition, considering the oncogenic role and increased levels of lncRNAs expressions in majority of the breast tumors, lncRNAs can be also considered as the reliable diagnostic markers in BC patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Gholami M, Klashami ZN, Ebrahimi P, Mahboobipour AA, Farid AS, Vahidi A, Zoughi M, Asadi M, Amoli MM. Metformin and long non-coding RNAs in breast cancer. J Transl Med 2023; 21:155. [PMID: 36849958 PMCID: PMC9969691 DOI: 10.1186/s12967-023-03909-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/21/2023] [Indexed: 03/01/2023] Open
Abstract
Breast cancer (BC) is the second most common cancer and cause of death in women. In recent years many studies investigated the association of long non-coding RNAs (lncRNAs), as novel genetic factors, on BC risk, survival, clinical and pathological features. Recent studies also investigated the roles of metformin treatment as the firstline treatment for type 2 diabetes (T2D) played in lncRNAs expression/regulation or BC incidence, outcome, mortality and survival, separately. This comprehensive study aimed to review lncRNAs associated with BC features and identify metformin-regulated lncRNAs and their mechanisms of action on BC or other types of cancers. Finally, metformin affects BC by regulating five BC-associated lncRNAs including GAS5, HOTAIR, MALAT1, and H19, by several molecular mechanisms have been described in this review. In addition, metformin action on other types of cancers by regulating ten lncRNAs including AC006160.1, Loc100506691, lncRNA-AF085935, SNHG7, HULC, UCA1, H19, MALAT1, AFAP1-AS1, AC026904.1 is described.
Collapse
Affiliation(s)
- Morteza Gholami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeynab Nickhah Klashami
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pirooz Ebrahimi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata, Italy
| | | | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Vahidi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Zoughi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Asadi
- Metabolomics and Genomics Research Center Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Pourramezan Z, Attar FA, Yusefpour M, Azizi M, Oloomi M. Circulating LncRNAs landscape as potential biomarkers in breast cancer. Cancer Rep (Hoboken) 2023; 6:e1722. [PMID: 36274054 PMCID: PMC9940007 DOI: 10.1002/cnr2.1722] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND In Iran, the delay in diagnosis and treatment of breast cancer results in low survival rates. AIM It is essential to characterize new therapeutic targets and prognostic breast cancer biomarkers. The rising evidence suggested that long non-coding RNAs (lncRNAs) expression levels are deregulated in human cancers and can use as biomarkers for the rapid diagnosis of breast cancer. METHODS In the present study, a quantitative real-time polymerase chain reaction (qRT-PCR) technique was used to measure 20 oncogenic and tumor suppressor lncRNAs expression levels in whole blood samples of female breast cancer patients and healthy women. Receiver operating characteristic curve (ROC) was used to assess the diagnostic value of each selected lncRNA as a biomarker. RESULTS The results revealed that some circulating lncRNAs (MEG3, NBAT1, NKILA, GAS5, EPB41L4A-AS2, Z38, and BC040587) were significantly down-regulated in breast cancer patients compared to healthy women. In contrast, other circulating lncRNAs (H19, SPRY4-IT1, XIST, UCA1, AC026904.1, CCAT1, CCAT2, ITGB2-AS, and AK058003) were significantly up-regulated in breast cancer patients compared to controls. It was shown that the expression levels of NKILA, and NBAT1 lncRNAs were related to tumor size, and BC040587 expression level related to age, node metastasis, tumor size, and grade (p < .05). The association between H19 and SPRY4-IT1 lncRNAs with HER-2 was confirmed statistically (p < .05). ROC curves illustrated that the blood levels of SPRY4-IT1, XIST, and H19 lncRNAs have excellent potential in discriminating breast cancer from the healthy controls, showing an AUC of 1.0 (95% CI 1.0-1.0, p = .00), 0.898 (95% CI 0.815-0.981, p = .00), and 0.848 (95% CI 0.701-0.995, p = .01), respectively. CONCLUSION In conclusion, the expression levels of circulating H19 and SPRY4-IT1 lncRNAs in breast cancer patients could consider as the prognostic biomarkers and therapeutic targets in breast cancer, because of their excellent power in discriminating breast cancer from healthy individuals and the significant correlation of H19, and SPRY4-IT1 lncRNAs with clinicopathological traits. We also suggest the possible application of BC040587 lncRNA as a diagnostic and prognostic indicator to assess tumor progression in case of verification in larger patients' cohorts.
Collapse
Affiliation(s)
| | | | - Maryam Yusefpour
- Department of Molecular BiologyPasteur Institute of IranTehranIran
| | - Masoumeh Azizi
- Department of Molecular MedicineBiotechnology Research Center, Pasteur Institute of IranTehranIran
| | - Mana Oloomi
- Department of Molecular BiologyPasteur Institute of IranTehranIran
| |
Collapse
|
12
|
El-Helkan B, Emam M, Mohanad M, Fathy S, Zekri AR, Ahmed OS. Long non-coding RNAs as novel prognostic biomarkers for breast cancer in Egyptian women. Sci Rep 2022; 12:19498. [PMID: 36376369 PMCID: PMC9663553 DOI: 10.1038/s41598-022-23938-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer (BC), the most common type of malignant tumor, is the leading cause of death, having the highest incidence rate among women. The lack of early diagnostic tools is one of the clinical obstacles for BC treatment. The current study was designed to evaluate a panel of long non-coding RNAs (lncRNAs) BC040587, HOTAIR, MALAT1, CCAT1, CCAT2, PVT1, UCA1, SPRY4-IT1, PANDAR, and AK058003-and two mRNAs (SNCG, BDNF) as novel prognostic biomarkers for BC. This study was ethically approved by the Institutional Review Board of the National Cancer Institute, Cairo University. Our study included 75 women recently diagnosed with BC and 25 healthy women as normal controls. Patients were divided into three groups: 24 with benign breast diseases, 28 with metastatic breast cancer (MBC, stage IV), and 23 with non-metastatic breast cancer (NMBC, stage III). LncRNA and mRNA expression levels were measured in patient plasma using quantitative real-time PCR. We found that 10 lncRNAs (BCO40587, HOTAIR, PVT1, CCAT2, PANDAR, CCAT1, UCA1, SPRY4-IT1, AK058003, and MALAT1) and both mRNAs demonstrated at least a 2-fold change in expression with a more than 95% probability of significance. BCO40587 and SNCG were significantly up-regulated in MBC and NMBC patients (3.2- and 4-fold, respectively) compared with normal controls. The expression of UCA1 was repressed by 1.78-fold in MBC and NMBC patients compared with those with benign diseases. SPRY4-IT1 was down-regulated by 1.45-fold in MBC patients compared with NMBC and benign disease patients. Up-regulation of lncRNAs plays an important role in BC development. SNCG and BCO40587 may be potential prognostic markers for BC.The organization number is IORG0003381 (IRB No: IRB00004025).
Collapse
Affiliation(s)
- Basma El-Helkan
- grid.7269.a0000 0004 0621 1570Department of Biochemistry, Faculty of Science-Ain Shams University, Cairo, Egypt
| | - Manal Emam
- grid.7269.a0000 0004 0621 1570Department of Biochemistry, Faculty of Science-Ain Shams University, Cairo, Egypt
| | - Marwa Mohanad
- grid.440875.a0000 0004 1765 2064College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October ,Giza, Egypt
| | - Shadia Fathy
- grid.7269.a0000 0004 0621 1570Department of Biochemistry, Faculty of Science-Ain Shams University, Cairo, Egypt
| | - Abdel Rahman Zekri
- grid.7776.10000 0004 0639 9286Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ola S. Ahmed
- grid.7776.10000 0004 0639 9286Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Khanbabaei H, Ebrahimi S, García-Rodríguez JL, Ghasemi Z, Pourghadamyari H, Mohammadi M, Kristensen LS. Non-coding RNAs and epithelial mesenchymal transition in cancer: molecular mechanisms and clinical implications. J Exp Clin Cancer Res 2022; 41:278. [PMID: 36114510 PMCID: PMC9479306 DOI: 10.1186/s13046-022-02488-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental process for embryonic development during which epithelial cells acquire mesenchymal characteristics, and the underlying mechanisms confer malignant features to carcinoma cells such as dissemination throughout the organism and resistance to anticancer treatments. During the past decades, an entire class of molecules, called non-coding RNA (ncRNA), has been characterized as a key regulator of almost every cellular process, including EMT. Like protein-coding genes, ncRNAs can be deregulated in cancer, acting as oncogenes or tumor suppressors. The various forms of ncRNAs, including microRNAs, PIWI-interacting RNAs, small nucleolar RNAs, transfer RNA-derived RNA fragments, long non-coding RNAs, and circular RNAs can orchestrate the complex regulatory networks of EMT at multiple levels. Understanding the molecular mechanism underlying ncRNAs in EMT can provide fundamental insights into cancer metastasis and may lead to novel therapeutic approaches. In this review, we describe recent advances in the understanding of ncRNAs in EMT and provide an overview of recent ncRNA applications in the clinic.
Collapse
|
14
|
TGF-β1/Smad3 upregulates UCA1 to promote liver fibrosis through DKK1 and miR18a. J Mol Med (Berl) 2022; 100:1465-1478. [PMID: 36001113 DOI: 10.1007/s00109-022-02248-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
TGF-β1 is the strongest cytokine known to promote liver fibrosis. It has been previously demonstrated that the activation of TGF-β1 initiates a temporary collagen accumulation program, which is important for wound repair in several organs. Furthermore, temporary extracellular matrix enhancement often leads to progressive fibrosis, which is accountable for cases of severe morbidity and mortality worldwide. However, its action mechanism has not been fully explored. It was previously reported that UCA1 could promote its occurrence and development in various tumors. Importantly, it was reported that TGF-β1 could activate the expression of UCA1 in liver cancer, gastric cancer, and breast cancer. However, the role of UCA1 in organ fibrosis, including liver fibrosis, remains unreported. The present study reported for the first time that TGF-β1/Smad3 could promote liver fibrosis by upregulating UCA1, which further affected DKK1 and collagen, such as COL1A1, COL1A2, and COL3A1. Meanwhile, UCA1 could competitively bind with miR18a to stabilize Smad3 to constitute a positive feedback pathway, which played a significant role in the promotion of liver fibrosis. Altogether, the present study provides a theoretical basis for devising promising treatment strategies for liver fibrosis. KEY MESSAGES : UCA1 was found to promote the progression of liver fibrosis in vitro. UCA1 is regulated by TGF-β1 and promotes liver fibrosis through the canonical Smad pathway. UCA1 can competitively bind with miR18a, promote liver fibrosis by stabilizing Smad3, and form a UCA1-miR18a/Smad3 positive feedback. UCA1 binds EZH2 to inhibit the DKK1 expression and promote liver fibrosis.
Collapse
|
15
|
Chang CYY, Yang L, Tse J, Lo LC, Tseng CC, Sun L, Lai MT, Chen PH, Hwang T, Chen CM, Tsai FJ, Sheu JJC. Genetic variations in UCA1, a lncRNA functioning as a miRNA sponge, determine endometriosis development and the potential associated infertility via regulating lipogenesis. PLoS One 2022; 17:e0271616. [PMID: 35901079 PMCID: PMC9333278 DOI: 10.1371/journal.pone.0271616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022] Open
Abstract
Endometriosis is a hormone-associated disease which has been considered as the precursor for certain types of ovarian cancer. In recent years, emerging evidence demonstrated potent roles of lncRNA in regulating cancer development. Since endometriosis shares several features with cancer, we investigated the possible involvement of cancer-related lncRNAs in endometriosis, including UCA1, GAS5 and PTENP1. By using massARRAY system, we investigated certain genetic variations in cancer-related lncRNAs that can change the thermo-stability, leading to up-regulation or down-regulation of those lncRNAs. Our data indicated three risk genetic haplotypes in UCA1 which can stabilize the RNA structure and increase the susceptibility of endometriosis. Of note, such alterations were found to be associated with long-term pain and infertility in patients. It has been known that UCA1 can function as a ceRNA to sponge and inhibit miRNAs, resulting in loss-of-control on downstream target genes. Gene network analyses revealed fatty acid metabolism and mitochondria beta-oxidation as the major pathways associated with altered UCA1 expression in endometriosis patients. Our study thus provides evidence to highlight functional/epigenetic roles of UCA1 in endometriosis development via regulating fatty acid metabolism in women.
Collapse
Affiliation(s)
- Cherry Yin-Yi Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Li Yang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Joe Tse
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, Taiwan
| | - Lun-Chien Lo
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chung-Chen Tseng
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, Taiwan
| | - Li Sun
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Gynecological Oncology, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Ming-Tsung Lai
- Department of Pathology, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Ping-Ho Chen
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tritium Hwang
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, Taiwan
| | - Chih-Mei Chen
- Genetics Center, China Medical University Hospital, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Genetics Center, China Medical University Hospital, Taichung, Taiwan
- * E-mail: (FJT); (JJCS)
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yatsen University, Kaohsiung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
- * E-mail: (FJT); (JJCS)
| |
Collapse
|
16
|
Guo Y, Xie Y, Luo Y. The Role of Long Non-Coding RNAs in the Tumor Immune Microenvironment. Front Immunol 2022; 13:851004. [PMID: 35222443 PMCID: PMC8863945 DOI: 10.3389/fimmu.2022.851004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Tumorigenesis is a complicated process caused by successive genetic and epigenetic alterations. The past decades demonstrated that the immune system affects tumorigenesis, tumor progression, and metastasis. Although increasing immunotherapies are revealed, only a tiny proportion of them are effective. Long non-coding RNAs (lncRNAs) are a class of single-stranded RNA molecules larger than 200 nucleotides and are essential in the molecular network of oncology and immunology. Increasing researches have focused on the connection between lncRNAs and cancer immunotherapy. However, the in-depth mechanisms are still elusive. In this review, we outline the latest studies on the functions of lncRNAs in the tumor immune microenvironment. Via participating in various biological processes such as neutrophil recruitment, macrophage polarization, NK cells cytotoxicity, and T cells functions, lncRNAs regulate tumorigenesis, tumor invasion, epithelial-mesenchymal transition (EMT), and angiogenesis. In addition, we reviewed the current understanding of the relevant strategies for targeting lncRNAs. LncRNAs-based therapeutics may represent promising approaches in serving as prognostic biomarkers or potential therapeutic targets in cancer, providing ideas for future research and clinical application on cancer diagnosis and therapies.
Collapse
Affiliation(s)
- Yingli Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yajuan Xie
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
17
|
Li G, Song Z, Wu C, Li X, Zhao L, Tong B, Guo Z, Sun M, Zhao J, Zhang H, Jia L, Li S, Wang L. Downregulation of NEDD4L by EGFR signaling promotes the development of lung adenocarcinoma. J Transl Med 2022; 20:47. [PMID: 35090513 PMCID: PMC8800232 DOI: 10.1186/s12967-022-03247-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022] Open
Abstract
Cumulative evidence indicates that the abnormal regulation of the NEDD4 family of E3-ubiquitin ligases participates in the tumorigenesis and development of cancer. However, their role in lung adenocarcinoma (LUAD) remains unclear. This study comprehensively analyzed the NEDD4 family in LUAD data sets from public databases and found only NEDD4L was associated with the overall survival of LUAD patients. Gene set enrichment analysis (GSEA) indicated that NEDD4L might be involved in the regulation of mTORC1 pathway. Both cytological and clinical assays showed that NEDD4L inhibited the activity of the mTOR signaling pathway. In vivo and in vitro experiments showed that NEDD4L could significantly inhibit the proliferation of LUAD cells. In addition, this study also found that the expression of NEDD4L was regulated by EGFR signaling. These findings firstly revealed that NEDD4L mediates an interplay between EGFR and mTOR pathways in LUAD, and suggest that NEDD4L held great potential as a novel biomarker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Changjing Wu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - XiaoYan Li
- Department of Blood Transfusion, Shanxi Province People's Hospital, Taiyuan, China
| | - Liping Zhao
- Department of Pathology, Shanxi Province People's Hospital, Taiyuan, China
| | - Binghua Tong
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Zhenni Guo
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Meiqing Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Jin Zhao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Huina Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Lintao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Shengqing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Lei Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China.
- Clinical Medical College, Yangzhou University, Yangzhou, China.
| |
Collapse
|
18
|
Zuo J, Zhang Z, Li M, Yang Y, Zheng B, Wang P, Huang C, Zhou S. The crosstalk between reactive oxygen species and noncoding RNAs: from cancer code to drug role. Mol Cancer 2022; 21:30. [PMID: 35081965 PMCID: PMC8790843 DOI: 10.1186/s12943-021-01488-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/26/2021] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress (OS), characterized by the excessive accumulation of reactive oxygen species (ROS), is an emerging hallmark of cancer. Tumorigenesis and development driven by ROS require an aberrant redox homeostasis, that activates onco-signaling and avoids ROS-induced programmed death by orchestrating antioxidant systems. These processes are revealed to closely associate with noncoding RNAs (ncRNAs). On the basis of the available evidence, ncRNAs have been widely identified as multifarious modulators with the involvement of several key redox sensing pathways, such as NF-κB and Nrf2 signaling, therefore potentially becoming effective targets for cancer therapy. Furthermore, the vast majority of ncRNAs with property of easy detected in fluid samples (e.g., blood and urine) facilitate clinicians to monitor redox homeostasis, indicating a novel method for cancer diagnosis. Herein, focusing on carcinoma initiation, metastasis and chemoradiotherapy resistance, we aimed to discuss the ncRNAs-ROS network involved in cancer progression, and the potential clinical application as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Maomao Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Yun Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China
| | - Ping Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, People's Republic of China.
| |
Collapse
|
19
|
LINC00885 promotes cervical cancer progression through sponging miR-3150b-3p and upregulating BAZ2A. Biol Direct 2022; 17:4. [PMID: 35012615 PMCID: PMC8744347 DOI: 10.1186/s13062-021-00314-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
Background Cervical cancer (CC) is one of the most common malignancies affecting female worldwide. Long non-coding RNAs (lncRNAs) are increasingly indicated as crucial participants and promising therapeutic targets in human cancers. The main objective of this study was to explore the functions and mechanism of LINC00885 in CC. Methods RT-qPCR and western blot were used to detect RNA and protein levels. Functional and mechanism assays were respectively done for the analysis of cell behaviors and molecular interplays. Results Long intergenic non-coding RNA 885 (LINC00885) was discovered to be upregulated in CC tissues and cell lines through bioinformatics analysis and RT-qPCR. Overexpression of LINC00885 promoted proliferation and inhibited apoptosis, whereas its silence exerted opposite effects. The cytoplasmic localization of LINC00885 was ascertained and furthermore, LINC00885 competitively bound with miR-3150b-3p to upregulate BAZ2A expression in CC cells. Rescue assays confirmed that LINC00885 regulated CC proliferation and apoptosis through miR-3150b-3p/BAZ2A axis. Finally, we confirmed that LINC00885 aggravated tumor growth through animal experiments. Conclusions LINC00885 exerted oncogenic function in CC via regulating miR-3150b-3p/BAZ2A axis. These findings suggested LINC00885 might serve as a potential promising therapeutic target for CC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13062-021-00314-6.
Collapse
|
20
|
Development of a Prognostic Model Based on the Identification of EMT-Related lncRNAs in Triple-Negative Breast Cancer. JOURNAL OF ONCOLOGY 2021; 2021:9219961. [PMID: 34873403 PMCID: PMC8643262 DOI: 10.1155/2021/9219961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/08/2021] [Indexed: 12/29/2022]
Abstract
Background Triple-negative breast cancer (TNBC) remains the most incurable subtype of breast cancer owing to high heterogeneity, aggressive nature, and lack of treatment options. It is generally acknowledged that epithelial-mesenchymal transition (EMT) is the key step in tumor metastasis. Methods With the application of TCGA and GEO databases, we identified EMT-related lncRNAs by the Cox univariate regression analysis. Optimum risk scores were calculated and used to divide TNBC patients into high-/low-risk subgroups by the median value using the Lasso regression analysis. The Kaplan–Meier and ROC curve analyses were applied for model validation. Then, we assessed the risk model from multi-omic aspects including immune infiltration, drug sensitivity, mutability spectrum, signaling pathways, and clinical indicators. We also analyzed the expression pattern of lncRNAs involved in the model using qRT-PCR in TNBC cell lines and constructed the ceRNA network. Results The risk model was composed of EMT-related long noncoding RNAs (lncRNAs), which seemed to be valuable in the prognostic prediction of TNBC patients. The model could act as an independent prognostic factor of TNBC and showed a robust prognostic ability in the stratification analysis. Further investigation demonstrated that the expression of lncRNAs was different between high aggressive and low aggressive TNBC cell lines, as well as TNBC patients. Conclusions Together, our study successfully established a risk model with great accuracy and efficacy in the prognostic prediction of TNBC patients.
Collapse
|
21
|
Jin H, Du W, Huang W, Yan J, Tang Q, Chen Y, Zou Z. lncRNA and breast cancer: Progress from identifying mechanisms to challenges and opportunities of clinical treatment. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:613-637. [PMID: 34589282 PMCID: PMC8463317 DOI: 10.1016/j.omtn.2021.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is a malignant tumor that has a high mortality rate and mostly occurs in women. Although significant progress has been made in the implementation of personalized treatment strategies for molecular subtypes in breast cancer, the therapeutic response is often not satisfactory. Studies have reported that long non-coding RNAs (lncRNAs) are abnormally expressed in breast cancer and closely related to the occurrence and development of breast cancer. In addition, the high tissue and cell-type specificity makes lncRNAs particularly attractive as diagnostic biomarkers, prognostic factors, and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in breast cancer is essential for developing new treatment strategies. In this review, we systematically elucidate the general characteristics, potential mechanisms, and targeted therapy of lncRNAs and discuss the emerging functions of lncRNAs in breast cancer. Additionally, we also highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets for drug resistance in breast cancer and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Huan Jin
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China.,MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wei Du
- Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wentao Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Jiajing Yan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
22
|
Lu C, Wei D, Zhang Y, Wang P, Zhang W. Long Non-Coding RNAs as Potential Diagnostic and Prognostic Biomarkers in Breast Cancer: Progress and Prospects. Front Oncol 2021; 11:710538. [PMID: 34527584 PMCID: PMC8436618 DOI: 10.3389/fonc.2021.710538] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
Breast cancer is the most common malignancy among women worldwide, excluding non-melanoma skin cancer. It is now well understood that breast cancer is a heterogeneous entity that exhibits distinctive histological and biological features, treatment responses and prognostic patterns. Therefore, the identification of novel ideal diagnostic and prognostic biomarkers is of utmost importance. Long non-coding RNAs (lncRNAs) are commonly defined as transcripts longer than 200 nucleotides that lack coding potential. Extensive research has shown that lncRNAs are involved in multiple human cancers, including breast cancer. LncRNAs with dysregulated expression can act as oncogenes or tumor-suppressor genes to regulate malignant transformation processes, such as proliferation, invasion, migration and drug resistance. Intriguingly, the expression profiles of lncRNAs tend to be highly cell-type-specific, tissue-specific, disease-specific or developmental stage-specific, which makes them suitable biomarkers for breast cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Cuicui Lu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Duncan Wei
- Department of Pharmacy, The First Affiliated Hospital of Medical College of Shantou University, Shantou, China
| | - Yahui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Wang
- Department of Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Wen Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
23
|
Wang M, Dai M, Wang D, Tang T, Xiong F, Xiang B, Zhou M, Li X, Li Y, Xiong W, Li G, Zeng Z, Guo C. The long noncoding RNA AATBC promotes breast cancer migration and invasion by interacting with YBX1 and activating the YAP1/Hippo signaling pathway. Cancer Lett 2021; 512:60-72. [PMID: 33951538 DOI: 10.1016/j.canlet.2021.04.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) play an important role in the regulation of gene expression and are involved in several pathological responses. However, many important lncRNAs in breast cancer have not been identified and their expression levels and functions in breast cancer remain unknown. In this study, the lncRNA apoptosis-associated transcript in bladder cancer (AATBC) was found to be significantly highly expressed in breast cancer patients. In vitro and in vivo experiments indicated that AATBC promoted breast cancer metastasis. Further studies revealed that AATBC activated the YAP1/Hippo signaling pathway through the AATBC-YBX1-MST1 axis. This is also an important supplement to the composition of the YAP1/Hippo signaling pathway. The model of "AATBC-YAP1" may bring a new dawn to the treatment of breast cancer.
Collapse
Affiliation(s)
- Maonan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manli Dai
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ting Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Comprehensive Cancer Center Baylor College of Medicine, Houston, TX, USA
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
24
|
Zampedri C, Martínez-Flores WA, Melendez-Zajgla J. The Use of Zebrafish Xenotransplant Assays to Analyze the Role of lncRNAs in Breast Cancer. Front Oncol 2021; 11:687594. [PMID: 34123857 PMCID: PMC8190406 DOI: 10.3389/fonc.2021.687594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Breast cancer represents a great challenge since it is the first cause of death by cancer in women worldwide. LncRNAs are a newly described class of non-coding RNAs that participate in cancer progression. Their use as cancer markers and possible therapeutic targets has recently gained strength. Animal xenotransplants allows for in vivo monitoring of disease development, molecular elucidation of pathogenesis and the design of new therapeutic strategies. Nevertheless, the cost and complexities of mice husbandry makes medium to high throughput assays difficult. Zebrafishes (Danio rerio) represent a novel model for these assays, given the ease with which xenotransplantation trials can be performed and the economic and experimental advantages it offers. In this review we propose the use of xenotransplants in zebrafish to study the role of breast cancer lncRNAs using low to medium high throughput assays.
Collapse
Affiliation(s)
- Cecilia Zampedri
- Functional Genomics Laboratories, Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | | | - Jorge Melendez-Zajgla
- Functional Genomics Laboratories, Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| |
Collapse
|
25
|
Wang X, Guo Y, Wang C, Wang Q, Yan G. Long Noncoding RNA ZEB1-AS1 Downregulates miR-23a, Promotes Tumor Progression, and Predicts the Survival of Oral Squamous Cell Carcinoma Patients. Onco Targets Ther 2021; 14:2699-2710. [PMID: 33888994 PMCID: PMC8057792 DOI: 10.2147/ott.s297209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are implicated in cancer-related biological processes such as cell proliferation, cell cycle progression, cell migration, cell invasion, and chemoresistance. However, the effects of the lncRNA ZEB1-AS1 on oral squamous cell carcinoma (OSCC) have not been adequately demonstrated. The aims of our current study were to explore the roles of lncRNA ZEB1-AS1 in OSCC progression to reveal the potential mechanism. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure relative ZEB1-AS1 expression levels in OSCC tissues and adjacent non-cancerous tissues. The biological functions of ZEB1-AS1 in OSCC growth and progression were identified by cell proliferation, wound healing, and in vitro transwell assays as well as in vivo xenograft model. The underlying mechanism was detected with a dual-luciferase reporter (DLR) assay. Results The up-regulation of ZEB1-AS1 and downregulation of miR-23a-3p (miR-23a) were found in OSCC cancer tissues. A ZEB1-AS1 knockdown remarkably suppressed in vitro cancerous, biological processes of OSCC cell lines such as cell proliferation, invasion, migration, and epithelial–mesenchymal transition (EMT). The tumor growth was also inhibited by silencing ZEB1-AS1 in vivo, and a DLR assay confirmed the association between ZEB1-AS1 and miR-23a. Conclusion The newly identified lncRNA ZEB1-AS1 functions as a tumor promoter in OSCC through regulation of miR-23a. Based on these results, ZEB1-AS1 could be a valid molecular target for treating oral cancer.
Collapse
Affiliation(s)
- Xue Wang
- Department of Orthodontics, School of Stomatology, China Medical University, Shengyang, Liaoning, 110002, People's Republic of China
| | - Yan Guo
- Department of Central Laboratory, School of Stomatology, China Medical University, Shengyang, Liaoning, 110002, People's Republic of China
| | - Chunyu Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, and Key Laboratory of Medical Cell Biology, School of Life Sciences, China Medical University, Shengyang, Liaoning, 110002, People's Republic of China
| | - Qiang Wang
- Department of Central Laboratory, School of Stomatology, China Medical University, Shengyang, Liaoning, 110002, People's Republic of China
| | - Guangqi Yan
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shengyang, Liaoning, 110002, People's Republic of China
| |
Collapse
|
26
|
Liu Z, Wang Y, Yuan S, Wen F, Liu J, Zou L, Zhang J. Regulatory role of long non-coding RNA UCA1 in signaling pathways and its clinical applications. Oncol Lett 2021; 21:404. [PMID: 33777227 PMCID: PMC7988699 DOI: 10.3892/ol.2021.12665] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNA metastasis-associated urothelial carcinoma associated 1 (UCA1) plays a pivotal role in various human diseases. Its gene expression is regulated by several factors, including transcription factors, chromatin remodeling and epigenetic modification. UCA1 is involved in the regulation of the PI3K/AKT, Wnt/β-catenin, MAPK, NF-κB and JAK/STAT signaling pathways, affecting a series of cellular biological functions, such as cell proliferation, apoptosis, migration, invasion and tumor drug resistance. Furthermore, UCA1 is used as a novel potential biomarker for disease diagnosis and prognosis, as well as a target for clinical gene therapy. The present review systematically summarizes and elucidates the mechanisms of upstream transcriptional regulation of UCA1, the regulatory role of UCA1 in multiple signaling pathways in the occurrence and development of several diseases, and its potential applications in clinical treatment.
Collapse
Affiliation(s)
- Zhaoping Liu
- Department of Rheumatology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yanyan Wang
- Department of Rheumatology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shunling Yuan
- Department of Rheumatology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Feng Wen
- Department of Hematology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jing Liu
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| | - Liheng Zou
- Department of Rheumatology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ji Zhang
- Department of Rheumatology, The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China.,Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong 518033, P.R. China
| |
Collapse
|
27
|
Ghafouri-Fard S, Tamizkar KH, Hussen BM, Taheri M. An update on the role of long non-coding RNAs in the pathogenesis of breast cancer. Pathol Res Pract 2021; 219:153373. [DOI: 10.1016/j.prp.2021.153373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
|
28
|
Wang X, Zhang Y, Zheng J, Yao C, Lu X. LncRNA UCA1 attenuated the killing effect of cytotoxic CD8 + T cells on anaplastic thyroid carcinoma via miR-148a/PD-L1 pathway. Cancer Immunol Immunother 2021; 70:2235-2245. [PMID: 33486611 DOI: 10.1007/s00262-020-02753-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND LncRNAs play an important role in the regulation of the killing effect of cytotoxic CD8 + T cells in various cancers. However, the role and underlying mechanisms of UCA1 in the killing effect of cytotoxic CD8 + T cells in anaplastic thyroid carcinoma (ATC) are not clear. METHODS UCA1, miR-148a, and PD-L1 expression were detected by quantitative real-time PCR and/or Western blot. The ratio of PD-L1+ATC cells/ATC cells was determined using flow cytometry. The ability of CD8 + T cells to kill target ATC cells was detected by Chromium-51 (51Cr) release assay. The targeted relationship between UCA1 and miR-148a was confirmed by dual-luciferase reporter gene assay. RESULTS UCA1 and PD-L1 expression levels were elevated in ATC tissues and cells. Silencing UCA1 and PD-L1 enhanced the killing effect of cytotoxic CD8 + T cells on ATC cells. UCA1 negatively regulated the expression of miR-148a, and miR-148a targeted PD-L1 to down-regulate its expression. Besides, we found that UCA1 attenuated the killing effect of cytotoxic CD8 + T cells and reduced cytokine secretion through PD-L1 and miR-148a. Finally, silencing UCA1 or PD-L1 in ATC cells restored the suppression of the killing effect of CD8 + T cells in vivo. CONCLUSION UCA1 attenuated the killing effect of cytotoxic CD8 + T cells on ATC cells through the miR-148a/PD-L1 pathway.
Collapse
Affiliation(s)
- Xiaoming Wang
- Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Rd., Zhengzhou, 450052, People's Republic of China.,Key Laboratory of Thyroid Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yan Zhang
- Operation Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jian Zheng
- Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Rd., Zhengzhou, 450052, People's Republic of China.,Key Laboratory of Thyroid Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Cuixian Yao
- Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Rd., Zhengzhou, 450052, People's Republic of China.,Key Laboratory of Thyroid Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiubo Lu
- Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Rd., Zhengzhou, 450052, People's Republic of China. .,Key Laboratory of Thyroid Tumor, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.
| |
Collapse
|
29
|
Xu Y, Jiang E, Shao Z, Shang Z. Long Noncoding RNAs in the Metastasis of Oral Squamous Cell Carcinoma. Front Oncol 2021; 10:616717. [PMID: 33520725 PMCID: PMC7845733 DOI: 10.3389/fonc.2020.616717] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignant tumor worldwide. Metastasis is the main cause of the death of OSCC patients. Long noncoding RNAs (lncRNAs), one of the key factors affecting OSCC metastasis, are a subtype of RNA with a length of more than 200 nucleotides that has little or no coding potential. In recent years, the important role played by lncRNAs in biological processes, such as chromatin modification, transcription regulation, RNA stability regulation, and mRNA translation, has been gradually revealed. More and more studies have shown that lncRNAs can regulate the metastasis of various tumors including OSCC at epigenetic, transcriptional, and post-transcriptional levels. In this review, we mainly discussed the role and possible mechanisms of lncRNAs in OSCC metastasis. Most lncRNAs act as oncogenes and only a few lncRNAs have been shown to inhibit OSCC metastasis. Besides, we briefly introduced the research status of cancer-associated fibroblasts-related lncRNAs in OSCC metastasis. Finally, we discussed the research prospects of lncRNAs-mediated crosstalk between OSCC cells and the tumor microenvironment in OSCC metastasis, especially the potential research value of exosomes and lymphangiogenesis. In general, lncRNAs are expected to be used for screening, treatment, and prognosis monitoring of OSCC metastasis, but more work is still required to better understand the biological function of lncRNAs.
Collapse
Affiliation(s)
- Yuming Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhe Shao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Sun J, Xiong Y, Jiang K, Xin B, Jiang T, Wei R, Zou Y, Tan H, Jiang T, Yang A, Jia L, Wang L. Hypoxia-sensitive long noncoding RNA CASC15 promotes lung tumorigenesis by regulating the SOX4/β-catenin axis. J Exp Clin Cancer Res 2021; 40:12. [PMID: 33407675 PMCID: PMC7789733 DOI: 10.1186/s13046-020-01806-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Accumulating evidence has demonstrated that long non-coding RNAs (lncRNAs) are involved in the hypoxia-related cancer process and play pivotal roles in enabling malignant cells to survive under hypoxic stress. However, the molecular crosstalk between lncRNAs and hypoxia signaling cascades in non-small cell lung cancer (NSCLC) remains largely elusive. METHODS Firstly, we identified differentially expressed lncRNA cancer susceptibility candidate 15 (CASC15) as associated with NSCLC based on bioinformatic data. The clinical significance of CASC15 in lung cancer was investigated by Kaplan-Meier survival analysis. Then, we modulated CASC15 expression in NSCLC cell lines by RNAi. CCK-8 and transwell assays were carried out to examine the effects of CASC15 on proliferation and migration of NSCLC cells. Upstream activator and downstream targets of CASC15 were validated by luciferase reporter assay, qRT-PCR, Western blotting, and chromatin immunoprecipitation (ChIP). Lastly, RNA in situ hybridization (RNA-ISH) and immunohistochemistry (IHC) were performed to confirm the genetic relationships between CASC15 and related genes in clinical samples. RESULTS CASC15 was highly expressed in NSCLC tissues and closely associated with poor prognosis. Loss-of-function analysis demonstrated that CASC15 was essential for NSCLC cell migration and growth. Mechanistic study revealed that CASC15 was transcriptionally activated by hypoxia signaling in NSCLC cells. Further analysis showed that hypoxia-induced CASC15 transactivation was mainly dependent on hypoxia-inducible factor 1α (HIF-1α) and hypoxia response elements (HREs) located in CASC15 promoter. CASC15 promotes the expression of its chromosomally nearby gene, SOX4. Then SOX4 functions to stabilize β-catenin protein, thereby enhancing the proliferation and migration of NSCLC cells. HIF-1α/CASC15/SOX4/β-catenin pathway was activated in a substantial subset of NSCLC patients. CONCLUSIONS HIF-1α/CASC15/SOX4/β-catenin axis plays an essential role in the development and progression of NSCLC. The present work provides new evidence that lncRNA CASC15 holds great promise to be used as novel biomarkers for NSCLC. Blocking the HIF-1α/CASC15/SOX4/β-catenin axis can serve as a potential therapeutic strategy for treating NSCLC.
Collapse
Affiliation(s)
- Jianyong Sun
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Yanlu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Kuo Jiang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Bo Xin
- Department of Oncology, The 960th Hospital of PLA, Tai'an, 271000, Shandong, China
| | - Tongtong Jiang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Renji Wei
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yuankang Zou
- The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Department of Occupational and Environmental Health, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hong Tan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Angang Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Lintao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Lei Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
31
|
Xie P, Li X, Chen R, Liu Y, Liu D, Liu W, Cui G, Xu J. Upregulation of HOTAIRM1 increases migration and invasion by glioblastoma cells. Aging (Albany NY) 2020; 13:2348-2364. [PMID: 33323548 PMCID: PMC7880397 DOI: 10.18632/aging.202263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) promote invasion and migration by glioblastoma (GBM) cells. In this study, quantitative real-time polymerase chain reaction was used to detect expression levels of the lncRNA HOTAIRM1 in GBM tissue samples and cells. The function of HOTAIRM1 was examined using wound healing assays, transwell assays, and in vivo experiments after GBM cells were transfected with either sh-ctrl or sh-HOTAIRM1. Luciferase reporter assays and RIP assays were performed to determine the interactions between HOTAIRM1 and miR-153-5p and between miR-153-5p and SNAI2. We also used luciferase reporter assays and ChIP assays to assess the transcriptional regulation of HOTAIRM1 by SNAI2 and CDH1. HOTAIRM1 was significantly overexpressed in GBM tissues and cells. HOTAIRM1 knockdown significantly weakened the migration and invasion by GBM cells. HOTAIRM1 was found to sponge miR-153-5p, and SNAI2 is a direct target of miR-153-5p. In addition, SNAI2 was shown to force HOTAIRM1 expression through directly promoting transcription and suppressing the negative regulation of CDH1 on transcription. Our results indicate a positive feedback loop between HOTAIRM1 and SNAI2, and suggest that the lncRNA HOTAIRM1 is a potential biomarker and therapeutic target in GBM.
Collapse
Affiliation(s)
- Peng Xie
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Xiang Li
- Department of Oncology, Huaian Hospital of Huaian District, Huai'an, Jiangsu Province, China.,Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Rui Chen
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Yue Liu
- Department of Intensive Care Unit, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - DaChao Liu
- Department of Image, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Wenguang Liu
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, Jiangsu Province, China
| | - Gang Cui
- Department of Neurosurgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinjing Xu
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu Province, China
| |
Collapse
|
32
|
Mondal P, Meeran SM. Long non-coding RNAs in breast cancer metastasis. Noncoding RNA Res 2020; 5:208-218. [PMID: 33294746 PMCID: PMC7689374 DOI: 10.1016/j.ncrna.2020.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related death among women. Recurrence of primary tumor and metastasis to distant body parts are major causes of breast cancer-associated mortality. The 5-year survival rate for women with metastatic breast cancer is only 25-30%. Breast cancer metastasis is a series of processes involved with EMT, invasion, loss of cell to cell adhesion, alteration in cell phenotype, extravasation, microenvironment of the tumor, and colonization to the secondary sites. Epigenetic modification is involved in the transformation of the distant stromal cell into a secondary tumor. LncRNAs, are one the key epigenetic modifiers, are the largest endogenous non-coding RNAs with approximate base-pair lengths from 200 nt to 100 kb. LncRNA plays a crucial role in breast cancer metastasis by sponging miRNA, by degrading or silencing specific mRNA, or else by targeting the enzymes and microprocessor subunits involved in the biogenesis of miRNA. LncRNA also alters the expression of several genes involved in breast cancer metastasis and modulating different cell signaling pathways. The goal of this review is to provide a better understanding of the role of lncRNA in the regulation of breast cancer metastasis. We also summarized some of the key lncRNAs that regulate the genes and signaling pathways involved in breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Priya Mondal
- Laboratory of Cancer Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Syed Musthapa Meeran
- Laboratory of Cancer Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
33
|
Target Enrichment Enables the Discovery of lncRNAs with Somatic Mutations or Altered Expression in Paraffin-Embedded Colorectal Cancer Samples. Cancers (Basel) 2020; 12:cancers12102844. [PMID: 33019720 PMCID: PMC7650602 DOI: 10.3390/cancers12102844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Alterations in long noncoding RNAs and their mutations have been increasingly recognized in tumorogenesis and cancer progression awakening especial interest as potential novel cancer biomarkers and therapeutic targets. The use of adjuvant chemotherapy in stage II colorectal cancer patients is challenging, and new biomarkers are required to identify patients with high probability of relapse. We focused on translational potential of non-coding RNAs in colorectal cancer. In this study, we aim to validate a new tool which couples target enrichment and RNAseq for transcriptomics studies of lncRNAs in formalin-fixed paraffin embedded (FFPE) tissue samples. Our results show that this new approach efficiently detects lncRNAs and differences in their expression between healthy and tumor FFPE tissues, as well as somatic mutations in expressed lncRNAs, identifying novel lncRNAs as potential candidates for colorectal cancer. This new approach could represent a promising avenue that would reduce costs and enable more efficient translational research. Abstract Long non-coding RNAs (lncRNAs) play important roles in cancer and are potential new biomarkers or targets for therapy. However, given the low and tissue-specific expression of lncRNAs, linking these molecules to particular cancer types and processes through transcriptional profiling is challenging. Formalin-fixed, paraffin-embedded (FFPE) tissues are abundant resources for research but are prone to nucleic acid degradation, thereby complicating the study of lncRNAs. Here, we designed and validated a probe-based enrichment strategy to efficiently profile lncRNA expression in FFPE samples, and we applied it for the detection of lncRNAs associated with colorectal cancer (CRC). Our approach efficiently enriched targeted lncRNAs from FFPE samples, while preserving their relative abundance, and enabled the detection of tumor-specific mutations. We identified 379 lncRNAs differentially expressed between CRC tumors and matched healthy tissues and found tumor-specific lncRNA variants. Our results show that numerous lncRNAs are differentially expressed and/or accumulate variants in CRC tumors, thereby suggesting a role in CRC progression. More generally, our approach unlocks the study of lncRNAs in FFPE samples, thus enabling the retrospective use of abundant, well documented material available in hospital biobanks.
Collapse
|
34
|
Fan Z, Bai Y, Zhang Q, Qian P. CircRNA circ_POLA2 promotes lung cancer cell stemness via regulating the miR-326/GNB1 axis. ENVIRONMENTAL TOXICOLOGY 2020; 35:1146-1156. [PMID: 32511866 DOI: 10.1002/tox.22980] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/09/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Circular RNAs (CircRNAs) are a group of noncoding RNAs that have essential function in the development and progression of various cancers. The expression pattern and function of circRNA in lung cancer is not fully understood. In the present study, we aimed to investigate the expression profiles and underlying mechanism of circRNA circ_POLA2 in lung cancer cell stemness. Circ_POLA2 was highly expressed in lung cancer tissues and predicted a poor prognosis in lung cancer patients. Knockdown of circ_POLA2 inhibited the stemness of lung cancer cells, which is evident by the decreased sphere-formation ability, ALDH1 activity, and stemness marker expression, but had no effects on cell viability. Mechanistically, circ_POLA2 functioned as a ceRNA by sponging miR-326. Furthermore, miR-326 negatively regulated G protein subunit beta 1 (GNB1) expression by targeting its 3'-UTR (untranslated region). Intriguingly, we found that GNB1 was overexpressed and associated with poor prognosis in lung cancer patients. Overexpression of GNB1 could antagonize the inhibitory effect of circ_POLA2 knockdown on lung cancer cell stemness. In conclusion, circ_POLA2 promotes lung cancer cell stemness and progression via regulating the miR-326/GNB1 axis, which might serve as a novel therapeutic target for lung cancer patients.
Collapse
Affiliation(s)
- Zhaohui Fan
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yongkang Bai
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Pudong Qian
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Qin N, Ma Z, Wang C, Zhang E, Li Y, Huang M, Chen C, Zhang C, Fan J, Gu Y, Xu X, Yang L, Wei X, Yin R, Jiang Y, Dai J, Jin G, Xu L, Hu Z, Shen H, Ma H. Comprehensive characterization of functional eRNAs in lung adenocarcinoma reveals novel regulators and a prognosis-related molecular subtype. Theranostics 2020; 10:11264-11277. [PMID: 33042282 PMCID: PMC7532687 DOI: 10.7150/thno.47039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Rationale: As the transcriptional products of active enhancers, enhancer RNAs (eRNAs) are essential for the initiation of tumorigenesis. However, the landscape and functional characteristics of eRNAs in Chinese lung adenocarcinoma, and the clinical utility of eRNA-based molecular subtypes remain largely unknown. Methods: A genome-wide profiling of eRNAs was performed in 80 Chinese lung adenocarcinoma patients with RNA-seq data. Functional eRNAs and associated genes were identified between paired adenocarcinoma and adjacent samples. Unsupervised clustering of functional eRNAs was conducted and the associations with molecular characteristics and clinical outcomes were accessed by integrating whole-genome sequencing data and clinical data. Additionally, 481 lung adenocarcinoma patients were used for the validation based on The Cancer Genome Atlas (TCGA) dataset. Results: A total of 3297 eRNAs with sufficient expression were identified, which were globally upregulated in adenocarcinoma samples compared to matched-adjacent pairs (P = 7.61×10-3). Further analyses indicated that these upregulated eRNAs were correlated with copy number amplification (CNA) status (Cor = 0.22, P = 0.045), and eRNA-correlated genes were primarily involved in cell cycle and immune system-related pathways. Based on the co-expression analysis of eRNAs with protein-coding genes, we defined 188 functional eRNAs and their correlated genes were overrepresented in cancer driver genes (ER = 1.98, P = 5.95×10-12) and clinically-actionable genes (ER = 2.19, P = 3.44×10-4). The eRNA-based consensus clustering further identified a novel molecular subtype with immune deficiency and a high-level of genomic alterations, which was associated with poor clinical outcomes of lung adenocarcinoma patients (OS: HR = 1.91, P = 0.015; PFI: HR = 1.64, P = 0.034). Conclusions: The genome-wide identification and characterization of eRNAs reveal novel regulators for the development of lung cancer, which provides a new biological dimension for the understanding of eRNAs during lung carcinogenesis and emphasize the clinical utility of eRNA-based molecular subtypes in the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Zijian Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211116, China
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yuancheng Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Mingtao Huang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Congcong Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Chang Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jingyi Fan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yayun Gu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xianfeng Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Liu Yang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoxia Wei
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210029, China
| | - Yue Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210029, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
36
|
Wang X, Yu X, Wei W, Liu Y. Long noncoding RNA MACC1-AS1 promotes the stemness of nonsmall cell lung cancer cells through promoting UPF1-mediated destabilization of LATS1/2. ENVIRONMENTAL TOXICOLOGY 2020; 35:998-1006. [PMID: 32401390 DOI: 10.1002/tox.22936] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/04/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
The roles of long noncoding RNA (lncRNA) MACC1-AS1 have been revealed in various tumors. This work aims to explore the roles of lncRNA MACC1-AS1 in the stemness of nonsmall cell lung cancer (NSCLC) cells and the underlying mechanism. We showed that overexpression of MACC1-AS1 enhanced the stemness of NSCLC cells, which is evident as the increased expression of cancer stem cell transcription factors, ALDH1 activity, and sphere-formation capacity, while knockdown of MACC1-AS1 decreased it. RNA-sequencing analysis revealed that the Hippo pathway was mostly enriched in NSCLC cell with MACC1-AS1 overexpression. Further mRNA and western blot analysis showed that ectopic expression of MACC1-AS1 regulated the expression LATS1/2, the critical regulator of Hippo pathway. Additionally, it was found that MACC1-AS1 interacted with up-frameshift 1 (UPF1) to modulate mRNA decay of LATS1/2. Overexpression of LAST1/2 attenuated the promoting effects of MACC1-AS1 overexpression on the stemness of NSCLC cells. Therefore, our results demonstrate the effects of the novel MACC1-AS1/UPF1/LATS1/2 axis in NSCLC cell stemness.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xinnian Yu
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Wei
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanhua Liu
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
37
|
Yao J, Lu X, Wang Y, Li J, Ni B. Long noncoding RNAs AC026904.1 is essential for TGF-β-induced migration and epithelial-mesenchymal transition through functioning as an enhancer of Slug in lung cancer cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:942-951. [PMID: 32270919 DOI: 10.1002/tox.22930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/14/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Long noncoding RNA (lncRNA) AC026904.1 has been confirmed to be necessary for breast cancer metastasis. This work aims to investigate the effects of lncRNA AC026904.1 on lung cancer metastasis. We found that lncRNA AC026904.1 displayed a higher level in metastatic lung cancer tissues than adjacent tissues and nonmetastatic lung cancer tissues, and lung cancer cells treated with TGF-β. The expression of AC026904.1 was increased by the non-canonical TGF-β signaling. Additionally, AC026904.1 acts as an enhancer of the key metastatic factor Slug in the nucleus. This AC026904.1/Slug axis is necessary for TGF-β-mediated migration and epithelial-mesenchymal transition in lung cancer cells. This work firstly uncovers that AC026904.1 increases Slug expression at transcriptional level and subsequently plays critical effects in lung cancer metastasis, providing novel evidences that AC026904.1 holds great potential to be used as a marker for metastatic lung cancer.
Collapse
Affiliation(s)
- Jie Yao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaochen Lu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxuan Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaxi Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Ni
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
38
|
Zhou L, Zhang Z, Huang Z, Nice E, Zou B, Huang C. Revisiting cancer hallmarks: insights from the interplay between oxidative stress and non-coding RNAs. MOLECULAR BIOMEDICINE 2020; 1:4. [PMID: 35006436 PMCID: PMC8603983 DOI: 10.1186/s43556-020-00004-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer is one of the most common disease worldwide, with complex changes and certain traits which have been described as “The Hallmarks of Cancer.” Despite increasing studies on in-depth investigation of these hallmarks, the molecular mechanisms associated with tumorigenesis have still not yet been fully defined. Recently, accumulating evidence supports the observation that microRNAs and long noncoding RNAs (lncRNAs), two main classes of noncoding RNAs (ncRNAs), regulate most cancer hallmarks through their binding with DNA, RNA or proteins, or encoding small peptides. Reactive oxygen species (ROS), the byproducts generated during metabolic processes, are known to regulate every step of tumorigenesis by acting as second messengers in cancer cells. The disturbance in ROS homeostasis leads to a specific pathological state termed “oxidative stress”, which plays essential roles in regulation of cancer progression. In addition, the interplay between oxidative stress and ncRNAs is found to regulate the expression of multiple genes and the activation of several signaling pathways involved in cancer hallmarks, revealing a potential mechanistic relationship involving ncRNAs, oxidative stress and cancer. In this review, we provide evidence that shows the essential role of ncRNAs and the interplay between oxidative stress and ncRNAs in regulating cancer hallmarks, which may expand our understanding of ncRNAs in the cancer development from the new perspective.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China. .,School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China.
| |
Collapse
|
39
|
Peng L, Jiang J, Tang B, Nice EC, Zhang YY, Xie N. Managing therapeutic resistance in breast cancer: from the lncRNAs perspective. Theranostics 2020; 10:10360-10377. [PMID: 32929354 PMCID: PMC7482807 DOI: 10.7150/thno.49922] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/04/2020] [Indexed: 02/05/2023] Open
Abstract
Breast cancer (BC) is the most common female malignancy and the second leading cause of cancer-related death worldwide. In spite of significant advances in clinical management, the mortality of BC continues to increase due to the frequent occurrence of treatment resistance. Intensive studies have been conducted to elucidate the molecular mechanisms underlying BC therapeutic resistance, including increased drug efflux, altered drug targets, activated bypass signaling pathways, maintenance of cancer stemness, and deregulated immune response. Emerging evidence suggests that long noncoding RNAs (lncRNAs) are intimately involved in BC therapy resistance through multiple modes of action. Therefore, an in-depth understanding of the implication of lncRNAs in resistance to clinical therapies may improve the clinical outcome of BC patients. Here, we highlight the role and underlying mechanisms of lncRNAs in regulating BC treatment resistance with an emphasis on lncRNAs-mediated resistance in different clinical scenarios, and discuss the potential of lncRNAs as novel biomarkers or therapeutic targets to improve BC therapy response.
Collapse
Affiliation(s)
- Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| | - Bo Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Yuan-Yuan Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, P.R. China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P.R. China
| |
Collapse
|
40
|
Li Y, Zhang B, Xiang L, Xia S, Kucuk O, Deng X, Boise LH, Dong JT. TGF-β causes Docetaxel resistance in Prostate Cancer via the induction of Bcl-2 by acetylated KLF5 and Protein Stabilization. Am J Cancer Res 2020; 10:7656-7670. [PMID: 32685011 PMCID: PMC7359077 DOI: 10.7150/thno.44567] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is the second leading cause of cancer-related death in the United States. As a first line treatment for hormone-refractory prostate cancer, docetaxel (DTX) treatment leads to suboptimal effect since almost all patients eventually develop DTX resistance. In this study, we investigated whether and how TGF-β affects DTX resistance of prostate cancer. Methods: Cytotoxicity of DTX in DU 145 and PC-3 cells was measured by CCK-8 and Matrigel colony formation assays. Resistance to DTX in DU 145 cells was examined in a xenograft tumorigenesis model. A luciferase reporter system was used to determine transcriptional activities. Gene expression was analyzed by RT-qPCR and Western blotting. Results: We found that KLF5 is indispensable in TGF-β-induced DTX resistance. Moreover, KLF5 acetylation at lysine 369 mediates DTX resistance in vitro and in vivo. We showed that the TGF-β/acetylated KLF5 signaling axis activates Bcl-2 expression transcriptionally. Furthermore, DTX-induced Bcl-2 degradation depends on a proteasome pathway, and TGF-β inhibits DTX-induced Bcl-2 ubiquitination. Conclusion: Our study demonstrated that the TGF-β-acetylated KLF5-Bcl-2 signaling axis mediates DTX resistance in prostate cancer and blockade of this pathway could provide clinical insights into chemoresistance of prostate cancer.
Collapse
|
41
|
Nguyen TM, Alchalabi S, Oluwatoyosi A, Ropri AS, Herschkowitz JI, Rosen JM. New twists on long noncoding RNAs: from mobile elements to motile cancer cells. RNA Biol 2020; 17:1535-1549. [PMID: 32522127 DOI: 10.1080/15476286.2020.1760535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The purpose of this review is to highlight several areas of lncRNA biology and cancer that we hope will provide some new insights for future research. These include the relationship of lncRNAs and the epithelial to mesenchymal transition (EMT) with a focus on transcriptional and alternative splicing mechanisms and mRNA stability through miRNAs. In addition, we highlight the potential role of enhancer e-lncRNAs, the importance of transposable elements in lncRNA biology, and finally the emerging area of using antisense oligonucleotides (ASOs) and small molecules to target lncRNAs and their therapeutic implications.
Collapse
Affiliation(s)
- Tuan M Nguyen
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School , Boston, MA, USA.,Cancer Research Institute, Beth Israel Deaconess Medical Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA, USA
| | - Sumayya Alchalabi
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, SUNY , Rensselaer, NY, USA
| | - Adewunmi Oluwatoyosi
- Department of Molecular & Cellular Biology, Baylor College of Medicine , Houston, TX, USA
| | - Ali S Ropri
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, SUNY , Rensselaer, NY, USA
| | - Jason I Herschkowitz
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, SUNY , Rensselaer, NY, USA
| | - Jeffrey M Rosen
- Department of Molecular & Cellular Biology, Baylor College of Medicine , Houston, TX, USA
| |
Collapse
|
42
|
The β-catenin/TCF-4-LINC01278-miR-1258-Smad2/3 axis promotes hepatocellular carcinoma metastasis. Oncogene 2020; 39:4538-4550. [PMID: 32372060 PMCID: PMC7269911 DOI: 10.1038/s41388-020-1307-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 11/09/2022]
Abstract
Hepatocellular carcinoma (HCC) metastasis is largely responsible for HCC-associated recurrence and mortality. We aimed to identify metastasis-related long non-coding RNAs (lncRNAs) to understand the molecular mechanism of HCC metastasis. We first identified that miR-1258 was downregulated in HCC tissues both in The Cancer Genome Atlas (TCGA) and Sun Yat-sen University Cancer Center (SYSUCC) dataset. MiR-1258 expression negatively correlated with recurrence-free survival and overall survival of HCC patients. MiR-1258 overexpression inhibited migration and invasion of HCC cells both in vitro and in vivo, whereas miR-1258 downregulation promoted cell metastasis. Luciferase assays verified direct binding of miR-1258 to Smad2 and Smad3, thereby attenuating TGF-β/Smad signaling. We further established that lncRNA LINC01278 was a negative regulator of miR-1258. In vivo and in vitro assays demonstrated that LINC01278-mediated HCC metastasis was dependent on miR-1258 expression. Furthermore, miR-1258 downregulation in turn increased LINC01278 expression. We also observed that TCF-4 could bind to the LINC01278 promoter site. In addition, LINC01278 downregulation decreased migration and invasion of HCC cells induced by β-catenin and TGF-β1 both in vitro and in vivo. We uncovered a novel mechanism for β-catenin/TCF-4-LINC01278-miR-1258-Smad2/3 feedback loop activation in HCC metastasis, and the study indicated that LINC01278 could serve as a therapeutic target for HCC metastasis.
Collapse
|
43
|
Fan L, Lei H, Zhang S, Peng Y, Fu C, Shu G, Yin G. Non-canonical signaling pathway of SNAI2 induces EMT in ovarian cancer cells by suppressing miR-222-3p transcription and upregulating PDCD10. Theranostics 2020; 10:5895-5913. [PMID: 32483426 PMCID: PMC7254989 DOI: 10.7150/thno.43198] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/30/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Epithelial ovarian cancer (EOC) is one of the most lethal malignancies in women worldwide. Many studies showed the transcription factor SNAI2-induced Epithelial-Mesenchymal Transition (EMT) through inhibiting E-cadherin (E-cad) expression. Our previous study reported that miR-222-3p was an important tumor-suppressive miRNA for EOC development and dissemination. The present study aimed to acquire a deeper mechanistic understanding of the role of miR-222-3p regulation that might contribute to improving current anti-metastasis strategies in EOC. Methods: A variety of techniques were used to measure mRNA and protein expression levels, including quantitative real-time polymerase chain reaction (qRT-PCR), Western blot, immunohistochemical (IHC) staining, and immunofluorescence (IF). Four different microRNA (miRNA) target prediction databases were used to predict the target genes of miR-222. Luciferase assay was performed to determine the direct binding of miR-222-3p to the untranslated region (3'-UTR) of PDCD10. The biological effects of PDCD10 and miR-222-3p were also investigated in vitro by Transwell and wound healing assays, as well as in vivo by a xenograft mice model. Combining UCSC and JASPAR, as well as ENCODE public databases, we predicted that the transcription factor SNAI2 could affect miR-222-3p expression. Luciferase assay was utilized to examine the validity of putative SNAI2 binding sites for miR-222-3p regulation. Chromatin immunoprecipitation (ChIP) was used to explore the SNAI2's occupancy on the miR-222-3p promoter. Results: We observed the inhibitory effect of SNAI2 on miR-222-3p transcription and confirmed the tumor-suppressive function of miR-222-3p both in EOC cells and tissues. PDCD10 was upregulated and inversely correlated with miR-222-3p, both in vitro and in vivo, which was consistent with the information in bioinformatics databases. Furthermore, We observed direct binding of miR-222-3p to the 3'-UTR of PDCD10 and inhibition of PDCD10 translation, which, in turn, inhibited EOC cell migration in vitro and repressed EOC xenografted tumor metastasis in vivo. We found that genetic overexpression of PDCD10 (OE-PDCD10) increased cancer metastasis by down-regulating E-cad and enhancing Vimentin (VIM) thereby inducing EMT and promoting β-catenin/Wnt-mediated cell migration.
Collapse
Affiliation(s)
- Lili Fan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Han Lei
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Sai Zhang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Yulong Peng
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Chunyan Fu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Guang Shu
- School of Basic Medical Sciences, Central South University, Changsha, Hunan Province
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
44
|
Long Non-coding RNA LINC01420 Contributes to Pancreatic Cancer Progression Through Targeting KRAS Proto-oncogene. Dig Dis Sci 2020; 65:1042-1052. [PMID: 31562613 DOI: 10.1007/s10620-019-05829-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/04/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been increasingly uncovered to participate in multiple human cancers, including pancreatic cancer (PC). However, the underlying mechanisms of most of the lncRNAs have not been fully understood yet. AIMS In this study, we probed the role and latent mechanism of LINC01420 in PC. METHODS Several online tools were applied. Gene expression was evaluated by qRT-PCR or Western blot. Both in vitro and in vivo assays were conducted to probe LINC01420 function in PC. ChIP, RIP, and luciferase reporter assays were performed to determine relationships between genes. RESULTS The bioinformatics analyses revealed LINC01420 was highly expressed in PC tissues. Besides, LINC01420 was pronouncedly upregulated in PC cell lines and its depletion controlled PC cell proliferation and EMT in vitro and hindered tumor growth in vivo. Importantly, KRAS was proved to mediate LINC01420-facilitated PC cell proliferation. Further, we explained that KRAS transcription was regulated by MYC, while LINC01420 enhanced the binding of MYC to KRAS promoter in the nucleus of PC cells. Intriguingly, LINC01420 boosted MYC expression in the cytoplasm of PC cells by sponging miR-494-3p. CONCLUSION This study illustrated that LINC01420 accelerates PC progression through releasing miR-494-3p-silenced MYC in cytoplasm and upregulating MYC-activated KRAS in nucleus, unveiling LINC01420 as a latent therapeutic strategy for PC patients.
Collapse
|
45
|
Crudele F, Bianchi N, Reali E, Galasso M, Agnoletto C, Volinia S. The network of non-coding RNAs and their molecular targets in breast cancer. Mol Cancer 2020; 19:61. [PMID: 32188472 PMCID: PMC7079433 DOI: 10.1186/s12943-020-01181-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Non-coding RNAs are now recognized as fundamental components of the cellular processes. Non-coding RNAs are composed of different classes, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Their detailed roles in breast cancer are still under scrutiny. Main body We systematically reviewed from recent literature the many functional and physical interactions of non-coding RNAs in breast cancer. We used a data driven approach to establish the network of direct, and indirect, interactions. Human curation was essential to de-convolute and critically assess the experimental approaches in the reviewed articles. To enrol the scientific papers in our article cohort, due to the short time span (shorter than 5 years) we considered the journal impact factor rather than the citation number. The outcome of our work is the formal establishment of different sub-networks composed by non-coding RNAs and coding genes with validated relations in human breast cancer. This review describes in a concise and unbiased fashion the core of our current knowledge on the role of lncRNAs, miRNAs and other non-coding RNAs in breast cancer. Conclusions A number of coding/non-coding gene interactions have been investigated in breast cancer during recent years and their full extent is still being established. Here, we have unveiled some of the most important networks embracing those interactions, and described their involvement in cancer development and in its malignant progression.
Collapse
Affiliation(s)
- Francesca Crudele
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA, University of Ferrara, Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, 44121, Ferrara, Italy
| | - Eva Reali
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Marco Galasso
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Area of Neuroscience, International School for Advanced Studies (SISSA-ISAS), Trieste, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy. .,LTTA, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
46
|
Chen Z, Pan T, Jiang D, Jin L, Geng Y, Feng X, Shen A, Zhang L. The lncRNA-GAS5/miR-221-3p/DKK2 Axis Modulates ABCB1-Mediated Adriamycin Resistance of Breast Cancer via the Wnt/β-Catenin Signaling Pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1434-1448. [PMID: 32160712 PMCID: PMC7056627 DOI: 10.1016/j.omtn.2020.01.030] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 01/01/2023]
Abstract
Drug resistance, including adriamycin (ADR)-based therapeutic resistance, is a crucial cause of chemotherapy failure in breast cancer treatment. Acquired chemoresistance has been identified to be closely associated with the overexpression of P-glycoprotein (P-gp/ABCB1). Long non-coding RNA (lncRNA) growth arrest-specific 5 (GAS5) can be involved in carcinogenesis; however, its roles in ABCB1-mediated ADR resistance are poorly understood. In this study, we identified a panel of differentially expressed lncRNAs, mRNAs, and microRNAs (miRNAs) in MCF-7 and MCF-7/ADR cell lines through RNA sequencing (RNA-seq) technologies. GAS5 level was downregulated whereas ABCB1 level was upregulated in the resistant breast cancer tissues and cells. Overexpression of GAS5 significantly enhanced the ADR sensitivity and apoptosis, and it inhibited the efflux function and expression of ABCB1 in vitro, while knockdown of GAS5 had the opposite effects. Further mechanism-related investigations indicated that GAS5 acted as an endogenous “sponge” by competing for miR-221-3p binding to regulate its target dickkopf 2 (DKK2), and then it inhibited the activation of the Wnt/β-catenin pathway. Functionally, GAS5 enhanced the anti-tumor effect of ADR in vivo. Collectively, our findings reveal that GAS5 exerted regulatory function in ADR resistance possibly through the miR-221-3p/DKK2 axis, providing a novel approach to develop promising therapeutic strategy for overcoming chemoresistance in breast cancer patients.
Collapse
Affiliation(s)
- Zhaolin Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Tingting Pan
- Department of General Surgery, Diagnosis and Therapy Center of Thyroid and Breast, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Duochen Jiang
- Department of Pharmacy, The Anqing Hospital Affiliated, Anhui Medical University, Anqing, Anhui 246003, P.R. China
| | - Le Jin
- Department of Pharmacy, The Anqing Hospital Affiliated, Anhui Medical University, Anqing, Anhui 246003, P.R. China
| | - Yadi Geng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Xiaojun Feng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China
| | - Aizong Shen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China.
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, Anhui 230001, P.R. China.
| |
Collapse
|
47
|
Zhang T, Hu H, Yan G, Wu T, Liu S, Chen W, Ning Y, Lu Z. Long Non-Coding RNA and Breast Cancer. Technol Cancer Res Treat 2020; 18:1533033819843889. [PMID: 30983509 PMCID: PMC6466467 DOI: 10.1177/1533033819843889] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Breast cancer, one of the most common diseases among women, is regarded as a
heterogeneous and complicated disease that remains a major public health concern.
Recently, owing to the development of next-generation sequencing technologies, long
non-coding RNAs have received extensive attention. Numerous studies reveal that long
non-coding RNAs are playing important roles in tumor development. Although the biological
function and molecular mechanisms of long non-coding RNAs remain enigmatic, recent
researchers have demonstrated that an array of long non-coding RNAs express abnormally in
cancers, including breast cancer. Herein, we summarized the latest literature about long
non-coding RNAs in breast cancer, with a particular focus on the multiple molecular roles
of regulatory long non-coding RNAs that regulate cell proliferation, invasion, metastasis,
and apoptosis.
Collapse
Affiliation(s)
- Tianzhu Zhang
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Hui Hu
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge Yan
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Tangwei Wu
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiyi Liu
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,3 Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqun Chen
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,3 Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,4 Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Ning
- 2 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhongxin Lu
- 1 Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,2 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China.,3 Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,4 Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Xu L, Wu Y, Che X, Zhao J, Wang F, Wang P, Qu X, Liu Y, Li Z. Cox-LASSO Analysis Reveals a Ten-lncRNA Signature to Predict Outcomes in Patients with High-Grade Serous Ovarian Cancer. DNA Cell Biol 2019; 38:1519-1528. [PMID: 31657627 DOI: 10.1089/dna.2019.4826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Lu Xu
- Department of Medical Oncology, The First Hospital, China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital, China Medical University, Shenyang, China
| | - Ying Wu
- Department of General Practice, The First Hospital, China Medical University, Shenyang, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital, China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital, China Medical University, Shenyang, China
| | - Jia Zhao
- Department of Medical Oncology, The First Hospital, China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital, China Medical University, Shenyang, China
| | - Fang Wang
- Department of Medical Oncology, The First Hospital, China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital, China Medical University, Shenyang, China
| | - Pengshuo Wang
- Department of Psychology, The First Hospital, China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital, China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital, China Medical University, Shenyang, China
| | - YunPeng Liu
- Department of Medical Oncology, The First Hospital, China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital, China Medical University, Shenyang, China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital, China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital, China Medical University, Shenyang, China
| |
Collapse
|
49
|
Shuai Y, Ma Z, Lu J, Feng J. LncRNA SNHG15: A new budding star in human cancers. Cell Prolif 2019; 53:e12716. [PMID: 31774607 PMCID: PMC6985667 DOI: 10.1111/cpr.12716] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Long non-coding RNAs (lncRNAs) represent an important group of non-coding RNAs (ncRNAs) with more than 200 nucleotides in length that are transcribed from the so-called genomic "dark matter." Mounting evidence has shown that lncRNAs have manifested a paramount function in the pathophysiology of human diseases, especially in the pathogenesis and progression of cancers. Despite the exponential growth in lncRNA publications, our understanding of regulatory mechanism of lncRNAs is still limited, and a lot of controversies remain in the current lncRNA knowledge.The purpose of this article is to explore the clinical significance and molecular mechanism of SNHG15 in tumors. MATERIALS & METHODS We have systematically searched the Pubmed, Web of Science, Embase and Cochrane databases. We provide an overview of current evidence concerning the functional role, mechanistic models and clinical utilities of SNHG15 in human cancers in this review. RESULTS Small nucleolar RNA host gene 15 (SNHG15), a novel lncRNA, is identified as a key regulator in tumorigenesis and progression of various human cancers, including colorectal cancer (CRC), gastric cancer (GC), pancreatic cancer (PC) and hepatocellular carcinoma (HCC). Dysregulation of SNHG15 has been revealed to be dramatically correlated with advanced clinicopathological factors and predicts poor prognosis, suggesting its potential clinical value as a promising biomarker and therapeutic target for cancer patients. CONCLUSIONS LncRNA SNHG15 may serve as a prospective and novel biomarker for molecular diagnosis and therapeutics in patients with cancer.
Collapse
Affiliation(s)
- You Shuai
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jianwei Lu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
50
|
Zhang D, Han LL, Du F, Liu XM, Li J, Wang HH, Song MH, Li Z, Li GY. FGFR1 Induces Acquired Resistance Against Gefitinib By Activating AKT/mTOR Pathway In NSCLC. Onco Targets Ther 2019; 12:9809-9816. [PMID: 31819480 PMCID: PMC6874148 DOI: 10.2147/ott.s220462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/31/2019] [Indexed: 12/16/2022] Open
Abstract
Objective As an epidermal growth factor, receptor-tyrosine kinase inhibitor (EGFR-TKI), gefitinib demonstrates a good therapeutic effect in patients with EGFR-mutant non-small-cell lung cancer (NSCLC). However, an overwhelming majority of these patients inevitably develop resistance against gefitinib. Unfortunately, the mechanism underlying this phenomenon is still not fully understood. Here we aim to reveal the mechanism of gefitinib resistance in NSCLC induced by FGFR1. Materials and methods We used high-throughput sequencing to compare the mRNA expression profiles of PC9 and PC9-GR (gefitinib-resistant) cells. The clinical significance of fibroblast growth factor receptor 1 (FGFR1) in NSCLC was also investigated using immunohistochemistry and Kaplan-Meier survival analysis. Finally, the in vitro molecular mechanisms were analyzed using confocal laser microscopy, Western blotting, transwell assay, colony formation assay, CCK-8 assay, and apoptosis assay. Results We observed that FGFR1 was highly expressed in NSCLC tissues and was closely associated with poor prognosis. Cytological experiments showed that FGFR1 promoted the proliferation and migration of PC9-GR cells and mediated their resistance to gefitinib. Furthermore, studies aimed at unraveling this mechanism revealed that FGFR1 activated the AKT/mTOR signaling pathway. These findings show that the FGFR1/AKT/mTOR signaling pathway plays a vital role in acquired resistance against gefitinib in NSCLC. Conclusion This work provides new evidence that FGFR1 functions as a key regulator of gefitinib resistance, thereby demonstrating its potential as a novel biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Dan Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, People's Republic of China.,Department of Oncology, Hanzhong 3201 Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Li-Li Han
- Department of Respiratory, Zhoukou Central Hospital, Zhoukou, Henan, People's Republic of China
| | - Fen Du
- Department of Nursing, Hanzhong Vocational Technical College, Hanzhong, Shaanxi, People's Republic of China
| | - Xiao-Meng Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, People's Republic of China
| | - Jin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, People's Republic of China
| | - Hui-Hui Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, People's Republic of China
| | - Ming-Hui Song
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, People's Republic of China
| | - Zeng Li
- Department of Oncology, Hanzhong 3201 Hospital Affiliated to Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Guo-Yin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, People's Republic of China
| |
Collapse
|