1
|
Budi HS, Handajani J, Amir LR, Soekanto SA, Ulfa NM, Wulansari SA, Shen YK, Yamada S. Nanoemulgel Development of Stem Cells from Human Exfoliated Deciduous Teeth-Derived Conditioned Medium as a Novel Nanocarrier Growth Factors. Eur J Dent 2025. [PMID: 40267955 DOI: 10.1055/s-0045-1806963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
OBJECTIVE We aimed to develop a nanoemulgel of stem cells from human exfoliated deciduous teeth-derived conditioned medium (SHED-CM) for oral wound biotherapy candidate. MATERIALS AND METHODS Deciduous tooth pulp was collected from two patients aged 6 years. The mesenchymal stem cell marker expression was analyzed by immunocytochemistry of CD45, CD90, and CD105. Alizarin red staining was performed to differentiate SHEDs from osteoblasts. The quantitative and quantification of transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF) secreted into conditioned media were measured using sodium dodecyl sulfate polyacrylamide gel electrophoresis and enzyme-linked immunosorbent assay. The characteristics of the nanoemulgel of SHED-CM (NESCM) were analyzed in terms of organoleptic properties, pH, and homogeneity. The cytotoxicity of NESCM 1.5% was analyzed in human gingival fibroblast (hGF) cell and osteoblast cell line (MC3T3) by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. STATISTICAL ANALYSIS The results were presented as mean ± standard deviation (X ± SD), and the differences between groups were analyzed using the post hoc Tukey's test at a significance level of p-value < 0.05. RESULTS SHEDs were successfully isolated, which were characterized for positive marker expressions of CD90 and CD105 and negative expression of CD45 as well as their osteogenic commitment. In SHED-CM, TGF-β and VEGF were detected on day 1 of conditioning and afterward. Notably, the growth factor enriched as the duration of conditioning increased. The generated nanoemulgel with SHED-CM was stable and homogeneous, and had limited cytotoxic effects on hGF and MC3T3 cell culture. CONCLUSION SHED-CM containing the growth factors can potentially be used as oral wound biotherapy in the form of nanoemulgel.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Cell and Biology Research, Surabaya Science Laboratory, Surabaya, Indonesia
| | - Juni Handajani
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Lisa Rinanda Amir
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Sri Angky Soekanto
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Ninik Mas Ulfa
- Department of Pharmaceutica, Pharmacology and Clinical Pharmacy, Surabaya Pharmacy Academy, Surabaya, Indonesia
| | - Silvi Ayu Wulansari
- Department of Pharmaceutica, Pharmacology and Clinical Pharmacy, Surabaya Pharmacy Academy, Surabaya, Indonesia
| | - Yung-Kang Shen
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shuntaro Yamada
- Center of Translational Oral Research, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Zheng XQ, Wu T, Zhao M, Song CL. Stromal Vascular Fraction Therapy to Reduce Inflammation and Improve Cartilage Regeneration in Osteoarthritis Nude Rats. Stem Cells Int 2025; 2025:5356264. [PMID: 40224650 PMCID: PMC11987068 DOI: 10.1155/sci/5356264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 11/26/2024] [Accepted: 12/13/2024] [Indexed: 04/15/2025] Open
Abstract
Aims: To evaluate the efficacy of stromal vascular fraction (SVF) in treating osteoarthritis (OA). Background: OA is a common degenerative disease, the most important manifestation of which is cartilage destruction and inflammation. The SVF is a mixed group of multiple cells extracted from adipose tissue with a certain ability to promote tissue repair. However, the biological safety and efficacy of human derived SVF in treating OA have not been confirmed. Methods: Seventy-six nude rats were used in this experiment. The rat OA model was constructed with anterior cruciate ligament transection (ACLT). After 4 weeks, SVF cells were injected into the joint cavity once. After 12 weeks, the experimental animals were sacrificed and decalcified sections were subjected to hematoxylin and eosin (H&E), safranine O staining, and AP-PAS staining and immunohistochemistry for inflammation markers. Results: After surgery, the knee joint swells, pain intensifies, and the joint space narrows. The results of H&E, safranine O, and AP-PAS staining showed that the cartilage tissue was damaged in the ACLT-OA group and the treatment of SVF can reduce cartilage degradation. The numbers of ADAMTS-5-, MMP-13-, and IL-1β-positive cells significantly decreased and type II collagen-positive cells were more frequently detected in the ACLT-OA group compared with that in the control group, the treatment of SVF can reduce inflammation. Conclusion: SVF cells can be safely used to treat OA and can both effectively reduce the progression of joint inflammation and promote cartilage regeneration.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Tong Wu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Minwei Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Chun-Li Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
3
|
Samiei M, Harmsen MC, Abdolahinia ED, Barar J, Petridis X. Scaffold-Free Strategies in Dental Pulp/Dentine Tissue Engineering: Current Status and Implications for Regenerative Biological Processes. Bioengineering (Basel) 2025; 12:198. [PMID: 40001717 PMCID: PMC11851408 DOI: 10.3390/bioengineering12020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Conventionally, root canal treatment is performed when the dental pulp is severely damaged or lost due to dental trauma or bacterial endodontic infections. This treatment involves removing the compromised or infected pulp tissue, disinfecting the root canal system, and sealing it with inert, non-degradable materials. However, contemporary endodontic treatment has shifted from merely obturating the root canal system with inert materials to guiding endodontic tissue regeneration through biological approaches. The ultimate goal of regenerative endodontics is to restore dental pulp tissue with structural organization and functional characteristics akin to the native pulp, leveraging advancements in tissue engineering and biomaterial sciences. Dental pulp tissue engineering commonly employs scaffold-based strategies, utilizing biomaterials as initial platforms for cell and growth factor delivery, which subsequently act as scaffolds for cell proliferation, differentiation and maturation. However, cells possess an intrinsic capacity for self-organization into spheroids and can generate their own extracellular matrix, eliminating the need for external scaffolds. This self-assembling property presents a promising alternative for scaffold-free dental pulp engineering, addressing limitations associated with biomaterial-based approaches. This review provides a comprehensive overview of cell-based, self-assembling and scaffold-free approaches in dental pulp tissue engineering, highlighting their potential advantages and challenges in advancing regenerative endodontics.
Collapse
Affiliation(s)
- Mohammad Samiei
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.S.); (M.C.H.)
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Martin Conrad Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.S.); (M.C.H.)
| | - Elaheh Dalir Abdolahinia
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Xenos Petridis
- Department of Endodontics, Section of Dental Pathology & Therapeutics, School of Dentistry, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Department of Endodontology, Section of Fundamental Dentistry, Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
4
|
Liu JN, Tian JY, Liu L, Cao Y, Lei X, Zhang XH, Zhang ZQ, He JX, Zheng CX, Ma C, Bai SF, Sui BD, Jin F, Chen J. The landscape of cell regulatory and communication networks in the human dental follicle. Front Bioeng Biotechnol 2025; 13:1535245. [PMID: 39974190 PMCID: PMC11835805 DOI: 10.3389/fbioe.2025.1535245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025] Open
Abstract
Introduction The dental follicle localizes the surrounding enamel organ and dental papilla of the developing tooth germ during the embryonic stage. It can differentiate and develop to form the periodontal ligament, cementum, and alveolar bone tissues. Postnatally, the dental follicle gradually degenerates, but some parts of the dental follicle remain around the impacted tooth. However, the specific cellular components and the intricate regulatory mechanisms governing the postnatal development and biological function of the dental follicle have not been completely understood. Methods We analyzed dental follicles with single-cell RNA sequencing (scRNA-seq) to reveal their cellular constitution molecular signatures by cell cycle analysis, scenic analysis, gene enrichment analysis, and cell communication analysis. Results Ten cell clusters were identified with differential characteristics, among which immune and vessel-related cells, as well as a stem cell population, were revealed as the main cell types. Gene regulatory networks (GRNs) were established and defined four regulon modules underlying dental tissue development and microenvironmental regulation, including vascular and immune responses. Cell-cell communication analysis unraveled crosstalk between vascular and immune cell components in orchestrating dental follicle biological activities, potentially based on COLLAGAN-CD44 ligand-receptor pairs, as well as ANGPTL1-ITGA/ITGB ligand-receptor pairs. Conclusion We establish a landscape of cell regulatory and communication networks in the human dental follicle, providing mechanistic insights into the cellular regulation and interactions in the complex dental follicle tissue microenvironment.
Collapse
Affiliation(s)
- Jia-Ning Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jiong-Yi Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yuan Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiao Lei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiao-Hui Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zi-Qi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jun-Xi He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chao Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Sheng-Feng Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Fang Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ji Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
5
|
Ouchi T, Shimizu E, Li B. Editorial: Perivascular niche and stem cell signaling in tooth. Front Cell Dev Biol 2025; 13:1555739. [PMID: 39958889 PMCID: PMC11825445 DOI: 10.3389/fcell.2025.1555739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 02/18/2025] Open
Affiliation(s)
- Takehito Ouchi
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Emi Shimizu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Ding J, Sun Z, Ma L, Wang L, Liao Z, Liang L, Yang H, Mao R. Microspheres of stem cells from human exfoliated deciduous teeth exhibit superior pulp regeneration capacity. Dent Mater 2025; 41:70-80. [PMID: 39500639 DOI: 10.1016/j.dental.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/25/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVES Engineering spheroids to create three-dimensional (3D) cell cultures has gained increasing attention in recent years due to their potential advantages over traditional two-dimensional (2D) tissue culture methods. Stem cells derived from human exfoliated deciduous teeth (SHEDs) demonstrate significant potential for pulpal regeneration applications. Nevertheless, the feasibility of microsphere formation of SHEDs and its impact on pulpal regeneration remain unclear. METHODS In this study, SHEDs were isolated, identified, and cultured in ultra-low attachment six-well plates to produce SHED microspheres. The biological properties of SHED microspheres were compared to those of traditional 2D culture using live-dead staining, Alizarin red staining, Oil-red O staining, scratch experiments, Immunofluorescence, Transmission electron microscopy scan, Western blotting, RNA sequencing, and a nude mice subcutaneous transplantation model. RESULTS We found SHED cells can form microspheres with a dense internal structure. SHED microspheres exhibited notable advantages over SHED cells in terms of biological properties, maintaining cell activity and enhancing cell differentiation, migration, and stemness in vitro. RNA-seq revealed that the SHED microspheres potentially influenced cell development, regulation of neurogenesis, skeletal system development, tissue morphogenesis singling pathway. In vivo, SHED microspheres promoted the generation of pulp tissue in dental pulp compared to traditional 2D culture. CONCLUSIONS Microsphereization of SHED through 3D cell culture enhances its pulp regeneration capacity, presenting a novel strategy for dental pulp regeneration and the clinical treatment of dental pulp diseases.
Collapse
Affiliation(s)
- Jianzhao Ding
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming 650500, China; The First People's Hospital of Yunnan, Kunming 650032, China
| | - Zheyi Sun
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming 650500, China; Department of Endodontology, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, China
| | - Liya Ma
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming 650500, China
| | - Limeiting Wang
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming 650500, China
| | - Zhenhui Liao
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming 650500, China
| | - Lu Liang
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming 650500, China
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming 650500, China.
| | - Rui Mao
- Department of Pediatric Dentistry, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, China.
| |
Collapse
|
7
|
Gao P, Kajiya M, Motoike S, Ikeya M, Yang J. Application of mesenchymal stem/stromal cells in periodontal regeneration: Opportunities and challenges. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:95-108. [PMID: 38314143 PMCID: PMC10837070 DOI: 10.1016/j.jdsr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Guided tissue regeneration (GTR) has been widely used in the periodontal treatment of intrabony and furcation defects for nearly four decades. The treatment outcomes have shown effectiveness in reducing pocket depth, improving attachment gain and bone filling in periodontal tissue. Although applying GTR could reconstruct the periodontal tissue, the surgical indications are relatively narrow, and some complications and race ethic problems bring new challenges. Therefore, it is challenging to achieve a consensus concerning the clinical benefits of GTR. With the appearance of stem cell-based regenerative medicine, mesenchymal stem/stromal cells (MSCs) have been considered a promising cell resource for periodontal regeneration. In this review, we highlight preclinical and clinical periodontal regeneration using MSCs derived from distinct origins, including non-odontogenic and odontogenic tissues and induced pluripotent stem cells, and discuss the transplantation procedures, therapeutic mechanisms, and concerns to evaluate the effectiveness of MSCs.
Collapse
Affiliation(s)
- Pan Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Souta Motoike
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Jingmei Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
8
|
Kiyokawa Y, Terajima M, Sato M, Inada E, Hori Y, Bando R, Iwase Y, Kubota N, Murakami T, Tsugane H, Watanabe S, Sonomura T, Terunuma M, Maeda T, Noguchi H, Saitoh I. Scratch-Based Isolation of Primary Cells (SCIP): A Novel Method to Obtain a Large Number of Human Dental Pulp Cells Through One-Step Cultivation. J Clin Med 2024; 13:7058. [PMID: 39685514 DOI: 10.3390/jcm13237058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Dental pulp (DP) is a connective tissue composed of various cell types, including fibroblasts, neurons, adipocytes, endothelial cells, and odontoblasts. It contains a rich supply of pluripotent stem cells, making it an important resource for cell-based regenerative medicine. However, current stem cell collection methods rely heavily on the enzymatic digestion of dissected DP tissue to isolate and propagate primary cells, which often results in low recovery rates and reduced cell survival, particularly from deciduous teeth. Methods: We developed a novel and efficient method to obtain a sufficient number of cells through a one-step cultivation process of isolated DP. After the brief digestion of DP with proteolytic enzymes, it was scratched onto a culture dish and cultured in a suitable medium. By day 2, the cells began to spread radially from DP, and by day 10, they reached a semi-confluent state. Cells harvested through trypsinization consistently yielded over 1 million cells, and after re-cultivation, the cells could be propagated for more than ten passages. Results: The proliferative and differentiation capacities of the cells after the 10th passage were comparable to those from the first passage. The cells expressed alkaline phosphatase as an undifferentiation marker. Similarly, they also maintained the constitutive expression of stem cell-specific markers and differentiation-related markers, even after the 10th passage. Conclusions: This method, termed "scratch-based isolation of primary cells from human dental pulps (SCIP)", enables the efficient isolation of a large number of DP cells with minimal equipment and operator variability, while preserving cell integrity. Its simplicity, high success rate, and adaptability for patients with genetic diseases make it a valuable tool for regenerative medicine research and clinical applications.
Collapse
Affiliation(s)
- Yuki Kiyokawa
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Gifu 501-0296, Japan
| | - Masahiko Terajima
- Department of Anatomy, Asahi University School of Dentistry, Gifu 501-0296, Japan
| | - Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yuria Hori
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Gifu 501-0296, Japan
| | - Ryo Bando
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Gifu 501-0296, Japan
| | - Yoko Iwase
- Department of Dentistry for the Disability and Oral Health, Asahi University School of Dentistry, Gifu 501-0296, Japan
| | - Naoko Kubota
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Tomoya Murakami
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Gifu 501-0296, Japan
- Kyoto Dental Service Center Central Clinic, Kyoto 604-8418, Japan
| | - Hiroko Tsugane
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Gifu 501-0296, Japan
| | - Satoshi Watanabe
- Institute of Livestock and Grassland Science, Ibaraki 305-0901, Japan
| | - Takahiro Sonomura
- Department of Anatomy, Asahi University School of Dentistry, Gifu 501-0296, Japan
| | - Miho Terunuma
- Division of Oral Biochemistry, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Issei Saitoh
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Gifu 501-0296, Japan
| |
Collapse
|
9
|
Xie B, He X, Guo Y, Shen J, Yang B, Cai R, Chen J, He Y. Cyclic tensile stress promotes osteogenic differentiation via upregulation of Piezo1 in human dental follicle stem cells. Hum Cell 2024; 37:1649-1662. [PMID: 39190266 DOI: 10.1007/s13577-024-01123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
As periodontal progenitor cells, human dental follicle stem cells (hDFCs) play an important role in regenerative medicine research. Mechanical stimuli exert different regulatory effects on various functions of stem cells. Mechanosensitive ion channels can perceive and transmit mechanical signals. Piezo1 is a novel mechanosensitive cation channel dominated by Ca2+ permeation. The yes-associated protein 1 (YAP1) and mitogen-activated protein kinase (MAPK) pathways can respond to mechanical stimuli and play important roles in cell growth, differentiation, apoptosis, and cell cycle regulation. In this study, we demonstrated that Piezo1 was able to transduce cyclic tension stress (CTS) and promote the osteogenic differentiation of hDFCs by applying CTS of 2000 μstrain to hDFCs. Further investigation of this mechanism revealed that CTS activated Piezo1 in hDFCs and resulted in increased levels of intracellular Ca2+, YAP1 nuclear translocation, and phosphorylated protein expression levels of extracellular signalling-associated kinase 1/2 (ERK 1/2) and Jun amino-terminal kinase 1/2/3 (JNK 1/3) of the MAPK pathway family. However, when Piezo1 was knocked down in the hDFCs, all these increases disappeared. We conclude that CTS activates Piezo1 expression and promotes its osteogenesis via Ca2+/YAP1/MAPK in hDFCs. Appropriate mechanical stimulation promotes the osteogenic differentiation of hDFCs via Piezo1. Targeting Piezo1 may be an effective strategy to regulate the osteogenic differentiation of hDFCs, contributing to MSC-based therapies in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Binqing Xie
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Yunfenglu 10, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Xianglinlu 1, Luzhou, 646000, China
| | - Xianyi He
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Yunfenglu 10, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Xianglinlu 1, Luzhou, 646000, China
| | - Ye Guo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Yunfenglu 10, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Xianglinlu 1, Luzhou, 646000, China
| | - Jie Shen
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Yunfenglu 10, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Xianglinlu 1, Luzhou, 646000, China
| | - Binbin Yang
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Xianglinlu 1, Luzhou, 646000, China
| | - Rui Cai
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Xianglinlu 1, Luzhou, 646000, China
| | - Junliang Chen
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Yunfenglu 10, Luzhou, 646000, China.
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Xianglinlu 1, Luzhou, 646000, China.
| | - Yun He
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Yunfenglu 10, Luzhou, 646000, China.
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Xianglinlu 1, Luzhou, 646000, China.
| |
Collapse
|
10
|
Wen S, Zheng X, Yin W, Liu Y, Wang R, Zhao Y, Liu Z, Li C, Zeng J, Rong M. Dental stem cell dynamics in periodontal ligament regeneration: from mechanism to application. Stem Cell Res Ther 2024; 15:389. [PMID: 39482701 PMCID: PMC11526537 DOI: 10.1186/s13287-024-04003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
Periodontitis, a globally prevalent chronic inflammatory disease is characterized by the progressive degradation of tooth-supporting structures, particularly the periodontal ligament (PDL), which can eventually result in tooth loss. Despite the various clinical interventions available, most focus on symptomatic relief and lack substantial evidence of supporting the functional regeneration of the PDL. Dental stem cells (DSCs), with their homology and mesenchymal stem cell (MSC) properties, have gained significant attention as a potential avenue for PDL regeneration. Consequently, multiple therapeutic strategies have been developed to enhance the efficacy of DSC-based treatments and improve clinical outcomes. This review examines the mechanisms by which DSCs and their derivatives promote PDL regeneration, and explores the diverse applications of exogenous implantation and endogenous regenerative technology (ERT) aimed at amplifying the regenerative capacity of endogenous DSCs. Additionally, the persistent challenges and controversies surrounding DSC therapies are discussed, alongside an evaluation of the limitations in current research on the underlying mechanisms and innovative applications of DSCs in PDL regeneration with the aim of providing new insights for future development. Periodontitis, a chronic inflammatory disease, represents a major global public health concern, affecting a significant proportion of the population and standing as the leading cause tooth loss in adults. The functional periodontal ligament (PDL) plays an indispensable role in maintaining periodontal health, as its structural and biological integrity is crucial for the long-term prognosis of periodontal tissues. It is widely recognized as the cornerstone of periodontal regeneration Despite the availability of various treatments, ranging from nonsurgical interventions to guided tissue regeneration (GTR) techniques, these methods have shown limited success in achieving meaningful PDL regeneration. As a result, the inability to fully restore PDL function underscores the urgent need for innovative therapeutic strategies at reconstructing this essential structure. Stem cell therapy, known for its regenerative and immunomodulatory potential, offers a promising approach for periodontal tissue repair. Their application marks a significant paradigm shift in the treatment of periodontal diseases, opening new avenues for functional PDL regeneration. However, much of the current research has primarily focused on the regeneration of alveolar bone and gingiva, as these hard and soft tissues can be more easily evaluated through visual assessment. The complexity of PDL structure, coupled with the intricate interactions among cellular and molecular components, presents significant scientific and clinical hurdles in translating DSC research into practical therapeutic applications. This review provides a thorough exploration of DSC dynamics in periodontal regeneration, detailing their origins, properties, and derived products, while also examining their potential mechanisms and applications in PDL regeneration. It offers an in-depth analysis of the current research, landscape, acknowledging both the progress made and the challenges that remain in bridging the gap between laboratory findings and clinical implementation. Finally, the need for continued investigation into the intricate mechanisms governing DSC behavior and the optimization of their use in regenerative therapies for periodontal diseases is also emphasized.
Collapse
Affiliation(s)
- Shuyi Wen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Xiao Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Wuwei Yin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yushan Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Ruijie Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yaqi Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Ziyi Liu
- Department of Stomatology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, 528308, China
| | - Cong Li
- Dongguan Key Laboratory of Metabolic Immunology and Oral Diseases, Dongguan Maternal and Child Health Care Hospital, Dongguan, Guangdong, 523000, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, 523808, China.
| | - Mingdeng Rong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
11
|
Liu F, Wu Q, Liu Q, Chen B, Liu X, Pathak JL, Watanabe N, Li J. Dental pulp stem cells-derived cannabidiol-treated organoid-like microspheroids show robust osteogenic potential via upregulation of WNT6. Commun Biol 2024; 7:972. [PMID: 39122786 PMCID: PMC11315977 DOI: 10.1038/s42003-024-06655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Dental pulp stem cells (DPSC) have shown osteogenic and bone regenerative potential. Improving the in situ bone regeneration potential of DPSC is crucial for their application as seed cells during bone defect reconstruction in clinics. This study aimed to develop DPSC-derived organoid-like microspheroids as effective seeds for bone tissue engineering applications. DPSC osteogenic microspheroids (70 μm diameter) were cultured in a polydimethylsiloxane-mold-based agarose-gel microwell-culture-system with or without cannabidiol (CBD)-treatment. Results of in vitro studies showed higher osteogenic differentiation potential of microspheroids compared with 2D-cultured-DPSC. CBD treatment further improved the osteogenic differentiation potential of microspheroids. The effect of CBD treatment in the osteogenic differentiation of microspheroids was more pronounced compared with that of CBD-treated 2D-cultured-DPSC. Microspheroids showed a higher degree of bone regeneration in nude mice calvarial bone defect compared to 2D-cultured-DPSC. CBD-treated microspheroids showed the most robust in situ bone regenerative potential compared with microspheroids or CBD-treated 2D-cultured-DPSC. According to mRNA sequencing, bioinformatic analysis, and confirmation study, the higher osteogenic potential of CBD-treated microspheroids was mainly attributed to WNT6 upregulation. Taken together, DPSC microspheroids have robust osteogenic potential and can effectively translate the effect of in vitro osteoinductive stimulation during in situ bone regeneration, indicating their application potential during bone defect reconstruction in clinics.
Collapse
Affiliation(s)
- Fangqi Liu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Qingqing Wu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Qianwen Liu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Bo Chen
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Xintong Liu
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
- Bio-Active Compounds Discovery Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Janak L Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
| | - Nobumoto Watanabe
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
- Bio-Active Compounds Discovery Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Jiang Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
| |
Collapse
|
12
|
Wang X, Chen Q, Li J, Tian W, Liu Z, Chen T. Recent adavances of functional modules for tooth regeneration. J Mater Chem B 2024; 12:7497-7518. [PMID: 39021127 DOI: 10.1039/d4tb01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Dental diseases, such as dental caries and periodontal disorders, constitute a major global health challenge, affecting millions worldwide and often resulting in tooth loss. Traditional dental treatments, though beneficial, typically cannot fully restore the natural functions and structures of teeth. This limitation has prompted growing interest in innovative strategies for tooth regeneration methods. Among these, the use of dental stem cells to generate functional tooth modules represents an emerging and promising approach in dental tissue engineering. These modules aim to closely replicate the intricate morphology and essential physiological functions of dental tissues. Recent advancements in regenerative research have not only enhanced the assembly techniques for these modules but also highlighted their therapeutic potential in addressing various dental diseases. In this review, we discuss the latest progress in the construction of functional tooth modules, especially on regenerating dental pulp, periodontal tissue, and tooth roots.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Qiuyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jiayi Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Tian Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
13
|
Zhan Y, Qian A, Gao J, Ma S, Deng P, Yang H, Zhang X, Li J. Enhancing clinical safety in bioengineered-root regeneration: The use of animal component-free medium. Heliyon 2024; 10:e34173. [PMID: 39092243 PMCID: PMC11292241 DOI: 10.1016/j.heliyon.2024.e34173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
Background Most studies used animal serum-containing medium for bioengineered-root regeneration, but ethical and safety issues raised by animal serum are a potentially significant risk for clinical use. Thus, this study aimed to find a safer method for bioengineered-root regeneration. Methods The biological properties of human dental pulp stem cells (hDPSCs) cultured in animal component-free (ACF) medium or serum-containing medium (5%, 10% serum-containing medium, SCM) were compared in vitro. hDPSCs were cultured in a three-dimensional (3D) environment with human-treated dentin matrix (hTDM). The capacity for odontogenesis was compared using quantitative real-time PCR (qPCR) and Western blot. Subsequently, the hDPSCs/hTDM complexes were transplanted into nude mice subcutaneously. Histological staining was then used to verify the regeneration effect in vivo. Results ACF medium promoted the migration of hDPSCs, but slightly inhibited the proliferation of hDPSCs in the first three days of culture compared to SCM. However, it had no significant effect on cell aging and apoptosis. After 7 days of 3D culture in ACF medium with hTDM, qPCR showed that DMP1, DSPP, OCN, RUNX2, and β-tubulin III were highly expressed in hDPSCs. In addition, 3D cultured hDPSCs/hTDM complexes in ACF medium regenerated dentin, pulp, and periodontal ligament-like tissues similar to SCM groups in vivo. Conclusion ACF medium was proved to be an alternative medium for bioengineered-root regeneration. The strategy of using ACF medium to regenerate bioengineered-root can improve clinical safety for tooth tissue engineering.
Collapse
Affiliation(s)
- Yuzhen Zhan
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Aizhuo Qian
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Jieya Gao
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, The Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Shiyong Ma
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, The Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Pingmeng Deng
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Hefeng Yang
- Yunnan Key Laboratory of Stomatology, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China
| | - Xiaonan Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Shi L, Ye X, Zhou J, Fang Y, Yang J, Meng M, Zou J. Roles of DNA methylation in influencing the functions of dental-derived mesenchymal stem cells. Oral Dis 2024; 30:2797-2806. [PMID: 37856651 DOI: 10.1111/odi.14770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE DNA methylation as intensively studied epigenetic regulatory mechanism exerts pleiotropic effects on dental-derived mesenchymal stem cells (DMSCs). DMSCs have self-renewal and multidifferentiation potential. Here, this review aims at summarizing the research status about application of DMSCs in tissue engineering and clarifying the roles of DNA methylation in influencing the functions of DMSCs, with expectation of paving the way for its in-depth exploration in tissue engineering. METHOD The current research status about influence of DNA methylation in DMSCs was acquired by MEDLINE (through PubMed) and Web of Science using the keywords 'DNA methylation', 'dental-derived mesenchymal stem cells', 'dental pulp stem cells', 'periodontal ligament stem cells', 'dental follicle stem cells', 'stem cells from the apical papilla', 'stem cells from human exfoliated deciduous teeth', and 'gingival-derived mesenchymal stem cells'. RESULTS This review indicates DNA methylation affects DMSCs' differentiation and function through inhibiting or enhancing the expression of specific gene resulted by DNA methylation-related genes or relevant inhibitors. CONCLUSION DNA methylation can influence DMSCs in aspects of osteogenesis, adipogenesis, immunomodulatory function, and so on. Yet, the present studies about DNA methylation in DMSCs commonly focus on dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs). Little has been reported for other DMSCs.
Collapse
Affiliation(s)
- Liyan Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingchen Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuwen Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiazhen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingmei Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Gu T, Guo R, Fang Y, Xiao Y, Chen L, Li N, Ge XK, Shi Y, Wu J, Yan M, Yu J, Li Z. METTL3-mediated pre-miR-665/DLX3 m 6A methylation facilitates the committed differentiation of stem cells from apical papilla. Exp Mol Med 2024; 56:1426-1438. [PMID: 38825638 PMCID: PMC11263550 DOI: 10.1038/s12276-024-01245-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 06/04/2024] Open
Abstract
Methyltransferase-like 3 (METTL3) is a crucial element of N6-methyladenosine (m6A) modifications and has been extensively studied for its involvement in diverse biological and pathological processes. In this study, we explored how METTL3 affects the differentiation of stem cells from the apical papilla (SCAPs) into odonto/osteoblastic lineages through gain- and loss-of-function experiments. The m6A modification levels were assessed using m6A dot blot and activity quantification experiments. In addition, we employed Me-RIP microarray experiments to identify specific targets modified by METTL3. Furthermore, we elucidated the molecular mechanism underlying METTL3 function through dual-luciferase reporter gene experiments and rescue experiments. Our findings indicated that METTL3+/- mice exhibited significant root dysplasia and increased bone loss. The m6A level and odonto/osteoblastic differentiation capacity were affected by the overexpression or inhibition of METTL3. This effect was attributed to the acceleration of pre-miR-665 degradation by METTL3-mediated m6A methylation in cooperation with the "reader" protein YTHDF2. Additionally, the targeting of distal-less homeobox 3 (DLX3) by miR-665 and the potential direct regulation of DLX3 expression by METTL3, mediated by the "reader" protein YTHDF1, were demonstrated. Overall, the METTL3/pre-miR-665/DLX3 pathway might provide a new target for SCAP-based tooth root/maxillofacial bone tissue regeneration.
Collapse
Affiliation(s)
- Tingjie Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Rong Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuxin Fang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ya Xiao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Luyao Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Na Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xingyun Kelesy Ge
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR, China
| | - Yijia Shi
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jintao Wu
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ming Yan
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jinhua Yu
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| | - Zehan Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University and Department of Stomatology, Nanjing Medical University, Nanjing, China.
- Department of Endodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Zhang X, Zhou S, Zhan Y, Mei Z, Qian A, Yuan Y, Zhang X, Fu T, Ma S, Li J. Molecular insights into the proteomic composition of porcine treated dentin matrix. Mater Today Bio 2024; 25:100990. [PMID: 38371466 PMCID: PMC10873736 DOI: 10.1016/j.mtbio.2024.100990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/23/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024] Open
Abstract
Background Human-treated dentin matrix (hTDM) has recently been studied as a natural extracellular matrix-based biomaterial for dentin pulp regeneration. However, porcine-treated dentin matrix (pTDM) is a potential alternative scaffold due to limited availability. However, there is a dearth of information regarding the protein composition and underlying molecular mechanisms of pTDM.Methods: hTDM and pTDM were fabricated using human and porcine teeth, respectively, and their morphological characteristics were examined using scanning electron microscopy. Stem cells derived from human exfoliated deciduous teeth (SHEDs) were isolated and characterized using flow cytometry and multilineage differentiation assays. SHEDs were cultured in three-dimensional environments with hTDM, pTDM, or biphasic hydroxyapatite/tricalcium phosphate. The expression of odontogenesis markers in SHEDs were assessed using real-time polymerase chain reaction and immunochemical staining. Subsequently, SHEDs/TDM and SHEDs/HA/TCP complexes were transplanted subcutaneously into nude mice. The protein composition of pTDM was analyzed using proteomics and compared to previously published data on hTDM.Results: pTDM and hTDM elicited comparable upregulation of odontogenesis-related genes and proteins in SHEDs. Furthermore, both demonstrated the capacity to stimulate root-related tissue regeneration in vivo. Proteomic analysis revealed the presence of 278 protein groups in pTDM, with collagens being the most abundant. Additionally, pTDM and hTDM shared 58 identical proteins, which may contribute to their similar abilities to induce odontogenesis. Conclusions Both hTDM and pTDM exhibit comparable capabilities in inducing odontogenesis, potentially owing to their distinctive bioactive molecular networks.
Collapse
Affiliation(s)
- Xiya Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Sha Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Yuzhen Zhan
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Ziyi Mei
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Aizhuo Qian
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Yu Yuan
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Xiaonan Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Tiwei Fu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| | - Shiyong Ma
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, The Ministry of Education, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Sadrabad MJ, Saberian E, Izadi A, Emami R, Ghadyani F. Success in Tooth Bud Regeneration: A Short Communication. J Endod 2024; 50:351-354. [PMID: 38154652 DOI: 10.1016/j.joen.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/10/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION Tooth caries and loss are frequent clinical diseases in dentistry. Tissue engineering is a new therapeutic choice for the complete biological regeneration of pulpal and dental tissues in regenerative dentistry. The aim of this study was to establish a protocol for in situ regeneration of a dental bud in the extracted socket. METHODS The current study examined tooth bud regeneration with dental pulp stem cells induced by a dentin derivative signal in a rabbit's jaw. RESULT A tooth bud was regenerated; the morphology and structure of it were typical, and it was post-Bell stage. CONCLUSIONS In our study, a real tooth bud was formed in the post-Bell stage with complete morphologic and biological features. However, the application of this method for tooth regeneration in humans necessitates further research.
Collapse
Affiliation(s)
- Maryam Jalili Sadrabad
- Oral Medicine Department, Dental School, Semnan University of Medical Sciences, Semnan, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Elham Saberian
- Dental Medicine Faculty, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Armin Izadi
- Student Research Committee, Oral Medicine Department, Dental Faculty, Semnan University of Medical Sciences, Semnan, Iran
| | - Rahele Emami
- Radiology Department, Dental School, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Ghadyani
- Student Research Committee, Dental Faculty, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
18
|
Zhao F, Zhang Z, Guo W. The 3-dimensional printing for dental tissue regeneration: the state of the art and future challenges. Front Bioeng Biotechnol 2024; 12:1356580. [PMID: 38456006 PMCID: PMC10917914 DOI: 10.3389/fbioe.2024.1356580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Tooth loss or damage poses great threaten to oral and general health. While contemporary clinical treatments have enabled tooth restoration to a certain extent, achieving functional tooth regeneration remains a challenging task due to the intricate and hierarchically organized architecture of teeth. The past few decades have seen a rapid development of three-dimensional (3D) printing technology, which has provided new breakthroughs in the field of tissue engineering and regenerative dentistry. This review outlined the bioactive materials and stem/progenitor cells used in dental regeneration, summarized recent advancements in the application of 3D printing technology for tooth and tooth-supporting tissue regeneration, including dental pulp, dentin, periodontal ligament, alveolar bone and so on. It also discussed current obstacles and potential future directions, aiming to inspire innovative ideas and encourage further development in regenerative medicine.
Collapse
Affiliation(s)
- Fengxiao Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zhijun Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
- Yunnan Key Laboratory of Stomatology, The Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
| |
Collapse
|
19
|
Abdolahinia ED, Golestani S, Seif S, Afra N, Aflatoonian K, Jalalian A, Valizadeh N, Abdollahinia ED. A review of the therapeutic potential of dental stem cells as scaffold-free models for tissue engineering application. Tissue Cell 2024; 86:102281. [PMID: 38070384 DOI: 10.1016/j.tice.2023.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 01/21/2024]
Abstract
In the realm of regenerative medicine, tissue engineering has introduced innovative approaches to facilitate tissue regeneration. Specifically, in pulp tissue engineering, both scaffold-based and scaffold-free techniques have been applied. Relevant articles were meticulously chosen from PubMed, Scopus, and Google Scholar databases through a comprehensive search spanning from October 2022 to December 2022. Despite the inherent limitations of scaffolding, including inadequate mechanical strength for hard tissues, insufficient vents for vessel penetration, immunogenicity, and suboptimal reproducibility-especially with natural polymeric scaffolds-scaffold-free tissue engineering has garnered significant attention. This methodology employs three-dimensional (3D) cell aggregates such as spheroids and cell sheets with extracellular matrix, facilitating precise regeneration of target tissues. The choice of technique aside, stem cells play a pivotal role in tissue engineering, with dental stem cells emerging as particularly promising resources. Their pluripotent nature, non-invasive extraction process, and unique properties render them highly suitable for scaffold-free tissue engineering. This study delves into the latest advancements in leveraging dental stem cells and scaffold-free techniques for the regeneration of various tissues. This paper offers a comprehensive summary of recent developments in the utilization of dental stem cells and scaffold-free methods for tissue generation. It explores the potential of these approaches to advance tissue engineering and their effectiveness in therapies aimed at tissue regeneration.
Collapse
Affiliation(s)
- Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States.
| | - Shayan Golestani
- Department of Oral and Maxillofacial Surgery, Dental School, Islamic Azad University, Isfahan ( Khorasgan) Branch, Isfahan, Iran
| | - Sepideh Seif
- Faculty of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Afra
- Faculty of Dentistry, Hormozgan University of Medical Sciences, Bandarabbas, Iran
| | - Khotan Aflatoonian
- Department of Restorative Dentistry, Dental School, Shahed University of Medical Sciences, Tehran, Iran
| | - Ali Jalalian
- Faculty of Dentistry, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Nasrin Valizadeh
- Chemistry Department, Sciences Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Elham Dalir Abdollahinia
- Fellowship of Endocrinology, Endocrinology Department, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
20
|
Omerkić Dautović D, Hodžić B, Omerkić S. Application of Stem Cells in Dentistry: A Review Article. IFMBE PROCEEDINGS 2024:726-745. [DOI: 10.1007/978-3-031-49068-2_75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
Xing C, Hang Z, Guo W, Li Y, Shah R, Zhao Y, Zeng Z, Du H. Stem cells from human exfoliated deciduous teeth rejuvenate the liver in naturally aged mice by improving ribosomal and mitochondrial proteins. Cytotherapy 2023; 25:1285-1292. [PMID: 37815776 DOI: 10.1016/j.jcyt.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND AIMS Aging is accompanied by a decline in cellular proteome homeostasis, mitochondrial, and metabolic function. Mesenchymal stromal cell (MSC) therapies have been reported to extend lifespan and delay some age-related pathologies, yet the anti-aging rate and mechanisms remain unclear. Here, we investigated the effects and mechanism by transplantation of stem cells from human exfoliated deciduous teeth (SHED) into the naturally aged mice model. METHODS SHED were cultured in vitro and injected into mice by caudal vein. The in vivo imaging uncovered that SHED labeled by DiR dye mainly migrated to the liver, spleen, and lung organs of wild-type mice. As the main metabolic organ and SHED homing place, the liver was selected for proteomics and aging clock algorithm (LiverClock) analysis, which was constructed to estimate the proteomic pattern related to liver age state. RESULTS After 6 months of continuous SHED injections, the liver proteomic pattern was reversed from senescent (∼30 months) to a youthful state (∼3 months), accompanied with upregulation of hepatocytes marker genes, anti-aging protein Klotho, a global improvement of liver functional pathways proteins, and a dramatic regulation of ribosomal and mitochondrial proteins, including upregulation of translation elongation and ribosome-sparing proteins Rpsa and Rplp0; elongation factors Eif4a1, Eef1b2, Eif5a; protein-folding chaperones Hsp90aa and Hspe1; ATP synthesis proteins Atp5b, Atp5o, Atp5j; and downregulation of most ribosomal proteins, suggesting that the proteome homeostasis destruction and mitochondria dysfunction in the aged mice liver might be relieved after SHED treatment. CONCLUSIONS SHED treatment could dramatically relieve the senescent state of the aged liver, affect ribosome component proteins and upregulate the ribosomal biogenesis proteins in the aged mice liver. These results may help understand the improvements and mechanisms of SHED treatment in anti-aging.
Collapse
Affiliation(s)
- Cencan Xing
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Zhongci Hang
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Wenhuan Guo
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China; Reproductive Center, Peking University Third Hospital, Beijing, China
| | - Yingxian Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Roshan Shah
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Yihan Zhao
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Zehua Zeng
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China.
| | - Hongwu Du
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China.
| |
Collapse
|
22
|
Yadav P, Vats R, Bano A, Namdev R, Bhardwaj R. Ameliorative potential of stem cells from human exfoliated deciduous teeth (SHED) in preclinical studies: A meta-analysis. Regen Ther 2023; 24:117-134. [PMID: 37441223 PMCID: PMC10333108 DOI: 10.1016/j.reth.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
The preclinical and clinical role of mesenchymal stem cells from various adult sources is extensively investigated and established in regenerative medicine. However, the comprehensive exploration of the therapeutic potential of Stem cells from human exfoliated deciduous teeth (SHED) is inadequate. Therefore, we performed a systematic meta-analysis of preclinical animal model studies in several diseases to provide insight into SHED's efficacy and therapeutic potential. Two blinded and independent investigators searched the available online databases and scrutinized the included studies. Meta-analysis was performed to evaluate the pooled effect estimate of intervention of SHED by Review Manager 5.4.1. To investigate the therapeutic efficacy of SHED intervention, we also analyzed the test of heterogeneity (I2), overall effect (Z), sensitivity, and publication bias. Among the 2156 scrutinized studies, 40 were included and evaluated as per inclusion and exclusion criteria. The intervention of SHED and its derivatives in several diseases depicted statistically significant therapeutic effects in periodontitis, pulpitis, spinal cord injury, parkinson's disease, alzheimer's disease, focal cerebral ischemia, peripheral nerve injury, and retinal pigmentosa. SHED also improved levels of alanine aminotransferase, aspartate aminotransferase, and bilirubin in liver fibrosis . In autoimmune diseases also, values were significant. SHED also showed a statistically significant reduction of wound healing area and new bone formation in bone defects. The pooled effect estimates of included preclinical studies demonstrated a statistically significant therapeutic effect of SHED in numerous diseases. Based on our data, it is suggested that the potential of SHED may be implemented in clinical trials after conducting a few more preclinical studies.
Collapse
Affiliation(s)
- Pooja Yadav
- Stem Cell Biology Laboratory, Centre for Medical Biotechnology, Maharshi Dayanand University Rohtak, 124001, India
| | - Ravina Vats
- Stem Cell Biology Laboratory, Centre for Medical Biotechnology, Maharshi Dayanand University Rohtak, 124001, India
| | - Afsareen Bano
- Stem Cell Biology Laboratory, Centre for Medical Biotechnology, Maharshi Dayanand University Rohtak, 124001, India
| | - Ritu Namdev
- Dept. of Pediatric Dentistry, Post Graduate Institute of Dental Sciences, Rohtak, 124001, India
| | - Rashmi Bhardwaj
- Stem Cell Biology Laboratory, Centre for Medical Biotechnology, Maharshi Dayanand University Rohtak, 124001, India
| |
Collapse
|
23
|
Luo X, Niu J, Su G, Zhou L, Zhang X, Liu Y, Wang Q, Sun N. Research progress of biomimetic materials in oral medicine. J Biol Eng 2023; 17:72. [PMID: 37996886 PMCID: PMC10668381 DOI: 10.1186/s13036-023-00382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 11/25/2023] Open
Abstract
Biomimetic materials are able to mimic the structure and functional properties of native tissues especially natural oral tissues. They have attracted growing attention for their potential to achieve configurable and functional reconstruction in oral medicine. Though tremendous progress has been made regarding biomimetic materials, significant challenges still remain in terms of controversy on the mechanism of tooth tissue regeneration, lack of options for manufacturing such materials and insufficiency of in vivo experimental tests in related fields. In this review, the biomimetic materials used in oral medicine are summarized systematically, including tooth defect, tooth loss, periodontal diseases and maxillofacial bone defect. Various theoretical foundations of biomimetic materials research are reviewed, introducing the current and pertinent results. The benefits and limitations of these materials are summed up at the same time. Finally, challenges and potential of this field are discussed. This review provides the framework and support for further research in addition to giving a generally novel and fundamental basis for the utilization of biomimetic materials in the future.
Collapse
Affiliation(s)
- Xinyu Luo
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Jiayue Niu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Guanyu Su
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Linxi Zhou
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.
- National Center for Stomatology, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Xue Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Ying Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Ningning Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China.
| |
Collapse
|
24
|
Huang Y, Zhang Z, Bi F, Tang H, Chen J, Huo F, Chen J, Lan T, Qiao X, Sima X, Guo W. Personalized 3D-Printed Scaffolds with Multiple Bioactivities for Bioroot Regeneration. Adv Healthc Mater 2023; 12:e2300625. [PMID: 37523260 DOI: 10.1002/adhm.202300625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Recent advances in 3D printing offer a prospective avenue for producing transplantable human tissues with complex geometries; however, the appropriate 3D-printed scaffolds possessing the biological compatibility for tooth regeneration remain unidentified. This study proposes a personalized scaffold of multiple bioactivities, including induction of stem cell proliferation and differentiation, biomimetic mineralization, and angiogenesis. A brand-new bioink system comprising a biocompatible and biodegradable polymer is developed and reinforced with extracellular matrix generated from dentin tissue (treated dentin matrix, TDM). Adding TDM optimizes physical properties including microstructure, hydrophilicity, and mechanical strength of the scaffolds. Proteomics analysis reveals that the released proteins of the 3D-printed TDM scaffolds relate to multiple biological processes and interact closely with each other. Additionally, 3D-printed TDM scaffolds establish a favorable microenvironment for cell attachment, proliferation, and differentiation in vitro. The 3D-printed TDM scaffolds are proangiogenic and facilitate whole-thickness vascularization of the graft in a subcutaneous model. Notably, the personalized TDM scaffold combined with dental follicle cells mimics the anatomy and physiology of the native tooth root three months after in situ transplantation in beagles. The remarkable in vitro and in vivo outcomes suggest that the 3D-printed TDM scaffolds have multiple bioactivities and immense clinical potential for tooth-loss therapy.
Collapse
Affiliation(s)
- Yibing Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhijun Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Fei Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Huilin Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Jiahao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Fangjun Huo
- State Key Laboratory of Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Jie Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Tingting Lan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiangchen Qiao
- Chengdu Guardental Technology Limited Corporation, Chengdu, 610041, P. R. China
| | - Xiutian Sima
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
- Yunnan Key Laboratory of Stomatology, Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming, 650000, P. R. China
| |
Collapse
|
25
|
Liu C, Guo H, Shi C, Sun H. BMP signaling in the development and regeneration of tooth roots: from mechanisms to applications. Front Cell Dev Biol 2023; 11:1272201. [PMID: 37779895 PMCID: PMC10540449 DOI: 10.3389/fcell.2023.1272201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Short root anomaly (SRA), along with caries, periodontitis, and trauma, can cause tooth loss, affecting the physical and mental health of patients. Dental implants have become widely utilized for tooth restoration; however, they exhibit certain limitations compared to natural tooth roots. Tissue engineering-mediated root regeneration offers a strategy to sustain a tooth with a physiologically more natural function by regenerating the bioengineered tooth root (bio-root) based on the bionic principle. While the process of tooth root development has been reported in previous studies, the specific molecular mechanisms remain unclear. The Bone Morphogenetic Proteins (BMPs) family is an essential factor regulating cellular activities and is involved in almost all tissue development. Recent studies have focused on exploring the mechanism of BMP signaling in tooth root development by using transgenic animal models and developing better tissue engineering strategies for bio-root regeneration. This article reviews the unique roles of BMP signaling in tooth root development and regeneration.
Collapse
Affiliation(s)
- Cangwei Liu
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hao Guo
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Ce Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hongchen Sun
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
26
|
Wu J, Chen L, Guan M, Dai T, Friedrich RE, Sun J, Yang W. Analysis of 5-Year-old children's oral health service utilization and influencing factors in Guizhou Province, China (2019-2020). BMC Oral Health 2023; 23:627. [PMID: 37660033 PMCID: PMC10475195 DOI: 10.1186/s12903-023-03350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND This study aimed to investigate the utilization patterns and factors related to oral health care for 5-year-old preschoolers based on Andersen's Behavioural Model in Guizhou Province, Western China. METHOD A cross-sectional study of 4,862 5-year-old preschoolers in 66 kindergartens was conducted in 2019 and 2020. A basic oral examination and a survey of parents and grandparents were conducted to gather data on oral health services. The results were analysed using chi-square tests and logistic regression analysis. RESULT The utilization rate of oral health services for children in Guizhou province was 20.5%. The dmft was 4.43, and the rate of caries was 72.2%. The average cost of a dental visit was higher in rural areas and higher for girls. Logistic regression analysis revealed that dmft ≥ 6 teeth, a history of toothache, starting toothbrushing at age ≤ 3 years and limited parental knowledge were the primary factors impacting dental visits. CONCLUSION Needs factors such as severe oral conditions and pain in children are the main reasons for the utilization of these services. This study underscores the urgency to actively promote the importance of oral health and expand insurance coverage for oral health services.
Collapse
Affiliation(s)
- Juanjuan Wu
- Department of Preventive Dentistry, Guiyang Stomatological Hospital, Guiyang, China
| | - Liming Chen
- Department of Preventive Dentistry, Guiyang Stomatological Hospital, Guiyang, China
| | - Min Guan
- Department of Preventive Dentistry, Guiyang Stomatological Hospital, Guiyang, China
| | - Taiming Dai
- Department of Preventive Dentistry, Guiyang Stomatological Hospital, Guiyang, China
| | - Reinhard E Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jiangling Sun
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Science and Education, Guiyang Stomatological Hospital, Guizhou, China.
| | - Wei Yang
- Medical College, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
27
|
Zheng Z, Tang S, Yang T, Wang X, Ding G. Advances in combined application of dental stem cells and small-molecule drugs in regenerative medicine. Hum Cell 2023; 36:1620-1637. [PMID: 37358734 DOI: 10.1007/s13577-023-00943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Teeth are a kind of masticatory organs of special histological origin, unique to vertebrates, playing an important role in chewing, esthetics, and auxiliary pronunciation. In the past decades, with the development of tissue engineering and regenerative medicine, the studies of mesenchymal stem cells (MSCs) gradually attracted the interest of researchers. Accordingly, several types of MSCs have been successively isolated in teeth or teeth-related tissues, including dental pulp stem cells, periodontal ligament stem cells, stem cells from human exfoliated deciduous teeth, dental follicle stem cells, stem cells from apical papilla and gingival mesenchymal stem cells. These dental stem cells (DSCs) are easily accessible, possess excellent stem cell characteristics, such as high proliferation rates and profound immunomodulatory properties. Small-molecule drugs are widely used and show great advantages in clinical practice. As research progressed, small-molecule drugs are found to have various complex effects on the characteristics of DSCs, especially the enhancement of biological characteristics of DSCs, which has gradually become a hot issue in the field of DSCs research. This review summarizes the background, current status, existing problems, future research directions, and prospects of the combination of DSCs with three common small-molecule drugs: aspirin, metformin, and berberine.
Collapse
Affiliation(s)
- Zejun Zheng
- School of Stomatology, Weifang Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Shuai Tang
- School of Stomatology, Weifang Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Tong Yang
- School of Stomatology, Weifang Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Xiaolan Wang
- School of Stomatology, Weifang Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Gang Ding
- School of Stomatology, Weifang Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China.
| |
Collapse
|
28
|
Mohd Nor NH, Mansor NI, Mohd Kashim MIA, Mokhtar MH, Mohd Hatta FA. From Teeth to Therapy: A Review of Therapeutic Potential within the Secretome of Stem Cells from Human Exfoliated Deciduous Teeth. Int J Mol Sci 2023; 24:11763. [PMID: 37511524 PMCID: PMC10380442 DOI: 10.3390/ijms241411763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Stem cells derived from human exfoliated deciduous teeth (SHED) have emerged as an alternative stem cell source for cell therapy and regenerative medicine because they are readily available, pose fewer ethical concerns, and have low immunogenicity and tumourigenicity. SHED offer a number of advantages over other dental stem cells, including a high proliferation rate with the potential to differentiate into multiple developmental lineages. The therapeutic effects of SHED are mediated by multiple mechanisms, including immunomodulation, angiogenesis, neurogenesis, osteogenesis, and adipogenesis. In recent years, there is ample evidence that the mechanism of action of SHED is mainly due to its paracrine action, releasing a wide range of soluble factors such as cytokines, chemokines, and trophic factors (also known as 'secretome') into the local tissue microenvironment to promote tissue survival and recovery. This review provides an overview of the secretome derived from SHED and highlights the bioactive molecules involved in tissue regeneration and their potential applications in regenerative medicine.
Collapse
Affiliation(s)
- Nurul Hafizah Mohd Nor
- Institute of Islamic Civilization, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
| | - Nur Izzati Mansor
- Department of Nursing, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia
| | - Mohd Izhar Ariff Mohd Kashim
- Institute of Islamic Civilization, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
- Faculty of Islamic Studies, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Kuala Lumpur, Malaysia
| | - Farah Ayuni Mohd Hatta
- Institute of Islamic Civilization, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
29
|
Sui BD, Zheng CX, Zhao WM, Xuan K, Li B, Jin Y. Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis. Physiol Rev 2023; 103:1899-1964. [PMID: 36656056 DOI: 10.1152/physrev.00019.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program. As a key event of tooth morphogenesis, mesenchymal condensation dictates dental tissue formation and patterning through cellular self-organization and signaling interaction with the epithelium, which provides a representative to decipher organogenetic mechanisms and can be leveraged for regenerative purposes. In this review, we summarize how mesenchymal condensation spatiotemporally assembles from dental stem cells (DSCs) and sequentially mediates tooth development. We highlight condensation-mimetic engineering efforts and mechanisms based on ex vivo aggregation of DSCs, which have achieved functionally robust and physiologically relevant tooth regeneration after implantation in animals and in humans. The discussion of this aspect will add to the knowledge of development-inspired tissue engineering strategies and will offer benefits to propel clinical organ regeneration.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wan-Min Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
30
|
Wei X, Liu Q, Liu L, Tian W, Wu Y, Guo S. Periostin plays a key role in maintaining the osteogenic abilities of dental follicle stem cells in the inflammatory microenvironment. Arch Oral Biol 2023; 153:105737. [PMID: 37320885 DOI: 10.1016/j.archoralbio.2023.105737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVE This study aimed to explore the effect of periostin in the osteogenic abilities of dental follicle stem cells (DFSCs) and DFSC sheets in the inflammatory microenvironment. DESIGN DFSCs were isolated from dental follicles and identified. A lentiviral vector was used to knock down periostin in DFSCs. 250 ng/ml lipopolysaccharide from Porphyromonas gingivalis (P.g-LPS) was used to construct the inflammatory microenvironment. Osteogenic differentiation was evaluated by alizarin red staining, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot. The formation of extracellular matrix was assessed by qRT-PCR and immunofluorescence. The expressions of receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) were measured by western blot. RESULTS Knockdown of periostin inhibited osteogenic differentiation and promoted adipogenic differentiation of DFSCs. In an inflammatory microenvironment, knockdown of periostin attenuated the proliferation and osteogenic differentiation of DFSCs. Knockdown of periostin inhibited the formation of extracellular matrix collagen I (COL-I), fibronectin, and laminin in DFSC sheets, but did not affect the expression of osteogenesis-related markers alkaline phosphatase (ALP) and osteocalcin (OCN). In the inflammatory microenvironment, knocking down periostin inhibited the expression of OCN and OPG in DFSC sheets, and promoted the expression of RANKL. CONCLUSION Periostin played a key role in maintaining the osteogenic abilities of DFSCs and DFSC sheets in the inflammatory microenvironment and might be an important molecule in the process of DFSCs coping with inflammatory microenvironment and promoting periodontal tissues regeneration.
Collapse
Affiliation(s)
- Xiuqun Wei
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Qian Liu
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Li Liu
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| | - Shujuan Guo
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
31
|
Alarcón-Apablaza J, Prieto R, Rojas M, Fuentes R. Potential of Oral Cavity Stem Cells for Bone Regeneration: A Scoping Review. Cells 2023; 12:1392. [PMID: 37408226 PMCID: PMC10216382 DOI: 10.3390/cells12101392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 07/07/2023] Open
Abstract
Bone loss is a common problem that ranges from small defects to large defects after trauma, surgery, or congenital malformations. The oral cavity is a rich source of mesenchymal stromal cells (MSCs). Researchers have documented their isolation and studied their osteogenic potential. Therefore, the objective of this review was to analyze and compare the potential of MSCs from the oral cavity for use in bone regeneration. METHODS A scoping review was carried out following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. The databases reviewed were PubMed, SCOPUS, Scientific Electronic Library Online (SciELO), and Web of Science. Studies using stem cells from the oral cavity to promote bone regeneration were included. RESULTS A total of 726 studies were found, of which 27 were selected. The MSCs used to repair bone defects were (I) dental pulp stem cells of permanent teeth, (II) stem cells derived from inflamed dental pulp, (III) stem cells from exfoliated deciduous teeth, (IV) periodontal ligament stem cells, (V) cultured autogenous periosteal cells, (VI) buccal fat pad-derived cells, and (VII) autologous bone-derived mesenchymal stem cells. Stem cells associate with scaffolds to facilitate insertion into the bone defect and to enhance bone regeneration. The biological risk and morbidity of the MSC-grafted site were minimal. Successful bone formation after MSC grafting has been shown for small defects with stem cells from the periodontal ligament and dental pulp as well as larger defects with stem cells from the periosteum, bone, and buccal fat pad. CONCLUSIONS Stem cells of maxillofacial origin are a promising alternative to treat small and large craniofacial bone defects; however, an additional scaffold complement is required for stem cell delivery.
Collapse
Affiliation(s)
- Josefa Alarcón-Apablaza
- Research Centre in Dental Sciences (CICO-UFRO), Dental School, Universidad de La Frontera, Temuco 4780000, Chile
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| | - Ruth Prieto
- Department of Pediatrics and Pediatric Surgery, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| | - Mariana Rojas
- Comparative Embryology Laboratory, Program of Anatomy and Developmental Biology, ICBM, Faculty of Medicine, Universidad de Chile, Santiago 8320000, Chile
| | - Ramón Fuentes
- Research Centre in Dental Sciences (CICO-UFRO), Dental School, Universidad de La Frontera, Temuco 4780000, Chile
- Department of Integral Adults Dentistry, Dental School, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
32
|
Lin X, Li Q, Hu L, Jiang C, Wang S, Wu X. Apical Papilla Regulates Dental Follicle Fate via the OGN-Hh Pathway. J Dent Res 2023; 102:431-439. [PMID: 36515316 DOI: 10.1177/00220345221138517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Root apical complex, including Hertwig's epithelial root sheath, apical papilla, and dental follicle (DF), is the germinal center of root development, wherein the DF constantly develops into periodontal tissue. However, whether DF development is regulated by the adjacent apical papilla remains largely unknown. In this study, we employed a transwell coculture system and found that stem cells from the apical papilla (SCAPs) inhibit the differentiation and maintain the stemness of dental follicle stem cells (DFSCs). Meanwhile, partial SCAP differentiation markers were upregulated after DFSC coculture. High-throughput RNA sequencing revealed that the Hedgehog (Hh) pathway was significantly downregulated in DFSCs cocultured with SCAPs. Upregulation or downregulation of the Hh pathway can respectively activate or inhibit the multidirectional differentiation of DFSCs. Osteoglycin (OGN) (previously known as mimecan) is highly expressed in the dental papilla, similarly to Hh pathway factors. By secreting OGN, SCAP regulated the stemness and multidirectional differentiation of DFSCs via the OGN-Hh pathway. Finally, Ogn-/- mice were established using the CRISPR/Cas9 system. We found that the root length growth rate was accelerated during root development from PN0 to PN30 in Ogn-/- mice. Moreover, the hard tissues (including dentin and cementum) of the root in Ogn-/- mice were thicker than those in wild-type mice. These phenotypes were likely due to Hh pathway activation and the increased cell proliferation and differentiation in both the apical papilla and DF. The current work elucidates the molecular regulation of early periodontal tissue development, providing a theoretical basis for future research on tooth root biology and periodontal tissue regeneration.
Collapse
Affiliation(s)
- X Lin
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Q Li
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - L Hu
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - C Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
| | - S Wang
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| | - X Wu
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
33
|
Zhao J, Zhou YH, Zhao YQ, Gao ZR, Ouyang ZY, Ye Q, Liu Q, Chen Y, Tan L, Zhang SH, Feng Y, Hu J, Dusenge MA, Feng YZ, Guo Y. Oral cavity-derived stem cells and preclinical models of jaw-bone defects for bone tissue engineering. Stem Cell Res Ther 2023; 14:39. [PMID: 36927449 PMCID: PMC10022059 DOI: 10.1186/s13287-023-03265-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Jaw-bone defects caused by various diseases lead to aesthetic and functional complications, which can seriously affect the life quality of patients. Current treatments cannot fully meet the needs of reconstruction of jaw-bone defects. Thus, the research and application of bone tissue engineering are a "hot topic." As seed cells for engineering of jaw-bone tissue, oral cavity-derived stem cells have been explored and used widely. Models of jaw-bone defect are excellent tools for the study of bone defect repair in vivo. Different types of bone defect repair require different stem cells and bone defect models. This review aimed to better understand the research status of oral and maxillofacial bone regeneration. MAIN TEXT Data were gathered from PubMed searches and references from relevant studies using the search phrases "bone" AND ("PDLSC" OR "DPSC" OR "SCAP" OR "GMSC" OR "SHED" OR "DFSC" OR "ABMSC" OR "TGPC"); ("jaw" OR "alveolar") AND "bone defect." We screened studies that focus on "bone formation of oral cavity-derived stem cells" and "jaw bone defect models," and reviewed the advantages and disadvantages of oral cavity-derived stem cells and preclinical model of jaw-bone defect models. CONCLUSION The type of cell and animal model should be selected according to the specific research purpose and disease type. This review can provide a foundation for the selection of oral cavity-derived stem cells and defect models in tissue engineering of the jaw bone.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ying-Hui Zhou
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.,National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ya-Qing Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Zheng-Rong Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ze-Yue Ouyang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
34
|
Ma Y, Yang X, Chen Y, Zhang J, Gai K, Chen J, Huo F, Guo Q, Guo W, Gou M, Yang B, Tian W. Biomimetic Peridontium Patches for Functional Periodontal Regeneration. Adv Healthc Mater 2023; 12:e2202169. [PMID: 36398560 DOI: 10.1002/adhm.202202169] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Indexed: 11/19/2022]
Abstract
The unique structure of the periodontium, including the alveolar bone, cementum, and periodontal ligament (PDL), presents difficulties for the regeneration of its intricate organization. Irreversible structural breakdown of the periodontium increases the risk of tooth loosening and loss. Although the current therapies can restore the periodontal hard tissues to a certain extent, the PDL with its high directionality of multiple groups with different orientations and functions cannot be reconstructed. Here, biomimetic peridontium patches (BPPs) for functional periodontal regeneration using a microscale continuous digital light projection bioprinting method is reported. Orthotopic transplantation in the mandibles shows effective periodontal reconstruction. The resulting bioengineered tissues closely resembles natural periodontium in terms of the "sandwich structures," especially the correctly oriented fibers, showing different and specific orientation in different regions of the tooth root, which has never been found in previous studies. Furthermore, after the assessment of clinically functional properties it is found that the regenerative periodontium can achieve stable tooth movement under orthodontic migration force with no adverse consequences. Overall, the BPPs promote reconstruction of the functional periodontium and the complex microstructure of the periodontal tissue, providing a proof of principle for the clinical functional treatment of periodontal defects.
Collapse
Affiliation(s)
- Yue Ma
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Xueting Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Yan Chen
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Jiumeng Zhang
- Department of Biotherapy, Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Kuo Gai
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pedodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Jinlong Chen
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Fangjun Huo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Weihua Guo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pedodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Maling Gou
- Department of Biotherapy, Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Bo Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, National Engineering Laboratory for Oral Regenerative Medicine, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
35
|
Azaryan E, Emadian Razavi F, Hanafi-Bojd MY, Alemzadeh E, Naseri M. Dentin regeneration based on tooth tissue engineering: A review. Biotechnol Prog 2023; 39:e3319. [PMID: 36522133 DOI: 10.1002/btpr.3319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/22/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Missing or damaged teeth due to caries, genetic disorders, oral cancer, or infection may contribute to physical and mental impairment that reduces the quality of life. Despite major progress in dental tissue repair and those replacing missing teeth with prostheses, clinical treatments are not yet entirely satisfactory, as they do not regenerate tissues with natural teeth features. Therefore, much of the focus has centered on tissue engineering (TE) based on dental stem/progenitor cells to create bioengineered dental tissues. Many in vitro and in vivo studies have shown the use of cells in regenerating sections of a tooth or a whole tooth. Tooth tissue engineering (TTE), as a promising method for dental tissue regeneration, can form durable biological substitutes for soft and mineralized dental tissues. The cell-based TE approach, which directly seeds cells and bioactive components onto the biodegradable scaffolds, is currently the most potential method. Three essential components of this strategy are cells, scaffolds, and growth factors (GFs). This study investigates dentin regeneration after an injury such as caries using TE and stem/progenitor cell-based strategies. We begin by discussing about the biological structure of a dentin and dentinogenesis. The engineering of teeth requires knowledge of the processes that underlie the growth of an organ or tissue. Then, the three fundamental requirements for dentin regeneration, namely cell sources, GFs, and scaffolds are covered in the current study, which may ultimately lead to new insights in this field.
Collapse
Affiliation(s)
- Ehsaneh Azaryan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariba Emadian Razavi
- Dental Research Center, Faculty of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Yahya Hanafi-Bojd
- Cellular and Molecular Research Center, Birjand University of Medical sciences, Birjand, Iran
- Department of Pharmaceutics and Pharmaceutical nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Esmat Alemzadeh
- Department of Medical Biotechnology, Faculty of medicine, Birjand University of Medical Sciences, Birjand, Iran
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
36
|
Mahdavi-Jouibari F, Parseh B, Kazeminejad E, Khosravi A. Hopes and opportunities of stem cells from human exfoliated deciduous teeth (SHED) in cartilage tissue regeneration. Front Bioeng Biotechnol 2023; 11:1021024. [PMID: 36860887 PMCID: PMC9968979 DOI: 10.3389/fbioe.2023.1021024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Cartilage lesions are common conditions, affecting elderly and non-athletic populations. Despite recent advances, cartilage regeneration remains a major challenge today. The absence of an inflammatory response following damage and the inability of stem cells to penetrate into the healing site due to the absence of blood and lymph vessels are assumed to hinder joint repair. Stem cell-based regeneration and tissue engineering have opened new horizons for treatment. With advances in biological sciences, especially stem cell research, the function of various growth factors in the regulation of cell proliferation and differentiation has been established. Mesenchymal stem cells (MSCs) isolated from different tissues have been shown to increase into therapeutically relevant cell numbers and differentiate into mature chondrocytes. As MSCs can differentiate and become engrafted inside the host, they are considered suitable candidates for cartilage regeneration. Stem cells from human exfoliated deciduous teeth (SHED) provide a novel and non-invasive source of MSCs. Due to their simple isolation, chondrogenic differentiation potential, and minimal immunogenicity, they can be an interesting option for cartilage regeneration. Recent studies have reported that SHED-derived secretome contains biomolecules and compounds that efficiently promote regeneration in damaged tissues, including cartilage. Overall, this review highlighted the advances and challenges of cartilage regeneration using stem cell-based therapies by focusing on SHED.
Collapse
Affiliation(s)
- Forough Mahdavi-Jouibari
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Benyamin Parseh
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran,Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ezatolah Kazeminejad
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran,Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran,*Correspondence: Ezatolah Kazeminejad, Dr. ; Ayyoob Khosravi,
| | - Ayyoob Khosravi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran,Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran,*Correspondence: Ezatolah Kazeminejad, Dr. ; Ayyoob Khosravi,
| |
Collapse
|
37
|
The Role and Involvement of Stem Cells in Periodontology. Biomedicines 2023; 11:biomedicines11020387. [PMID: 36830924 PMCID: PMC9953576 DOI: 10.3390/biomedicines11020387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Periodontitis is a widespread inflammatory condition, characterized by a progressive deterioration of the supporting structures of the teeth. Due to the complexity of periodontal tissue and the surrounding inflammatory microenvironment, the repair of lesions at this level represents a continuous challenge. The regeneration of periodontal tissues is considered a promising strategy. Stem cells have remarkable properties, such as immunomodulatory potential, proliferation, migration, and multilineage differentiation. Thus, they can be used to repair tissue damage and reduce inflammation, potentially leading to periodontal regeneration. Among the stem cells used for periodontal regeneration, we studied dental mesenchymal stem cells (DMSCs), non-dental stem cells, and induced pluripotent stem cells (IPSCs). Although these cells have well documented important physiological characteristics, their use in contemporary practice to repair the affected periodontium is still a challenge.
Collapse
|
38
|
Liu C, Sharpe P, Volponi AA. Applications of regenerative techniques in adult orthodontics. FRONTIERS IN DENTAL MEDICINE 2023. [DOI: 10.3389/fdmed.2022.1100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Management of the growing adult orthodontic patient population must contend with challenges particular to orthodontic treatment in adults. These include a limited rate of tooth movement, increased incidence of periodontal complications, higher risk of iatrogenic root resorption and pulp devitalisation, resorbed edentulous ridges, and lack of growth potential. The field of regenerative dentistry has evolved numerous methods of manipulating cellular and molecular processes to rebuild functional oral and dental tissues, and research continues to advance our understanding of stem cells, signalling factors that stimulate repair and extracellular scaffold interactions for the purposes of tissue engineering. We discuss recent findings in the literature to synthesise our understanding of current and prospective approaches based on biological repair that have the potential to improve orthodontic treatment outcomes in adult patients. Methods such as mesenchymal stem cell transplantation, biomimetic scaffold manipulation, and growth factor control may be employed to overcome the challenges described above, thereby reducing adverse sequelae and improving orthodontic treatment outcomes in adult patients. The overarching goal of such research is to eventually translate these regenerative techniques into clinical practice, and establish a new gold standard of safe, effective, autologous therapies.
Collapse
|
39
|
Hu N, Li W, Jiang W, Wen J, Gu S. Creating a Microenvironment to Give Wings to Dental Pulp Regeneration-Bioactive Scaffolds. Pharmaceutics 2023; 15:158. [PMID: 36678787 PMCID: PMC9861529 DOI: 10.3390/pharmaceutics15010158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
Dental pulp and periapical diseases make patients suffer from acute pain and economic loss. Although root canal therapies, as demonstrated through evidence-based medicine, can relieve symptoms and are commonly employed by dentists, it is still difficult to fully restore a dental pulp's nutrition, sensory, and immune-regulation functions. In recent years, researchers have made significant progress in tissue engineering to regenerate dental pulp in a desired microenvironment. With breakthroughs in regenerative medicine and material science, bioactive scaffolds play a pivotal role in creating a suitable microenvironment for cell survival, proliferation, and differentiation, following dental restoration and regeneration. This article focuses on current challenges and novel perspectives about bioactive scaffolds in creating a microenvironment to promote dental pulp regeneration. We hope our readers will gain a deeper understanding and new inspiration of dental pulp regeneration through our summary.
Collapse
Affiliation(s)
- Nan Hu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Weiping Li
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Department of Oral and Maxillofacial Head & Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Wentao Jiang
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Jin Wen
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Shensheng Gu
- Department of Endodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| |
Collapse
|
40
|
Chen Y, Wang X, Wu Z, Jia S, Wan M. Epigenetic regulation of dental-derived stem cells and their application in pulp and periodontal regeneration. PeerJ 2023; 11:e14550. [PMID: 36620748 PMCID: PMC9817962 DOI: 10.7717/peerj.14550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/20/2022] [Indexed: 01/05/2023] Open
Abstract
Dental-derived stem cells have excellent proliferation ability and multi-directional differentiation potential, making them an important research target in tissue engineering. An increasing number of dental-derived stem cells have been discovered recently, including dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHEDs), stem cells from apical papilla (SCAPs), dental follicle precursor cells (DFPCs), and periodontal ligament stem cells (PDLSCs). These stem cells have significant application prospects in tissue regeneration because they are found in an abundance of sources, and they have good biocompatibility and are highly effective. The biological functions of dental-derived stem cells are regulated in many ways. Epigenetic regulation means changing the expression level and function of a gene without changing its sequence. Epigenetic regulation is involved in many biological processes, such as embryonic development, bone homeostasis, and the fate of stem cells. Existing studies have shown that dental-derived stem cells are also regulated by epigenetic modifications. Pulp and periodontal regeneration refers to the practice of replacing damaged pulp and periodontal tissue and restoring the tissue structure and function under normal physiological conditions. This treatment has better therapeutic effects than traditional treatments. This article reviews the recent research on the mechanism of epigenetic regulation of dental-derived stem cells, and the core issues surrounding the practical application and future use of pulp and periodontal regeneration.
Collapse
Affiliation(s)
- Yuyang Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xiayi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Shiyu Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Mian Wan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China,State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
41
|
Morsczeck C. Dental stem cells for tooth regeneration: how far have we come and where next? Expert Opin Biol Ther 2023; 23:527-537. [PMID: 37101404 DOI: 10.1080/14712598.2023.2208268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/25/2023] [Indexed: 04/28/2023]
Abstract
INTRODUCTION Human dental stem cells are promising for tooth repair because of their differentiation potential. In 2018, this journal published a report on dental stem cell treatment options that had been attempted since the early 2000s. Although it is very difficult to follow every trend since then, new achievements have been made in the last 5 years. This review summarizes selected developments in dental stem cell research. AREAS COVERED This article provides an overview of new developments with human dental stem cells and parts of these cells like extracellular vesicles for regenerative medicine. Preclinical research, clinical trials, and other works in the field of dental stem cells research for whole tooth engineering, dental pulp regeneration, periodontitis, and tooth root regeneration are summarized. In addition, works with dental stem cells for the regeneration of diseases that cannot be cured with the regeneration of dental tissues, such as diabetes, will be presented. EXPERT OPINION Over the past five years, a number of studies using dental stem cells have improved new strategies for tooth repair. In addition, there are new dental stem cell products such as extracellular vesicles which, in combination with findings from basic research, will lead to new treatment options in the future.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
42
|
Liu Y, Song J, Gu J, Xu S, Wang X, Liu Y. The Role of BTBD7 in Normal Development and Tumor Progression. Technol Cancer Res Treat 2023; 22:15330338231167732. [PMID: 37050886 PMCID: PMC10102955 DOI: 10.1177/15330338231167732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
BTB/POZ domain-containing protein 7 (BTBD7) has a relative molecular weight of 126KD and contains two conserved BTB/POZ protein sequences. BTBD7 has been shown to play an essential role in normal human development, precancerous lesions, heat-stress response, and tumor progression. BTBD7 promotes branching morphogenesis during development and participates in the salivary gland, lung, and tooth formation. Furthermore, many studies have shown that aberrant expression of BTBD7 promotes heat stress response and the progression of precancerous lesions. BTBD7 has also been found to play an important role in cancer. High expression of BTBD7 affects tumor progression by regulating multiple pathways. Therefore, a complete understanding of BTBD7 is crucial for exploring human development and tumor progression. This paper reviews the research progress of BTBD7, which lays a foundation for the application of BTBD7 in regenerative medicine and as a biomarker for tumor prediction or potential therapeutic target.
Collapse
Affiliation(s)
- Yun Liu
- School of Stomatology, Weifang Medical University, Weifang, Shandong, China
| | - Jiwu Song
- Weifang People's Hospital, First Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Jianchang Gu
- School of Stomatology, Weifang Medical University, Weifang, Shandong, China
| | - Shuangshuang Xu
- School of Stomatology, Weifang Medical University, Weifang, Shandong, China
| | - Xiaolan Wang
- School of Stomatology, Weifang Medical University, Weifang, Shandong, China
| | - Yunxia Liu
- School of Stomatology, Weifang Medical University, Weifang, Shandong, China
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
43
|
Alipour R, Hashemibeni B, Asgari V, Bahramian H. Time- and Concentration-Dependent Effects of the Stem Cells Derived from Human Exfoliated Deciduous Teeth on Osteosarcoma Cells. Adv Biomed Res 2023; 12:81. [PMID: 37200742 PMCID: PMC10186045 DOI: 10.4103/abr.abr_277_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/14/2021] [Accepted: 10/11/2021] [Indexed: 05/20/2023] Open
Abstract
Background Stem cells have been proposed to be one of the potent sources for treatment applications. Among diverse types of stem cells, stem cells derived from human exfoliated deciduous teeth (SHEDs) are known as the immature stem cell population, which are easily isolated, fast, and without ethical implications. SHEDs could induce pluripotent stem cells and show differentiation in chondrocytes, adipocytes, osteoblasts, neural cells, hepatocytes, myocytes, odontoblasts, and skin cells. Materials and Methods In the current study, we investigated the effects of SHED on osteosarcoma cells (Saos-II) following 3 and 5 days indirect coculture. Results Our results showed that indirect coculture of SHED with Saos-II cells could promote or inhibit Saos-II cells' growth in a concentration (the number of SHED vs. Saos-II cells) and time (days of indirect co-culture) dependent manner. Conclusion Our findings suggested that, indirectly, SHED co-culture with the Soas-II cells might functions as a tumor suppressor where a higher number of SHEDs are used in the culture in comparison with the one cultured in the absence of/or fewer SHED incubation.
Collapse
Affiliation(s)
- Razieh Alipour
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Batool Hashemibeni
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Asgari
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Bahramian
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Address for correspondence: Dr. Hamid Bahramian, Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran. E-mail:
| |
Collapse
|
44
|
Treated Dentin Matrix in Tissue Regeneration: Recent Advances. Pharmaceutics 2022; 15:pharmaceutics15010091. [PMID: 36678720 PMCID: PMC9861705 DOI: 10.3390/pharmaceutics15010091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Tissue engineering is a new therapeutic strategy used to repair serious damage caused by trauma, a tumor or other major diseases, either for vital organs or tissues sited in the oral cavity. Scaffold materials are an indispensable part of this. As an extracellular-matrix-based bio-material, treated dentin matrixes have become promising tissue engineering scaffolds due to their unique natural structure, astonishing biological induction activity and benign bio-compatibility. Furthermore, it is important to note that besides its high bio-activity, a treated dentin matrix can also serve as a carrier and release controller for drug molecules and bio-active agents to contribute to tissue regeneration and immunomodulation processes. This paper describes the research advances of treated dentin matrixes in tissue regeneration from the aspects of its vital properties, biologically inductive abilities and application explorations. Furthermore, we present the concerning challenges of signaling mechanisms, source extension, individualized 3D printing and drug delivery system construction during our investigation into the treated dentin matrix. This paper is expected to provide a reference for further research on treated dentin matrixes in tissue regeneration and better promote the development of relevant disease treatment approaches.
Collapse
|
45
|
Lyu P, Song Y, Bi R, Li Z, Wei Y, Huang Q, Cui C, Song D, Zhou X, Fan Y. Protective Actions in Apical Periodontitis: The Regenerative Bioactivities Led by Mesenchymal Stem Cells. Biomolecules 2022; 12:1737. [PMID: 36551165 PMCID: PMC9776067 DOI: 10.3390/biom12121737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Resulting from bacterial infection, apical periodontitis (AP) is a common inflammatory disease of the periapical region of the tooth. The regeneration of the destroyed periapical alveolar bone and the surrounding periodontium tissues has long been a difficult task in clinical practice. These lesions are closely related to pathogen invasion and an overreactive immune response. It is worth noting that the protective healing process occurs simultaneously, in which mesenchymal stem cells (MSCs) have a crucial function in mediating the immune system and promoting regeneration. Here, we review the recent studies related to AP, with a focus on the regulatory network of MSCs. We also discuss the potential therapeutic approaches of MSCs in inflammatory diseases to provide a basis for promoting tissue regeneration and modulating inflammation in AP. A deeper understanding of the protective action of MSCs and the regulatory networks will help to delineate the underlying mechanisms of AP and pave the way for stem-cell-based regenerative medicine in the future.
Collapse
Affiliation(s)
- Ping Lyu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yiming Song
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruiye Bi
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zucen Li
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yali Wei
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qin Huang
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen Cui
- Guangdong Province Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Dongzhe Song
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Fan
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
46
|
Mitchell J, Lo KWH. Small molecule-mediated regenerative engineering for craniofacial and dentoalveolar bone. Front Bioeng Biotechnol 2022; 10:1003936. [PMID: 36406208 PMCID: PMC9667056 DOI: 10.3389/fbioe.2022.1003936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
The comprehensive reconstruction of extensive craniofacial and dentoalveolar defects remains a major clinical challenge to this day, especially in complex medical cases involving cancer, cranioplasty, and traumatic injury. Currently, osteogenic small molecule-based compounds have been explored extensively to repair and regenerate bone tissue because of their unique advantages. Over the past few years, a number of small molecules with the potential of craniofacial and periodontal bone tissue regeneration have been reported in literature. In this review, we discuss current progress using small molecules to regulate cranial and periodontal bone regeneration. Future directions of craniofacial bone regenerative engineering using the small molecule-based compounds will be discussed as well.
Collapse
Affiliation(s)
- Juan Mitchell
- School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Kevin W. H. Lo
- School of Medicine, Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT, United States
- Department of Medicine, Division of Endocrinology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
- Department of Biomedical Engineering, School of Engineering, University of Connecticut, Storrs, CT, United States
- School of Engineering, Institute of Materials Science (IMS), University of Connecticut, Storrs, CT, United States
| |
Collapse
|
47
|
Meng Z, Yang T, Liu D. Type-2 epithelial-mesenchymal transition in oral mucosal nonneoplastic diseases. Front Immunol 2022; 13:1020768. [PMID: 36389753 PMCID: PMC9659919 DOI: 10.3389/fimmu.2022.1020768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
The oral mucosa is a membranous structure comprising epithelial and connective tissue that covers the oral cavity. The oral mucosa is the first immune barrier to protect the body against pathogens for systemic protection. It is frequently exposed to mechanical abrasion, chemical erosion, and pathogenic invasion, resulting in oral mucosal lesions, particularly inflammatory diseases. Epithelial-mesenchymal transition (EMT) is a crucial biological process in the pathogenesis of oral mucosal disorders, which are classified into three types (types 1, 2, and 3) based on their physiological consequences. Among these, type-2 EMT is crucial in wound repair, organ fibrosis, and tissue regeneration. It causes infectious and dis-infectious immunological diseases, such as oral lichen planus (OLP), oral leukoplakia, oral submucosal fibrosis, and other precancerous lesions. However, the mechanism and cognition between type-2 EMT and oral mucosal inflammatory disorders remain unknown. This review first provides a comprehensive evaluation of type-2 EMT in chronically inflammatory oral mucosal disorders. The aim is to lay a foundation for future research and suggest potential treatments.
Collapse
Affiliation(s)
- Zhaosong Meng
- Department of Oral and Maxillofacial Surgery, Tianjin Medical University Stomatology Hospital, Tianjin, Tianjin, China
| | - Tianle Yang
- School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Dayong Liu
- Department of Endodontics & Laboratory for Dental Stem Cells and Endocrine Immunology, Tianjin Medical University School of Stomatology, Tianjin, China
- *Correspondence: Dayong Liu,
| |
Collapse
|
48
|
Wang D, Zhu N, Xie F, Qin M, Wang Y. Long non-coding RNA IGFBP7-AS1 accelerates the odontogenic differentiation of stem cells from human exfoliated deciduous teeth by regulating IGFBP7 expression. Hum Cell 2022; 35:1697-1707. [PMID: 36038801 PMCID: PMC9515061 DOI: 10.1007/s13577-022-00763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
Stem cells from human exfoliated deciduous teeth (SHED) are attractive seed cells for dental tissue engineering. We identified the effect of the long noncoding RNA insulin-like growth factor-binding protein 7 antisense RNA 1 (lncRNA IGFBP7-AS1) in vivo and its underlying mechanism during SHED odontogenic differentiation. IGFBP7-AS1 and insulin-like growth factor-binding protein 7 (IGFBP7) were overexpressed using lentiviruses. IGFBP7 expression was knocked down with small interfering RNA. The effect of IGFBP7-AS1 in vivo was confirmed by animal experiments. The effect of IGFBP7 on SHED odontogenic differentiation was assessed with alkaline phosphatase staining, alizarin red S staining, quantitative reverse transcription-PCR, and western blotting. The relationship between IGFBP7-AS1 and IGFBP7 was confirmed by quantitative reverse transcription–PCR and western blotting. IGFBP7-AS1 promoted SHED odontogenesis in vivo, and regulated the expression of the coding gene IGFBP7 positively. Inhibiting IGFBP7 led to suppress SHED odontogenic differentiation while IGFBP7 overexpression had the opposite effect. IGFBP7-AS1 enhanced the stability of IGFBP7. IGFBP7-AS1 promoted SHED odontogenic differentiation in vivo. The underlying mechanism may involve the enhancement of IGFBP7 stability. This may provide novel potential targets for dental tissue engineering.
Collapse
Affiliation(s)
- Dan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun South Avenue Nandajie, Haidian District, Beijing, 100081, China
| | - Ningxin Zhu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun South Avenue Nandajie, Haidian District, Beijing, 100081, China
| | - Fei Xie
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun South Avenue Nandajie, Haidian District, Beijing, 100081, China
| | - Man Qin
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun South Avenue Nandajie, Haidian District, Beijing, 100081, China
| | - Yuanyuan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, #22 Zhongguancun South Avenue Nandajie, Haidian District, Beijing, 100081, China.
| |
Collapse
|
49
|
Grawish ME, Grawish LM, Grawish HM, Grawish MM, Holiel AA, Sultan N, El-Negoly SA. Demineralized Dentin Matrix for Dental and Alveolar Bone Tissues Regeneration: An Innovative Scope Review. Tissue Eng Regen Med 2022; 19:687-701. [PMID: 35429315 PMCID: PMC9294090 DOI: 10.1007/s13770-022-00438-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/08/2022] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Dentin is a permeable tubular composite and complex structure, and in weight, it is composed of 20% organic matrix, 10% water, and 70% hydroxyapatite crystalline matrix. Demineralization of dentin with gradient concentrations of ethylene diamine tetraacetic acid, 0.6 N hydrochloric acid, or 2% nitric acid removes a major part of the crystalline apatite and maintains a majority of collagen type I and non-collagenous proteins, which creates an osteoinductive scaffold containing numerous matrix elements and growth factors. Therefore, demineralized dentin should be considered as an excellent naturally-derived bioactive material to enhance dental and alveolar bone tissues regeneration. METHOD The PubMed and Midline databases were searched in October 2021 for the relevant articles on treated dentin matrix (TDM)/demineralized dentin matrix (DDM) and their potential roles in tissue regeneration. RESULTS Several studies with different study designs evaluating the effect of TDM/DDM on dental and bone tissues regeneration were found. TDM/DDM was obtained from human or animal sources and processed in different forms (particles, liquid extract, hydrogel, and paste) and different shapes (sheets, slices, disc-shaped, root-shaped, and barrier membranes), with variable sizes measured in micrometers or millimeters, demineralized with different protocols regarding the concentration of demineralizing agents and exposure time, and then sterilized and preserved with different techniques. In the act of biomimetic acellular material, TDM/DDM was used for the regeneration of the dentin-pulp complex through direct pulp capping technique, and it was found to possess the ability to activate the odontogenic differentiation of stem cells resident in the pulp tissues and induce reparative dentin formation. TDM/DDM was also considered for alveolar ridge and maxillary sinus floor augmentations, socket preservation, furcation perforation repair, guided bone, and bioroot regenerations as well as bone and cartilage healing. CONCLUSION To our knowledge, there are no standard procedures to adopt a specific form for a specific purpose; therefore, future studies are required to come up with a well-characterized TDM/DDM for each specific application. Likely as decellularized dermal matrix and prospectively, if the TDM/DDM is supplied in proper consistency, forms, and in different sizes with good biological properties, it can be used efficiently instead of some widely-used regenerative biomaterials.
Collapse
Affiliation(s)
- Mohammed E Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Elgomhouria St., Mansoura, 35516, Egypt.
| | - Lamyaa M Grawish
- Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Costal International Road in Front of Industrial Area, Mansoura, 11152, Gamasa, Egypt
| | - Hala M Grawish
- Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Costal International Road in Front of Industrial Area, Mansoura, 11152, Gamasa, Egypt
| | - Mahmoud M Grawish
- Mansoura Manchester Dental Program, Faculty of Dentistry, Mansoura University, Elgomhouria St., Mansoura, 35516, Egypt
| | - Ahmed A Holiel
- Department of Conservative Dentistry, Faculty of Dentistry, Alexandria University, 22 El-Guish Road, El-Shatby, Alexandria, 21544, Egypt
| | - Nessma Sultan
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Elgomhouria St., Mansoura, 35516, Egypt
| | - Salwa A El-Negoly
- Department of Dental Biomaterials, Faculty of Dentistry, Mansoura University, Elgomhouria St., Mansoura, 35516, Egypt
| |
Collapse
|
50
|
Yuan SM, Yang XT, Zhang SY, Tian WD, Yang B. Therapeutic potential of dental pulp stem cells and their derivatives: Insights from basic research toward clinical applications. World J Stem Cells 2022; 14:435-452. [PMID: 36157522 PMCID: PMC9350620 DOI: 10.4252/wjsc.v14.i7.435] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
For more than 20 years, researchers have isolated and identified postnatal dental pulp stem cells (DPSCs) from different teeth, including natal teeth, exfoliated deciduous teeth, healthy teeth, and diseased teeth. Their mesenchymal stem cell (MSC)-like immunophenotypic characteristics, high proliferation rate, potential for multidirectional differentiation and biological features were demonstrated to be superior to those of bone marrow MSCs. In addition, several main application forms of DPSCs and their derivatives have been investigated, including stem cell injections, modified stem cells, stem cell sheets and stem cell spheroids. In vitro and in vivo administration of DPSCs and their derivatives exhibited beneficial effects in various disease models of different tissues and organs. Therefore, DPSCs and their derivatives are regarded as excellent candidates for stem cell-based tissue regeneration. In this review, we aim to provide an overview of the potential application of DPSCs and their derivatives in the field of regenerative medicine. We describe the similarities and differences of DPSCs isolated from donors of different ages and health conditions. The methodologies for therapeutic administration of DPSCs and their derivatives are introduced, including single injections and the transplantation of the cells with a support, as cell sheets, or as cell spheroids. We also summarize the underlying mechanisms of the regenerative potential of DPSCs.
Collapse
Affiliation(s)
- Sheng-Meng Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xue-Ting Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Si-Yuan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wei-Dong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|