1
|
Zhao Z, Zhang Y, Li J, Huang S, Xing G, Zhang K, Ma X, Zhang X, Zhang Y. A remotely controlled nanotherapeutic with immunomodulatory property for MRSA-induced bone infection. Biomaterials 2025; 321:123298. [PMID: 40164042 DOI: 10.1016/j.biomaterials.2025.123298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/10/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Osteomyelitis is a deep bone tissue infection caused by pathogenic microorganisms, with the primary pathogen being methicillin-resistant Staphylococcus aureus (MRSA). Due to the tendency of the infection site to form biofilms that shield drugs and immune cells to kill bacteria, combined with the severe local inflammatory response causing bone tissue destruction, the treatment of osteomyelitis poses a significant challenge. Herein, we developed a remotely controlled nanotherapeutic (TLBA) with immunomodulatory to treat MRSA-induced osteomyelitis. TLBA, combined with baicalin and gold nanorods, is positively charged to actively target and penetrate biofilms. Near-infrared light (808 nm) triggers spatiotemporal, controllable drug release, while bacteria are eliminated through synergistic interaction of non-antibiotic drugs and photothermal therapy, enhancing bactericidal efficiency and minimizing drug resistance. TLBA eliminated nearly 100 % of planktonic bacteria and dispersed 90 % of biofilms under NIR light stimulation. In MRSA-induced osteomyelitis rat models, laser irradiation raised the infection site temperature to 50 °C, effectively eradicating bacteria, promoting M2 macrophage transformation, inhibiting bone inflammation, curbing bone destruction, and fostering bone tissue repair. In summary, TLBA proposes a more comprehensive treatment strategy for the two characteristic pathological changes of bacterial infection and bone tissue damage in osteomyelitis.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Orthopedics, Tianjin Hospital, No. 406 Jiefangnan Road, Hexi District, Tianjin, 300211, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jie Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Siyuan Huang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Guosheng Xing
- Laboratory of Biochemistry and Molecular Biology, Institute of Orthopedics, Tianjin Hospital, Tianjin, 300050, China
| | - Kai Zhang
- Department of Transfusion, Tianjin Hospital, No. 406 Jiefangnan Road, Hexi District, Tianjin, 300211, China
| | - Xinlong Ma
- Department of Orthopedics, Tianjin Hospital, No. 406 Jiefangnan Road, Hexi District, Tianjin, 300211, China.
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| | - Yingze Zhang
- The School of Medicine, Nankai University, Tianjin, 300071, China; Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, China
| |
Collapse
|
2
|
Wu Y, Shang J, Zhang X, Li N. Advances in molecular imaging and targeted therapeutics for lymph node metastasis in cancer: a comprehensive review. J Nanobiotechnology 2024; 22:783. [PMID: 39702277 PMCID: PMC11657939 DOI: 10.1186/s12951-024-02940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/19/2024] [Indexed: 12/21/2024] Open
Abstract
Lymph node metastasis is a critical indicator of cancer progression, profoundly affecting diagnosis, staging, and treatment decisions. This review article delves into the recent advancements in molecular imaging techniques for lymph nodes, which are pivotal for the early detection and staging of cancer. It provides detailed insights into how these techniques are used to visualize and quantify metastatic cancer cells, resident immune cells, and other molecular markers within lymph nodes. Furthermore, the review highlights the development of innovative, lymph node-targeted therapeutic strategies, which represent a significant shift towards more precise and effective cancer treatments. By examining cutting-edge research and emerging technologies, this review offers a comprehensive overview of the current and potential impact of lymph node-centric approaches on cancer diagnosis, staging, and therapy. Through its exploration of these topics, the review aims to illuminate the increasingly sophisticated landscape of cancer management strategies focused on lymph node assessment and intervention.
Collapse
Affiliation(s)
- Yunhao Wu
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jin Shang
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xinyue Zhang
- The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Nu Li
- The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
3
|
Wu S, Wang H, Zhang L, Wang Q, Xu N, Shi K, He C, Hua Y, Zhao Z. Cell membrane fusion composite lipid nanocarrier: preparation and evaluation of anti-tumor effects. Drug Deliv Transl Res 2024:10.1007/s13346-024-01750-3. [PMID: 39638935 DOI: 10.1007/s13346-024-01750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
With the advancements in nanotechnology and biomaterials science, the development of nanodrug delivery systems (Nano-DDSs) has provided opportunities for the realization of precise targeted treatment of malignant tumors. Liposomes have become a type of DDS with early clinical application and mature development due to their excellent tissue-targeting capacity and outstanding biocompatibility. However, several obstacles remain, such as recognition and clearance by the immune system, a short half-life, and poor tumor targeting. To address these problems, we propose a new method to transform liposomes, using fusion to reassemble the extracted natural cell membranes and artificial phospholipids to form a composite nanolipid carrier (recombined lipid nanocarriers (RLNs)). We evaluated the different types of cell membrane composite lipid nanocarriers based on parameters such as particle size, stability, drug loading and release capabilities, in vitro and in vivo tumor-targeting efficacy, and safety. The results indicated that these novel tumor cell-derived membrane fusion lipid nanocarriers exhibited promising antitumor effects and safety profiles, offering insights for precision cancer treatment.
Collapse
Affiliation(s)
- Shengyue Wu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, PR China
| | - Hanming Wang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, PR China
| | - Lihua Zhang
- Yangzhou Hospital Of TCM, 577 Wenchang Middle Road, Yangzhou City, 225002, PR China
| | - Qianqian Wang
- Department of Pharmacy, Affiliated Hospital of Medical School, Taikang Xianlin Drum Tower Hospital, Nanjing University, 188 Lingshan North Road, Qixia District, Nanjing, 210046, PR China
| | - Ningze Xu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, PR China
| | - Kaihong Shi
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, PR China
| | - Cong He
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, PR China
| | - Yabing Hua
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, PR China.
| | - Ziming Zhao
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, PR China.
| |
Collapse
|
4
|
Emzhik M, Haeri A, Javidi J, Abdollahizad E, Qaribnejad A, Rezaee E, Torshabi M, Dadashzadeh S. Bile salt integrated cerasomes: A potential nanocarrier for enhancement of the oral bioavailability of idarubicin hydrochloride. Int J Pharm 2024; 662:124518. [PMID: 39074645 DOI: 10.1016/j.ijpharm.2024.124518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Cerasomes are a modified form of liposomes containing both inorganic and organic parts and due to their strong polyorganosiloxane surface have remarkably high morphological stability and provide easier functionalization compared with conventional liposomes. To investigate the potential of these nanocarriers for oral delivery, bile salt integrated cerasomes (named bilocerasomes) encapsulating idarubicin hydrochloride (IDA) were prepared and characterized. The optimum formulation showed excellent stability in the simulated gastrointestinal fluids as well as under storage conditions. The oral pharmacokinetics of the IDA solution, empty nanocarrier + drug solution, and IDA-loaded bilocerasome were evaluated. The nanoformulation significantly increased the area under the drug concentration-time curve and the mean residence time (∼14.3- and 9-fold, respectively). The results obtained from cell uptake and chylomicron flow blocking approach revealed that bilocerasomes are absorbed into the intestinal cells via a clathrin/caveolin-independent endocytosis pathway and transported to the systemic circulation extensively via the intestinal lymphatic vessels. Considering the high stability of the prepared bilocerasome, noticeable participation of lymphatic transport in its systemic absorption and marked enhancement in the oral absorption of IDA, bilocerasomes can be introduced as a capable carrier for improving the oral bioavailability of drugs, particularly those that hepatic first-pass metabolism seriously limits their oral absorption.
Collapse
Affiliation(s)
- Marjan Emzhik
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jaber Javidi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Erfan Abdollahizad
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirsajad Qaribnejad
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Jo S, Roh S, Shim J, Yu JW, Jung Y, Jang WY, Seo B, Won YY, Yoo J. Modulating the Thermoresponsive Characteristics of PLGA-PEG-PLGA Hydrogels via Manipulation of PLGA Monomer Sequences. Biomacromolecules 2024; 25:5374-5386. [PMID: 39014545 DOI: 10.1021/acs.biomac.4c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Hydrogels are promising materials for biomedical applications, particularly in drug delivery and tissue engineering. This study highlights thermoresponsive hydrogels, specifically poly(lactic-co-glycolic acid) (PLGA)-poly(ethylene glycol) (PEG)-PLGA triblock copolymers, and introduces a feed rate-controlled polymerization (FRCP) method. By utilizing an organic catalyst and regulating the monomer feed rate, the sequence distribution of PLGA within the triblock copolymer is controlled. Various analyses, including 13C NMR and rheological measurements, were conducted to investigate the impact of sequence distribution. Results show that altering sequence distribution significantly influences the sol-gel transition, hydrophobicity-hydrophilicity balance, and drug release profile. Increased sequence uniformity lowers the glass transition temperature, raises the sol-gel transition temperature due to enhanced hydrophilicity, and promotes a more uniform drug (curcumin) distribution within the PLGA domain, resulting in a slower release rate. This study emphasizes the importance of PLGA sequence distribution in biomedical applications and the potential of FRCP to tailor thermoresponsive hydrogels for biomedical advancements.
Collapse
Affiliation(s)
- SeongHoon Jo
- Center of Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Soonjong Roh
- Center of Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaemin Shim
- Department of Chemical Biological Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Ji Woong Yu
- Center for AI and Natural Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Youngmee Jung
- Center of Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Woo Young Jang
- Department of Orthopedic Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Institute of Nano, Regeneration, Reconstruction, Korea University, Seoul 02841, Republic of Korea
| | - Bumjoon Seo
- Department of Chemical Biological Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jin Yoo
- Center of Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
6
|
Zhang J, Sun L, Jiang L, Xie X, Wang Y, Wu R, Tang Q, Sun S, Zhu S, Liang X, Cui L. Regulation of CTLs/Tregs via Highly Stable and Ultrasound-Responsive Cerasomal Nano-Modulators for Enhanced Colorectal Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400485. [PMID: 38552151 PMCID: PMC11165532 DOI: 10.1002/advs.202400485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/27/2024] [Indexed: 06/12/2024]
Abstract
Immunotherapy is showing good potential for colorectal cancer therapy, however, low responsive rates and severe immune-related drug side effects still hamper its therapeutic effectiveness. Herein, a highly stable cerasomal nano-modulator (DMC@P-Cs) with ultrasound (US)-controlled drug delivery capability for selective sonodynamic-immunotherapy is fabricated. DMC@P-Cs' lipid bilayer is self-assembled from cerasome-forming lipid (CFL), pyrophaeophorbid conjugated lipid (PL), and phospholipids containing unsaturated chemical bonds (DOPC), resulting in US-responsive lipid shell. Demethylcantharidin (DMC) as an immunotherapy adjuvant is loaded in the hydrophilic core of DMC@P-Cs. With US irradiation, reactive oxygen species (ROS) can be effectively generated from DMC@P-Cs, which can not only kill tumor cells for inducing immunogenic cell death (ICD), but also oxidize unsaturated phospholipids-DOPC to change the permeability of the lipid bilayers and facilitate controlled release of DMC, thus resulting in down-regulation of regulatory T cells (Tregs) and amplification of anti-tumor immune responses. After intravenous injection, DMC@P-Cs can efficiently accumulate at the tumor site, and local US treatment resulted in 94.73% tumor inhibition rate. In addition, there is no detectable systemic toxicity. Therefore, this study provides a highly stable and US-controllable smart delivery system to achieve synergistical sonodynamic-immunotherapy for enhanced colorectal cancer therapy.
Collapse
Affiliation(s)
- Jinxia Zhang
- Institute of Medical TechnologyPeking University Health Science CenterBeijing100010P. R. China
- Department of UltrasoundPeking University Third HospitalBeijing100191P. R. China
| | - Lihong Sun
- Department of UltrasoundPeking University Third HospitalBeijing100191P. R. China
| | - Ling Jiang
- Department of UltrasoundPeking University Third HospitalBeijing100191P. R. China
| | - Xinxin Xie
- Department of UltrasoundPeking University Third HospitalBeijing100191P. R. China
| | - Yuan Wang
- Department of UltrasoundPeking University Third HospitalBeijing100191P. R. China
| | - Ruiqi Wu
- Department of UltrasoundPeking University Third HospitalBeijing100191P. R. China
| | - Qingshuang Tang
- Department of UltrasoundPeking University Third HospitalBeijing100191P. R. China
| | - Suhui Sun
- Department of UltrasoundPeking University Third HospitalBeijing100191P. R. China
| | - Shiwei Zhu
- Department of UltrasoundPeking University Third HospitalBeijing100191P. R. China
| | - Xiaolong Liang
- Institute of Medical TechnologyPeking University Health Science CenterBeijing100010P. R. China
- Department of UltrasoundPeking University Third HospitalBeijing100191P. R. China
| | - Ligang Cui
- Institute of Medical TechnologyPeking University Health Science CenterBeijing100010P. R. China
- Department of UltrasoundPeking University Third HospitalBeijing100191P. R. China
| |
Collapse
|
7
|
Yan Z, Liu Z, Zhang H, Guan X, Xu H, Zhang J, Zhao Q, Wang S. Current trends in gas-synergized phototherapy for improved antitumor theranostics. Acta Biomater 2024; 174:1-25. [PMID: 38092250 DOI: 10.1016/j.actbio.2023.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Phototherapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), has been considered an elegant solution to eradicate tumors due to its minimal invasiveness and low systemic toxicity. Nevertheless, it is still challenging for phototherapy to achieve ideal outcomes and clinical translation due to its inherent drawbacks. Owing to the unique biological functions, diverse gases have attracted growing attention in combining with phototherapy to achieve super-additive therapeutic effects. Specifically, gases such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have been proven to kill tumor cells by inducing mitochondrial damage in synergy with phototherapy. Additionally, several gases not only enhance the thermal damage in PTT and the reactive oxygen species (ROS) production in PDT but also improve the tumor accumulation of photoactive agents. The inflammatory responses triggered by hyperthermia in PTT are also suppressed by the combination of gases. Herein, we comprehensively review the latest studies on gas-synergized phototherapy for cancer therapy, including (1) synergistic mechanisms of combining gases with phototherapy; (2) design of nanoplatforms for gas-synergized phototherapy; (3) multimodal therapy based on gas-synergized phototherapy; (4) imaging-guided gas-synergized phototherapy. Finally, the current challenges and future opportunities of gas-synergized phototherapy for tumor treatment are discussed. STATEMENT OF SIGNIFICANCE: 1. The novelty and significance of the work with respect to the existing literature. (1) Strategies to design nanoplatforms for gas-synergized anti-tumor phototherapy have been summarized for the first time. Meanwhile, the integration of various imaging technologies and therapy modalities which endow these nanoplatforms with advanced theranostic capabilities has been summarized. (2) The mechanisms by which gases synergize with phototherapy to eradicate tumors are innovatively and comprehensively summarized. 2. The scientific impact and interest. This review elaborates current trends in gas-synergized anti-tumor phototherapy, with special emphases on synergistic anti-tumor mechanisms and rational design of therapeutic nanoplatforms to achieve this synergistic therapy. It aims to provide valuable guidance for researchers in this field.
Collapse
Affiliation(s)
- Ziwei Yan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Zhu Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinyao Guan
- Experimental Teaching Center, Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Hongwei Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jinghai Zhang
- Department of Biomedical Engineering, School of Medical Devices, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
8
|
Du C, Wu R, Yan W, Fang J, Dai W, Wang Y, Cheng J, Hu X, Ao Y, Liang X, Liu Z. Ultrasound-Controlled Delivery of Growth Factor-Loaded Cerasomes Combined with Polycaprolactone Scaffolds Seeded with Bone Marrow Mesenchymal Stem Cells for Biomimetic Tendon-to-Bone Interface Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:292-304. [PMID: 38133932 PMCID: PMC10789257 DOI: 10.1021/acsami.3c14959] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Rotator cuff tear (RCT) is a prevalent shoulder injury that poses challenges for achieving continuous and functional regeneration of the tendon-to-bone interface (TBI). In this study, we controlled the delivery of growth factors (GFs) from liposomal nanohybrid cerasomes by ultrasound and implanted three-dimensional printed polycaprolactone (PCL) scaffolds modified with polydopamine loaded with bone marrow mesenchymal stem cells (BMSCs) to repair tears of the infraspinatus tendon in a lapine model. Direct suturing (control, CTL) was used as a control. The PCL/BMSC/cerasome (PBC) devices are sutured with the enthesis of the infraspinatus tendon. The cerasomes and PCL scaffolds are highly stable with excellent biocompatibility. The roles of GFs BMP2, TGFβ1, and FGF2 in tissue-specific differentiation are validated. Compared with the CTL group, the PBC group had significantly greater proteoglycan deposition (P = 0.0218), collagen volume fraction (P = 0.0078), and proportions of collagen I (P = 0.0085) and collagen III (P = 0.0048). Biotin-labeled in situ hybridization revealed a high rate of survival for transplanted BMSCs. Collagen type co-staining at the TBI is consistent with multiple collagen regeneration. Our studies demonstrate the validity of biomimetic scaffolds of TBI with BMSC-seeded PCL scaffolds and GF-loaded cerasomes to enhance the treatment outcomes for RCTs.
Collapse
Affiliation(s)
- Cancan Du
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Ruiqi Wu
- Department
of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Wenqiang Yan
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Jingchao Fang
- Department
of Radiology, Peking University Third Hospital, Beijing 100191, China
| | - Wenli Dai
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Yiqun Wang
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Jin Cheng
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Xiaoqing Hu
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Yingfang Ao
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| | - Xiaolong Liang
- Department
of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Zhenlong Liu
- Department
of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing 100191, China
- Beijing
Key Laboratory of Sports Injuries, Beijing 100191, China
- Engineering
Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing 100191, China
| |
Collapse
|
9
|
He P, Tang H, Zheng Y, Xiong Y, Cheng H, Li J, Zhang Y, Liu G. Advances in nanomedicines for lymphatic imaging and therapy. J Nanobiotechnology 2023; 21:292. [PMID: 37620846 PMCID: PMC10463797 DOI: 10.1186/s12951-023-02022-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Lymph nodes play a pivotal role in tumor progression as key components of the lymphatic system. However, the unique physiological structure of lymph nodes has traditionally constrained the drug delivery efficiency. Excitingly, nanomedicines have shown tremendous advantages in lymph node-specific delivery, enabling distinct recognition and diagnosis of lymph nodes, and hence laying the foundation for efficient tumor therapies. In this review, we comprehensively discuss the key factors affecting the specific enrichment of nanomedicines in lymph nodes, and systematically summarize nanomedicines for precise lymph node drug delivery and therapeutic application, including the lymphatic diagnosis and treatment nanodrugs and lymph node specific imaging and identification system. Notably, we delve into the critical challenges and considerations currently facing lymphatic nanomedicines, and futher propose effective strategies to address these issues. This review encapsulates recent findings, clinical applications, and future prospects for designing effective nanocarriers for lymphatic system targeting, with potential implications for improving cancer treatment strategies.
Collapse
Affiliation(s)
- Pan He
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637600, China
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361002, China
| | - Haitian Tang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361002, China
| | - Yating Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361002, China
| | - Yongfu Xiong
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637600, China
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361002, China
| | - Hongwei Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361002, China
| | - Jingdong Li
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637600, China.
| | - Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361002, China.
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361002, China.
| |
Collapse
|
10
|
Zhao Z, Zhang Y, Cheng Y, Li J, Wang W, Huang S, Ma X, Zhang X. Thermosensitive Nanotherapeutics for Localized Photothermal Ablation of MRSA-Infected Osteomyelitis Combined with Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12842-12854. [PMID: 36862542 DOI: 10.1021/acsami.2c23312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chronic osteomyelitis is an inflammatory skeletal disease caused by a bacterial infection that affects the periosteum, bone, and bone marrow. Methicillin-resistant Staphylococcus aureus (MRSA) is the most common causative agent. The bacterial biofilm formed on the necrotic bone is a considerable challenge to treating MRSA-infected osteomyelitis. Here, we developed an all-in-one cationic thermosensitive nanotherapeutic (TLCA) for treating MRSA-infected osteomyelitis. The prepared TLCA particles were positively charged and <230 nm in size, which allowed them to diffuse effectively into the biofilm. The positive charges of the nanotherapeutic accurately targeted the biofilm, and it subsequently regulated the drug release under near-infrared (NIR) light irradiation, thereby efficiently exerting the synergistic effect of NIR light-driven photothermal sterilization and chemotherapy. More than 80% of the antibiotics were abruptly released at 50 °C, which dispersed the biofilm by up to 90%. When applied to MRSA-infected osteomyelitis, with a localized temperature of 50 °C induced by 808 nm laser irradiation, it not only eliminated the bacteria and controlled infection but also inhibited the bone tissue inflammatory response, significantly reducing TNF-α, IL-1β, and IL-6 levels. In conclusion, we constructed an all-in-one antimicrobial treatment modality that provides a new and effective strategy for the topical treatment of chronic osteomyelitis.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Orthopaedics, Tianjin Hospital, No. 406 Jiefangnan Road, Hexi District, Tianjin 300211, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yijie Cheng
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jie Li
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenbo Wang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Siyuan Huang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xinlong Ma
- Department of Orthopaedics, Tianjin Hospital, No. 406 Jiefangnan Road, Hexi District, Tianjin 300211, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
The Formation of Morphologically Stable Lipid Nanocarriers for Glioma Therapy. Int J Mol Sci 2023; 24:ijms24043632. [PMID: 36835043 PMCID: PMC9964330 DOI: 10.3390/ijms24043632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Cerasomes are a promising modification of liposomes with covalent siloxane networks on the surface that provide outstanding morphological stability while maintaining all the useful traits of liposomes. Herein, thin film hydration and ethanol sol injection methods were utilized to produce cerasomes of various composition, which were then evaluated for the purpose of drug delivery. The most promising nanoparticles obtained by the thin film method were studied closely using MTT assay, flow cytometry and fluorescence microscopy on T98G glioblastoma cell line and modified with surfactants to achieve stability and the ability to bypass the blood-brain barrier. An antitumor agent, paclitaxel, was loaded into cerasomes, which increased its potency and demonstrated increased ability to induce apoptosis in T98G glioblastoma cell culture. Cerasomes loaded with fluorescent dye rhodamine B demonstrated significantly increased fluorescence in brain slices of Wistar rats compared to free rhodamine B. Thin film hydration with Tween 80 addition was established as a more reliable and versatile method for cerasome preparation. Cerasomes increased the antitumor action of paclitaxel toward T98G cancer cells by a factor of 36 and were able to deliver rhodamine B over the blood-brain barrier in rats.
Collapse
|
12
|
Swetha KL, Maravajjala KS, Li SD, Singh MS, Roy A. Breaking the niche: multidimensional nanotherapeutics for tumor microenvironment modulation. Drug Deliv Transl Res 2023; 13:105-134. [PMID: 35697894 DOI: 10.1007/s13346-022-01194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 12/13/2022]
Abstract
Most of the current antitumor therapeutics were developed targeting the cancer cells only. Unfortunately, in the majority of tumors, this single-dimensional therapy is found to be ineffective. Advanced research has shown that cancer is a multicellular disorder. The tumor microenvironment (TME), which is made by a complex network of the bulk tumor cells and other supporting cells, plays a crucial role in tumor progression. Understanding the importance of the TME in tumor growth, different treatment modalities have been developed targeting these supporting cells. Recent clinical results suggest that simultaneously targeting multiple components of the tumor ecosystem with drug combinations can be highly effective. This type of "multidimensional" therapy has a high potential for cancer treatment. However, tumor-specific delivery of such multi-drug combinations remains a challenge. Nanomedicine could be utilized for the tumor-targeted delivery of such multidimensional therapeutics. In this review, we first give a brief overview of the major components of TME. We then highlight the latest developments in nanoparticle-based combination therapies, where one drug targets cancer cells and other drug targets tumor-supporting components in the TME for a synergistic effect. We include the latest preclinical and clinical studies and discuss innovative nanoparticle-mediated targeting strategies.
Collapse
Affiliation(s)
- K Laxmi Swetha
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Kavya Sree Maravajjala
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Westbrook Mall, Vancouver, BC, Canada
| | - Manu Smriti Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, 201310, India. .,Center of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, 201310, India.
| | - Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science, Vidya Vihar, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
13
|
Li P, Wang D, Hu J, Yang X. The role of imaging in targeted delivery of nanomedicine for cancer therapy. Adv Drug Deliv Rev 2022; 189:114447. [PMID: 35863515 DOI: 10.1016/j.addr.2022.114447] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/27/2022] [Accepted: 07/06/2022] [Indexed: 01/24/2023]
Abstract
Nanomedicines overcome the pharmacokinetic limitations of traditional drug formulations and have promising prospect in cancer treatment. However, nanomedicine delivery in vivo is still facing challenges from the complex physiological environment. For the purpose of effective tumor therapy, they should be designed to guarantee the five features principle, including long blood circulation, efficient tumor accumulation, deep matrix penetration, enhanced cell internalization and accurate drug release. To ensure the excellent performance of the designed nanomedicine, it would be better to monitor the drug delivery process as well as the therapeutic effects by real-time imaging. In this review, we summarize strategies in developing nanomedicines for efficiently meeting the five features of drug delivery, and the role of several imaging modalities (fluorescent imaging (FL), magnetic resonance imaging (MRI), computed tomography (CT), photoacoustic imaging (PAI), positron emission tomography (PET), and electron microscopy) in tracing drug delivery and therapeutic effect in vivo based on five features principle.
Collapse
Affiliation(s)
- Puze Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dongdong Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
14
|
Li X, Gao Y, Liu X, Hu X, Li Y, Sun J, Wang P, Wu H, Kim H, Ramalingam M, Xie S, Wang R. Ultrasound and laser-promoted dual-gas nano-generator for combined photothermal and immune tumor therapy. Front Bioeng Biotechnol 2022; 10:1005520. [PMID: 36177188 PMCID: PMC9513372 DOI: 10.3389/fbioe.2022.1005520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022] Open
Abstract
The combination of photothermal therapy (PTT) and immune tumor therapy has emerged as a promising avenue for cancer treatment. However, the insufficient immune response caused by inefficient immunogenic cell death (ICD) inducers and thermal resistance, immunosuppression, and immune escape resulting from the hypoxic microenvironment of solid tumors severely limit its efficacy. Herein, we report an ultrasound and laser-promoted dual-gas nano-generator (calcium carbonate-polydopamine-manganese oxide nanoparticles, CPM NPs) for enhanced photothermal/immune tumor therapy through reprogramming tumor hypoxic microenvironment. In this system, CPM NPs undergo reactive decomposition in a moderately acidic tumor, resulting in the generation of calcium, manganese ions, carbon dioxide (CO2), and oxygen (O2). Calcium and manganese ions act as adjuvants that trigger an immune response. The cancer cell membrane rupture caused by sudden burst of bubbles (CO2 and O2) under ultrasound stimulation and the photothermal properties of PDA also contributed to the ICD effect. The generation of O2 alleviates tumor hypoxia and thus reduces hypoxia-induced heat resistance and immunosuppressive effects, thereby improving the therapeutic efficacy of combination PTT and immune therapy. The present study provides a novel approach for the fabrication of a safe and effective tumor treatment platform for future clinical applications.
Collapse
Affiliation(s)
- XinYu Li
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, China
| | - Yong Gao
- Binzhou Medical University Hospital, Binzhou, China
| | - XinZheng Liu
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, China
| | - XiaoQian Hu
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
| | - YunMeng Li
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
| | - JunXi Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
| | - PingYu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, China
| | - Hongkai Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - HaeWon Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Korea
| | - Murugan Ramalingam
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Korea
- Department of Nanobiomedical Science, BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Korea
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
- *Correspondence: Murugan Ramalingam, ; ShuYang Xie, ; RanRan Wang,
| | - ShuYang Xie
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, China
- *Correspondence: Murugan Ramalingam, ; ShuYang Xie, ; RanRan Wang,
| | - RanRan Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, China
- *Correspondence: Murugan Ramalingam, ; ShuYang Xie, ; RanRan Wang,
| |
Collapse
|
15
|
Yan J, Wang Y, Song X, Yan X, Zhao Y, Yu L, He Z. The Advancement of Gas-Generating Nanoplatforms in Biomedical Fields: Current Frontiers and Future Perspectives. SMALL METHODS 2022; 6:e2200139. [PMID: 35587774 DOI: 10.1002/smtd.202200139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Diverse gases (NO, CO, H2 S, H2 , etc.) have been widely applied in the medical intervention of various diseases, including cancer, cardiovascular disease, ischemia-reperfusion injury, bacterial infection, etc., attributing to their inherent biomedical activities. Although many gases have many biomedical activities, their clinical use is still limited due to the rapid and free diffusion behavior of these gases molecules, which may cause potential side effects and/or ineffective treatment. Gas-generating nanoplatforms (GGNs) are effective strategies to address the aforementioned challenges of gas therapy by preventing gas production or release at nonspecific sites, enhancing GGNs accumulation at targeted sites, and controlling gas release in response to exogenous (UV, NIR, US, etc.) or endogenous (H2 O2 , GSH, pH, etc.) stimuli at the lesion site, further maintaining gas concentration within the effective range and achieving the purpose of disease treatment. This review comprehensively summarizes the advancements of "state-of-the-art" GGNs in the recent three years, with emphasis on the composition, structure, preparation process, and gas release mechanism of the nanocarriers. Furthermore, the therapeutic effects and limitations of GGNs in preclinical studies using cell/animal models are discussed. Overall, this review enlightens the further development of this field and promotes the clinical transformation of gas therapy.
Collapse
Affiliation(s)
- Jiahui Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Yanan Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Yi Zhao
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Zhiyu He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| |
Collapse
|
16
|
Xia Y, Wu Y, Cao J, Wang J, Chen Z, Li C, Zhang X. Liposomal Glucose Oxidase for Enhanced Photothermal Therapy and Photodynamic Therapy against Breast Tumors. ACS Biomater Sci Eng 2022; 8:1892-1906. [PMID: 35404565 DOI: 10.1021/acsbiomaterials.1c01311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Organic near-infrared fluorescent dye mediated photothermal therapy (PTT) and photodynamic therapy (PDT) suffer from heat shock response, since, heat shock proteins (HSPs) are overexpressed and can repair the proteins damaged by PTT and PDT. Starvation therapy by glucose oxide (GOx) can inhibit the heat shock response by limiting the energy supply. However, the delivery of sufficient and active GOx remains a challenge. To solve this problem, we utilize liposomes as drug carriers and prepare GOx loaded liposome (GOx@Lipo) with a high drug loading content (12.0%) and high enzymatic activity. The successful delivery of GOx shows excellent inhibition of HSPs and enhances PTT and PDT. Additionally, we apply the same liposome formulation to load near-infrared dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbo cyanine iodide (DiR) and prepare DiR contained liposomes (DiR@Lipo) for PTT and PDT. The liposomal formulation substantially enhances the PTT and PDT properties of DiR as well as the cellular uptake and tumor accumulation. Finally, the combination therapy shows excellent tumor inhibition on 4T1 tumor-bearing mice. Interestingly, we also find that the starvation therapy can efficiently inhibit tumor metastasis, which is probably due to the immunogenic effect. Our work presents a biocompatible and effective carrier for the combination of starvation therapy and phototherapy, emphasizing the importance of auxiliary starvation therapy against tumor metastasis and offering important guidance for clinical PTT and PDT.
Collapse
Affiliation(s)
- Yuqiong Xia
- Engineering Research Center of Molecular- and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Yankun Wu
- Engineering Research Center of Molecular- and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Jianxia Cao
- Engineering Research Center of Molecular- and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Jun Wang
- Engineering Research Center of Molecular- and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Zhaoxu Chen
- Engineering Research Center of Molecular- and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Cairu Li
- Engineering Research Center of Molecular- and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Xianghan Zhang
- Engineering Research Center of Molecular- and Neuro-Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710026, China
| |
Collapse
|
17
|
Kashapov R, Ibragimova A, Pavlov R, Gabdrakhmanov D, Kashapova N, Burilova E, Zakharova L, Sinyashin O. Nanocarriers for Biomedicine: From Lipid Formulations to Inorganic and Hybrid Nanoparticles. Int J Mol Sci 2021; 22:7055. [PMID: 34209023 PMCID: PMC8269010 DOI: 10.3390/ijms22137055] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Encapsulation of cargoes in nanocontainers is widely used in different fields to solve the problems of their solubility, homogeneity, stability, protection from unwanted chemical and biological destructive effects, and functional activity improvement. This approach is of special importance in biomedicine, since this makes it possible to reduce the limitations of drug delivery related to the toxicity and side effects of therapeutics, their low bioavailability and biocompatibility. This review highlights current progress in the use of lipid systems to deliver active substances to the human body. Various lipid compositions modified with amphiphilic open-chain and macrocyclic compounds, peptide molecules and alternative target ligands are discussed. Liposome modification also evolves by creating new hybrid structures consisting of organic and inorganic parts. Such nanohybrid platforms include cerasomes, which are considered as alternative nanocarriers allowing to reduce inherent limitations of lipid nanoparticles. Compositions based on mesoporous silica are beginning to acquire no less relevance due to their unique features, such as advanced porous properties, well-proven drug delivery efficiency and their versatility for creating highly efficient nanomaterials. The types of silica nanoparticles, their efficacy in biomedical applications and hybrid inorganic-polymer platforms are the subject of discussion in this review, with current challenges emphasized.
Collapse
Affiliation(s)
- Ruslan Kashapov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, 420088 Kazan, Russia; (A.I.); (R.P.); (D.G.); (N.K.); (E.B.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Shrestha B, Wang L, Brey EM, Uribe GR, Tang L. Smart Nanoparticles for Chemo-Based Combinational Therapy. Pharmaceutics 2021; 13:853. [PMID: 34201333 PMCID: PMC8227511 DOI: 10.3390/pharmaceutics13060853] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/27/2022] Open
Abstract
Cancer is a heterogeneous and complex disease. Traditional cancer therapy is associated with low therapeutic index, acquired resistance, and various adverse effects. With the increasing understanding of cancer biology and technology advancements, more strategies have been exploited to optimize the therapeutic outcomes. The rapid development and application of nanomedicine have motivated this progress. Combinational regimen, for instance, has become an indispensable approach for effective cancer treatment, including the combination of chemotherapeutic agents, chemo-energy, chemo-gene, chemo-small molecules, and chemo-immunology. Additionally, smart nanoplatforms that respond to external stimuli (such as light, temperature, ultrasound, and magnetic field), and/or to internal stimuli (such as changes in pH, enzymes, hypoxia, and redox) have been extensively investigated to improve precision therapy. Smart nanoplatforms for combinational therapy have demonstrated the potential to be the next generation cancer treatment regimen. This review aims to highlight the recent advances in smart combinational therapy.
Collapse
Affiliation(s)
| | | | | | - Gabriela Romero Uribe
- Department of Biomedical and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (B.S.); (L.W.); (E.M.B.)
| | - Liang Tang
- Department of Biomedical and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (B.S.); (L.W.); (E.M.B.)
| |
Collapse
|
19
|
Zhang X, Li X, Sun S, Wang P, Ma X, Hou R, Liang X. Anti-Tumor Metastasis via Platelet Inhibitor Combined with Photothermal Therapy under Activatable Fluorescence/Magnetic Resonance Bimodal Imaging Guidance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19679-19694. [PMID: 33876926 DOI: 10.1021/acsami.1c02302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photothermal therapy (PTT) is a promising tumor therapy strategy; however, heterogeneous heat distribution over the tumor often exists, resulting in insufficient photothermal ablation and potential risk of cancer metastasis, which has been demonstrated to be associate with platelets. Herein, a near-infrared (NIR) photothermal agent of IR780 was conjugated with MRI agent of Gd-DOTA via a disulfide linkage (ICD-Gd), which was coassembly with lipid connecting tumor-homing pentapeptide CREKA (Cys-Arg-Glu-Lys-Ala) (DSPE-PEG-CREKA) to encapsulate a platelet inhibitor of ticagrelor (Tic), affording a multistimuli-responsive nanosystem (DPC@ICD-Gd-Tic). The nanosystem with completely quenching fluorescence could specifically target the tumor-associated platelets and showed pH/reduction/NIR light-responsive drug release, which simultaneously resulting in dis-assembly of nanoparticle and fluorescence recovery, enabling the drug delivery visualization in tumor in situ via activatable NIR fluorescence/MR bimodal imaging. Finally, DPC@ICD-Gd-Tic further integrated the photoinduced hyperthermia and platelet function inhibitor to achieve synergistic anticancer therapy, leading to ablation of primary tumor cells and effectively suppressed their distant metastasis. The number of lung metastases in 4T1 tumor bearing mice was reduced by about 90%, and the size of tumor was reduced by about 70%, while half of the mouse was completely cured by this smart nanosystem.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaoda Li
- School of Basic Medical Sciences, Peking University, Beijing 100190, P. R. China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Ping Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Xiaotu Ma
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Rui Hou
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| |
Collapse
|
20
|
Fan R, Chen C, Hou H, Chuan D, Mu M, Liu Z, Liang R, Guo G, Xu J. Tumor Acidity and Near‐Infrared Light Responsive Dual Drug Delivery Polydopamine‐Based Nanoparticles for Chemo‐Photothermal Therapy. ADVANCED FUNCTIONAL MATERIALS 2021. [DOI: 10.1002/adfm.202009733] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Rangrang Fan
- Department of Neurosurgery West China Hospital Sichuan University Chengdu 610041 P. R. China
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Caili Chen
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan 453003 P. R. China
| | - Huan Hou
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Di Chuan
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Min Mu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Zhiyong Liu
- Department of Neurosurgery West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Ruichao Liang
- Department of Neurosurgery West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Jianguo Xu
- Department of Neurosurgery West China Hospital Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
21
|
Yu Y, Cheng Y, Tong J, Zhang L, Wei Y, Tian M. Recent advances in thermo-sensitive hydrogels for drug delivery. J Mater Chem B 2021; 9:2979-2992. [DOI: 10.1039/d0tb02877k] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thermo-sensitive hydrogels based on different polymers have been broadly used in the pharmaceutical fields. In this review, the state-of-the-art thermo-sensitive hydrogels for drug delivery are elaborated
Collapse
Affiliation(s)
- Yibin Yu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yi Cheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- China
| | - Junye Tong
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- China
| | - Lei Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yen Wei
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University
- Beijing 100084
- China
| | - Mei Tian
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou
- Zhejiang, 310009
- China
| |
Collapse
|
22
|
Wang W, Zheng T, Zhang M, Zhang Q, Wu F, Liu Y, Zhang L, Zhang J, Wang M, Sun Y. Tumor-targeting multi-shelled hollow nanospheres as drug loading platforms for imaging-guided combinational cancer therapy. Biomater Sci 2020; 8:1748-1758. [PMID: 32002530 DOI: 10.1039/c9bm01881f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, we developed multi-shelled hollow nanospheres [RGD@am-ZnO@CuO@Au@DOX HNSs] as multifunctional therapeutic agents to achieve effective and targeted Zn2+/Cu2+ therapy, induced drug delivery under low pH/red-light conditions, and enhanced phototherapy under single red-light. The photothermal and photodynamic performance of am-ZnO@CuO@Au HNSs was enhanced relative to that of am-ZnO nanoparticles (NPs) or am-ZnO@CuO HNSs by utilizing the resonance energy transfer process and broad red-light absorption. The pH-sensitive am-ZnO@CuO@Au HNSs were dissolved to Zn2+/Cu2+ in the acidic endosomes/lysosomes of cancer cells, resulting in a cancer cell killing effect. The release performance of doxorubicin (DOX) from RGD@am-ZnO@CuO@Au@DOX HNSs was evaluated under low pH and red-light-irradiated conditions, and targeting of HNSs was confirmed by dual-modal imaging (magnetic resonance/fluorescence) of the tumor area. Moreover, in vivo synergistic therapy using RGD@am-ZnO@CuO@Au@DOX HNSs was further evaluated in mice bearing human pulmonary adenocarcinoma (A549) cells, achieving a remarkable synergistic antitumor effect superior to that obtained by monotherapy. This study validated that RGD@am-ZnO@CuO@Au@DOX HNSs can be a promising candidate for efficient postoperative cancer therapy.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| | - Tao Zheng
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| | - Ming Zhang
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark. and Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qicheng Zhang
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fan Wu
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yihan Liu
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Lin Zhang
- Wuxi Children's Hospital, Wuxi, 210023, China
| | - Jun Zhang
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mingqian Wang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Yi Sun
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| |
Collapse
|
23
|
Wang X, Xuan Z, Zhu X, Sun H, Li J, Xie Z. Near-infrared photoresponsive drug delivery nanosystems for cancer photo-chemotherapy. J Nanobiotechnology 2020; 18:108. [PMID: 32746846 PMCID: PMC7397640 DOI: 10.1186/s12951-020-00668-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
Drug delivery systems (DDSs) based on nanomaterials have shown a promise for cancer chemotherapy; however, it remains a great challenge to localize on-demand release of anticancer drugs in tumor tissues to improve therapeutic effects and minimize the side effects. In this regard, photoresponsive DDSs that employ light as an external stimulus can offer a precise spatiotemporal control of drug release at desired sites of interest. Most photoresponsive DDSs are only responsive to ultraviolet-visible light that shows phototoxicity and/or shallow tissue penetration depth, and thereby their applications are greatly restricted. To address these issues, near-infrared (NIR) photoresponsive DDSs have been developed. In this review, the development of NIR photoresponsive DDSs in last several years for cancer photo-chemotherapy are summarized. They can achieve on-demand release of drugs into tumors of living animals through photothermal, photodynamic, and photoconversion mechanisms, affording obviously amplified therapeutic effects in synergy with phototherapy. Finally, the existing challenges and further perspectives on the development of NIR photoresponsive DDSs and their clinical translation are discussed.
Collapse
Affiliation(s)
- Xiaoying Wang
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China
| | - Zeliang Xuan
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China
| | - Xiaofeng Zhu
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China
| | - Haitao Sun
- Shanghai Institute of Medical Imaging, Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingchao Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | - Zongyu Xie
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China.
| |
Collapse
|
24
|
Qin W, Quan G, Sun Y, Chen M, Yang P, Feng D, Wen T, Hu X, Pan X, Wu C. Dissolving Microneedles with Spatiotemporally controlled pulsatile release Nanosystem for Synergistic Chemo-photothermal Therapy of Melanoma. Am J Cancer Res 2020; 10:8179-8196. [PMID: 32724465 PMCID: PMC7381723 DOI: 10.7150/thno.44194] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/13/2020] [Indexed: 12/22/2022] Open
Abstract
High aggressiveness and recurrence of melanoma tumors require multiple systemic drug administrations, causing discomfort and severe side effects to the patients. Topical treatment strategies that provide repetitively controllable and precise drug administrations will greatly improve treatment effects. Methods: In this study, a spatiotemporally controlled pulsatile release system, which combined dissolving microneedles (DMNs) and thermal-sensitive solid lipid nanoparticles (SLNs), was constructed to realize multiple doses of dual-modal chemo-photothermal therapy in a single administration. Paclitaxel (PTX) and photothermal agent IR-780 were encapsulated into SLNs and were concentrated in the tips of DMNs (PTX/IR-780 SLNs @DMNs). Equipped with several needles, the DMN patch could be directly inserted into the tumor site and provide a stable “Zone accumulation” to constrain the PTX/IR-780 SLNs at the tumor site with uniform distribution. Results:In vitro experiments showed that after irradiation with near-infrared light, the PTX/IR-780 SLNs gradually underwent phase transition, thereby accelerating the release of PTX. When irradiation was switched off, the PTX/IR-780 SLNs cooled to re-solidify with limited drug release. Compared with intravenous and intratumoral injections, very few SLNs from PTX/IR-780 SLNs @DMNs were distributed into other organs, resulting in enhanced bioavailability at the tumor site and good safety. In vivo analysis revealed that PTX/IR-780 SLNs @DMNs exhibited significant anti-tumor efficacy. In particular, the primary tumor was completely eradicated with a curable rate of 100% in 30 days and the highest survival rate of 66.67% after 100 days of treatment. Conclusion: Herein, we developed a DMN system with a unique spatiotemporally controlled pulsatile release feature that provides a user-friendly and low-toxicity treatment route for patients who need long-term and repeat treatments.
Collapse
|
25
|
Li Y, Yue S, Cao J, Zhu C, Wang Y, Hai X, Song W, Bi S. pH-responsive DNA nanomicelles for chemo-gene synergetic therapy of anaplastic large cell lymphoma. Am J Cancer Res 2020; 10:8250-8263. [PMID: 32724469 PMCID: PMC7381733 DOI: 10.7150/thno.45803] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022] Open
Abstract
Chemo-gene therapy is an emerging synergetic modality for the treatment of cancers. Herein, we developed pH-responsive multifunctional DNA nanomicelles (DNMs) as delivery vehicles for controllable release of doxorubicin (Dox) and anaplastic lymphoma kinase (ALK)-specific siRNA for the chemo-gene synergetic therapy of anaplastic large cell lymphoma (ALCL). Methods: DNMs were synthesized by performing in situ rolling circle amplification (RCA) on the amphiphilic primer-polylactide (PLA) micelles, followed by functionalization of pH-responsive triplex DNA via complementary base pairing. The anticancer drug Dox and ALK-specific siRNA were co-loaded to construct Dox/siRNA/DNMs for chemo-gene synergetic cancer therapy. When exposed to the acidic microenvironment (pH below 5.0), C-G·C+ triplex structures were formed, leading to the release of Dox and siRNA for gene silencing to enhance the chemosensitivity in ALCL K299 cells. The chemo-gene synergetic anticancer effect of Dox/siRNA/DNMs on ALCL was evaluated in vitro and in vivo. Results: The pH-responsive DNMs exhibited good monodispersity at different pH values, good biocompatibility, high drug loading capacity, and excellent stability even in the human serum. With the simultaneous release of anticancer drug Dox and ALK-specific siRNA in response to pH in the tumor microenvironment, the Dox/siRNA/DNMs demonstrated significantly higher treatment efficacy for ALCL compared with chemotherapy alone, because the silencing of ALK gene expression mediated by siRNA increased the chemosensitivity of ALCL cells. From the pathological analysis of tumor tissue, the Dox/siRNA/DNMs exhibited the superiority in inhibiting tumor growth, low toxic side effects and good biosafety. Conclusion: DNMs co-loaded with Dox and ALK-specific siRNA exhibited significantly enhanced apoptosis of ALCL K299 cells in vitro and effectively inhibited tumor growth in vivo without obvious toxicity, providing a potential strategy in the development of nanomedicines for synergetic cancer therapy.
Collapse
|
26
|
All-Optical Formation and Manipulation of Microbubbles on a Porous Gold Nanofilm. MICROMACHINES 2020; 11:mi11050489. [PMID: 32397627 PMCID: PMC7281023 DOI: 10.3390/mi11050489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 11/17/2022]
Abstract
Microbubble generation and manipulation in aqueous environments are techniques that have attracted considerable attention for their microfluidic and biological applications. Ultrasonic and hydrodynamic methods are commonly used to form and manipulate microbubbles, but these methods are limited by the relatively low precision of the microbubble sizes and locations. Here, we report an all-optical method for generation and manipulation of microbubbles with ~100 nm precision by using “hot spots” on a porous gold nanofilm under the illumination of near-infrared focused laser beam. The microbubble diameter ranged from 700 nm to 100 μm, with a standard deviation of 100 nm. The microbubbles were patterned into two-dimensional arrays, with an average location deviation of 90 nm. By moving the laser beam, the microbubbles could be manipulated to a desired region. This work provides a controllable way to form and manipulate microbubbles with ~100 nm precision, which is expected to have applications in optofluidic and plasmonic devices.
Collapse
|