1
|
Gai J, Liu L, Zhang X, Guan J, Mao S. Impact of the diseased lung microenvironment on the in vivo fate of inhaled particles. Drug Discov Today 2024; 29:104019. [PMID: 38729235 DOI: 10.1016/j.drudis.2024.104019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Inhalation drug delivery is superior for local lung disease therapy. However, there are several unique absorption barriers for inhaled drugs to overcome, including limited drug deposition at the target site, mucociliary clearance, pulmonary macrophage phagocytosis, and systemic exposure. Moreover, the respiratory disease state can affect or even destroy the physiology of the lung, thus influencing the in vivo fate of inhaled particles compared with that in healthy lungs. Nevertheless, limited information is available on this effect. Thus, in this review, we present pathological changes of the lung microenvironment under varied respiratory diseases and their influence on the in vivo fate of inhaled particles; such insights could provide a basis for rational inhalation particle design based on specific disease states.
Collapse
Affiliation(s)
- Jiayi Gai
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liu Liu
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Jian Guan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
2
|
You Y, Yuan H, Min H, Li C, Chen J. Fibroblast-derived CXCL14 aggravates crystalline silica-induced pulmonary fibrosis by mediating polarization and recruitment of interstitial macrophages. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132489. [PMID: 37688871 DOI: 10.1016/j.jhazmat.2023.132489] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Exposure to crystalline silica (CS) particles in worksites and dwellings can lead to silicosis due to excessive fibroblast activation. Considering their immuno-regulatory activities, the contribution of pulmonary fibroblasts in the progression of silicosis has not been thoroughly characterized. Here, we demonstrate that exposure of the lung to CS particles leads to the upregulation of fibroblast-derived C-X-C motif chemokine ligand 14 (CXCL14). By employing an in vitro co-culture system, we demonstrated activated fibroblasts recruited bone marrow-derived macrophages (BMDMs) and favored alternative macrophage polarization (M2) mediated by CXCL14. Furthermore, in vivo studies echoed that systemic CXCL14 neutralizing or fibroblast-specific Cxcl14 knockout proved CXCL14 was indispensable for the recruitment and phenotype alteration of lung macrophages, especially interstitial macrophages (IMs), under stimulation by CS particles. Mechanistically, we showed that GLI2 and p21-mediated cellular senescence were mediators of CXCL14 production following CS exposure. Accordingly, GLI2 blockage and countering cellular senescence by reviving PINK1-mediated mitophagy may be efficient strategies to reduce CXCL14 expression in activated fibroblasts during silicosis. Our findings emphasize the immuno-regulatory function of fibroblasts in silicosis via CXCL14, providing intervention targets for CS-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Yichuan You
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Haoyang Yuan
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China
| | - Chao Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China.
| | - Jie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, PR China.
| |
Collapse
|
3
|
Liu S, Jin R, Zheng G, Wang Y, Li Q, Jin F, Li Y, Li T, Mao N, Wei Z, Li G, Fan Y, Xu H, Li S, Yang F. Ac-SDKP promotes KIF3A-mediated β-catenin suppression through a ciliary mechanism to constrain silica-induced epithelial-myofibroblast transition. Biomed Pharmacother 2023; 166:115411. [PMID: 37651800 DOI: 10.1016/j.biopha.2023.115411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023] Open
Abstract
Kinesin family member 3 A (KIF3A) decrease have been reported in silicotic patients and rats. However, the detailed mechanisms of KIF3A in silicosis remain unknown. In this study, we demonstrated that KIF3A effectively blocked the expression of β-catenin and downstream myocardin-related transcription factor (MRTF)-A/serum response factor (SRF) signaling, thus inhibiting silica-induced epithelial-myofibroblast transition (EMyT). Moreover, KIF3A was identified as a downstream mediator of an antifibrotic tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). Knockdown of KIF3A expression reactivated β-catenin/myocardin-related transcription factor (MRTF)-A/serum response factor (SRF) signaling that was attenuated by Ac-SDKP in vitro. Collectively, our findings suggest that Ac-SDKP plays its anti-fibrosis role via KIF3A-mediated β-catenin suppression, at least in part, in both in vivo model of silicosis and in vitro model of EMyT.
Collapse
Affiliation(s)
- Shupeng Liu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Ruotong Jin
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Gaigai Zheng
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yiyun Wang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Qian Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Fuyu Jin
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yaqian Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Tian Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Na Mao
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Zhongqiu Wei
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Gengxu Li
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Yuhang Fan
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Hong Xu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China; Health Science Center, North China University of Science and Technology, Tangshan, China
| | - Shifeng Li
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 100029 Beijing, China.
| | - Fang Yang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
4
|
Liu S, He Y, Li S, Gao X, Yang F. Kinesin family member 3A induces related diseases via wingless-related integration site/β-catenin signaling pathway. Sci Prog 2023; 106:368504221148340. [PMID: 36594221 PMCID: PMC10358705 DOI: 10.1177/00368504221148340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Kinesin family member 3A is an important motor protein that participates in various physiological and pathological processes, including normal tissue development, homeostasis maintenance, tumor infiltration, and migration. The wingless-related integration site/β-catenin signaling pathway is essential for critical molecular mechanisms such as embryonic development, organogenesis, tissue regeneration, and carcinogenesis. Recent studies have examined the molecular mechanisms of kinesin family member 3A, among which the wingless-related integration site/β-catenin signaling pathway has gained attention. The interaction between kinesin family member 3A and the wingless-related integration site/β-catenin signaling pathway is compact and complex but is fascinating and worthy of further study. The upregulation and downregulation of kinesin family member 3A influence many diseases and patient survival through the wingless-related integration site/β-catenin signaling pathway. Therefore, this review mainly focuses on describing the kinesin family member 3A and wingless-related integration site/β-catenin signaling pathways and their associated diseases.
Collapse
Affiliation(s)
- Shupeng Liu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Yang He
- Clinical Medicine College, North China University of Science and Technology, Tangshan, Hebei province, China
| | - Shifeng Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| | - Xuemin Gao
- NHC Key Laboratory of Pneumoconiosis, Taiyuan, Shanxi Province, China
| | - Fang Yang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, China
| |
Collapse
|
5
|
Jin F, Li Y, Wang X, Yang X, Li T, Xu H, Wei Z, Liu H. Effect of Sex Differences in Silicotic Mice. Int J Mol Sci 2022; 23:ijms232214203. [PMID: 36430681 PMCID: PMC9697950 DOI: 10.3390/ijms232214203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Mechanisms of silicosis, caused by the inhalation of silica are still unclear, and the effect of sex on silicosis has rarely been reported. The purpose of this study was to investigate whether sex affects the silicotic lesions and the progressive fibrotic responses in silicosis. Our study showed that sex had no significant effect on the area of silicon nodules and the collagen deposition after a one-time bronchial perfusion of silica. Immunohistochemical staining showed that CD68 and the transforming growth factor-β1 (TGF-β1) were positive in male and female silicotic mice. In addition, the western blot results showed that the fibrosis-related factors type I collagen (COL I), α-smooth muscle actin (α-SMA), vimentin, TGF-β1, p-SMAD2/3, inflammatory-related factors interleukin 6 (IL 6), interleukin 1β (IL 1β), and senescence-related factors p16 and p21 were up-regulated in silicotic mice and there was no difference between female or male mice exposed to silica. The expression of TGF-β1, p-SMAD2/3, p16, and p21 were downregulated in the early stage of female silicotic mice, compared to the males. Thus, despite differences in the expression of certain factors, there was no overall difference in the progressive fibrosis between female and male mice in silicosis. These results thus provide a new perspective for studying the pathological development of silicosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhongqiu Wei
- Correspondence: (Z.W.); (H.L.); Tel.: +86-0315-8816236 (Z.W.); +86-139-3349-9300 (H.L.)
| | - Heliang Liu
- Correspondence: (Z.W.); (H.L.); Tel.: +86-0315-8816236 (Z.W.); +86-139-3349-9300 (H.L.)
| |
Collapse
|
6
|
Geng F, Xu M, Zhao L, Zhang H, Li J, Jin F, Li Y, Li T, Yang X, Li S, Gao X, Cai W, Mao N, Sun Y, Liu H, Xu H, Wei Z, Yang F. Quercetin Alleviates Pulmonary Fibrosis in Mice Exposed to Silica by Inhibiting Macrophage Senescence. Front Pharmacol 2022; 13:912029. [PMID: 35959439 PMCID: PMC9360590 DOI: 10.3389/fphar.2022.912029] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Quercetin exerts anti-inflammatory, anti-oxidant and other protective effects. Previous studies have shown that senescent cells, such as fibroblasts and type II airway epithelial cells, are strongly implicated in the development of pulmonary fibrosis pathology. However, the role of senescent macrophages during silicosis remains unclear. We investigated the effects of quercetin on macrophage senescence and pulmonary fibrosis, and explored underlying mechanisms. Mice were randomized to six model groups. Vitro model was also established by culturing RAW264.7 macrophages with silica (SiO2). We examined the effects of quercetin on fibrosis, senescence-associated β-galactosidase (SA-β-Gal) activity, and senescence-specific genes (p16, p21, and p53). We showed that quercetin reduced pulmonary fibrosis and inhibited extracellular matrix (ECM) formation. Quercetin also attenuated macrophage senescence induced by SiO2 both in vitro and in vivo. In addition, quercetin significantly decreased the expressions of the senescence-associated secretory phenotype (SASP), including proinflammatory factors (interleukin-1α (Il-1α), Il-6, tumor necrosis factor-α (TNF-α), and transforming growth factor-β1 (TGF-β1)) and matrix metalloproteinases (MMP2, MMP9, and MMP12). In conclusion, quercetin mediated its anti-fibrotic effects by inhibiting macrophage senescence, possibly via SASP.
Collapse
Affiliation(s)
- Fei Geng
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Mengying Xu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Lan Zhao
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Haoming Zhang
- Jitang College, North China University of Science and Technology, Tangshan, China
| | - Jiarui Li
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Fuyu Jin
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yaqian Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Tian Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xinyu Yang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Shifeng Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xuemin Gao
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Wenchen Cai
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Na Mao
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Ying Sun
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Heliang Liu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Hong Xu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Zhongqiu Wei
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
- *Correspondence: Zhongqiu Wei, ; Fang Yang,
| | - Fang Yang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan, China
- *Correspondence: Zhongqiu Wei, ; Fang Yang,
| |
Collapse
|
7
|
Wang L, Liu C, Yang B, Zhang H, Jiao J, Zhang R, Liu S, Xiao S, Chen Y, Liu B, Ma Y, Duan X, Guo Y, Guo M, Wu B, Wang X, Huang X, Yang H, Gui Y, Fang M, Zhang L, Duo S, Guo X, Li W. SARS-CoV-2 ORF10 impairs cilia by enhancing CUL2ZYG11B activity. J Biophys Biochem Cytol 2022; 221:213272. [PMID: 35674692 PMCID: PMC9184850 DOI: 10.1083/jcb.202108015] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 03/02/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causal pathogen of the ongoing global pandemic of coronavirus disease 2019 (COVID-19). Loss of smell and taste are symptoms of COVID-19, and may be related to cilia dysfunction. Here, we found that the SARS-CoV-2 ORF10 increases the overall E3 ligase activity of the CUL2ZYG11B complex by interacting with ZYG11B. Enhanced CUL2ZYG11B activity by ORF10 causes increased ubiquitination and subsequent proteasome-mediated degradation of an intraflagellar transport (IFT) complex B protein, IFT46, thereby impairing both cilia biogenesis and maintenance. Further, we show that exposure of the respiratory tract of hACE2 mice to SARS-CoV-2 or SARS-CoV-2 ORF10 alone results in cilia-dysfunction-related phenotypes, and the ORF10 expression in primary human nasal epithelial cells (HNECs) also caused a rapid loss of the ciliary layer. Our study demonstrates how SARS-CoV-2 ORF10 hijacks CUL2ZYG11B to eliminate IFT46 and leads to cilia dysfunction, thereby offering a powerful etiopathological explanation for how SARS-CoV-2 causes multiple cilia-dysfunction-related symptoms specific to COVID-19.
Collapse
Affiliation(s)
- Liying Wang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China 1
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China 4
| | - Chao Liu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China 1
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China 4
| | - Bo Yang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China 5
| | - Haotian Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China 2
| | - Jian Jiao
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China 9
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China 10
| | - Ruidan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China 4
| | - Shujun Liu
- Laboratory Animal Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China 3
| | - Sai Xiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China 4
| | - Yinghong Chen
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China 1
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China 4
| | - Bo Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China 4
| | - Yanjie Ma
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China 1
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China 4
| | - Xuefeng Duan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China 6
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China 2
| | - Mengmeng Guo
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China 1
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China 4
| | - Bingbing Wu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China 1
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China 4
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China 9
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China 10
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China 8
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China 7
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, China 5
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China 6
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China 9
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China 10
| | - Shuguang Duo
- Laboratory Animal Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China 3
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China 2
| | - Wei Li
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China 1
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Stem Cell and Regenerative Medicine Innovation Institute, Chinese Academy of Sciences, Beijing, China 4
| |
Collapse
|
8
|
Oxamate Attenuates Glycolysis and ER Stress in Silicotic Mice. Int J Mol Sci 2022; 23:ijms23063013. [PMID: 35328434 PMCID: PMC8953611 DOI: 10.3390/ijms23063013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Glycolysis and ER stress have been considered important drivers of pulmonary fibrosis. However, it is not clear whether glycolysis and ER stress are interconnected and if those interconnections regulate the development of pulmonary fibrosis. Our previous studies found that the expression of LDHA, a key enzyme involved in glycolysis, was increased in silica-induced macrophages and silicotic models, and it was closely related to silicosis fibrosis by participating in inflammatory response. However, whether pharmacological inhibition of LDHA is beneficial to the amelioration of silicosis fibrosis remains unclear. In this study, we investigated the effects of oxamate, a potent inhibitor of LDHA, on the regulation of glycolysis and ER stress in alveolar macrophages and silicotic mice. We found that silica induced the upregulation of glycolysis and the expression of key enzymes directly involved in ER stress in NR8383 macrophages. However, treatment of the macrophages and silicotic mice with oxamate attenuated glycolysis and ER stress by inhibiting LDHA, causing a decrease in the production of lactate. Therefore, oxamate demonstrated an anti-fibrotic role by reducing glycolysis and ER stress in silicotic mice.
Collapse
|
9
|
Yang Z, He Y, Wang Y, Huang L, Tang Y, He Y, Chen Y, Han Z. Genome-Wide Analysis for the Regulation of Gene Alternative Splicing by DNA Methylation Level in Glioma and its Prognostic Implications. Front Genet 2022; 13:799913. [PMID: 35309147 PMCID: PMC8931337 DOI: 10.3389/fgene.2022.799913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Glioma is a primary high malignant intracranial tumor with poorly understood molecular mechanisms. Previous studies found that both DNA methylation modification and gene alternative splicing (AS) play a key role in tumorigenesis of glioma, and there is an obvious regulatory relationship between them. However, to date, no comprehensive study has been performed to analyze the influence of DNA methylation level on gene AS in glioma on a genome-wide scale. Here, we performed this study by integrating DNA methylation, gene expression, AS, disease risk methylation at position, and clinical data from 537 low-grade glioma (LGG) and glioblastoma (GBM) individuals. We first conducted a differential analysis of AS events and DNA methylation positions between LGG and GBM subjects, respectively. Then, we evaluated the influence of differential methylation positions on differential AS events. Further, Fisher’s exact test was used to verify our findings and identify potential key genes in glioma. Finally, we performed a series of analyses to investigate influence of these genes on the clinical prognosis of glioma. In total, we identified 130 glioma-related genes whose AS significantly affected by DNA methylation level. Eleven of them play an important role in glioma prognosis. In short, these results will help to better understand the pathogenesis of glioma.
Collapse
Affiliation(s)
- Zeyuan Yang
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yijie He
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yongheng Wang
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
- International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, China
| | - Lin Huang
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yaqin Tang
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yue He
- Group of Mathematics Education Teaching and Research, Chongqing Fudan Secondary School, Chongqing, China
| | - Yihan Chen
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Zhijie Han
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Zhijie Han,
| |
Collapse
|
10
|
Mao N, Yang H, Yin J, Li Y, Jin F, Li T, Yang X, Sun Y, Liu H, Xu H, Yang F. Glycolytic Reprogramming in Silica-Induced Lung Macrophages and Silicosis Reversed by Ac-SDKP Treatment. Int J Mol Sci 2021; 22:ijms221810063. [PMID: 34576239 PMCID: PMC8465686 DOI: 10.3390/ijms221810063] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Glycolytic reprogramming is an important metabolic feature in the development of pulmonary fibrosis. However, the specific mechanism of glycolysis in silicosis is still not clear. In this study, silicotic models and silica-induced macrophage were used to elucidate the mechanism of glycolysis induced by silica. Expression levels of the key enzymes in glycolysis and macrophage activation indicators were analyzed by Western blot, qRT-PCR, IHC, and IF analyses, and by using a lactate assay kit. We found that silica promotes the expression of the key glycolysis enzymes HK2, PKM2, LDHA, and macrophage activation factors iNOS, TNF-α, Arg-1, IL-10, and MCP1 in silicotic rats and silica-induced NR8383 macrophages. The enhancement of glycolysis and macrophage activation induced by silica was reduced by Ac-SDKP or siRNA-Ldha treatment. This study suggests that Ac-SDKP treatment can inhibit glycolytic reprogramming in silica-induced lung macrophages and silicosis.
Collapse
Affiliation(s)
- Na Mao
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (N.M.); (H.Y.); (J.Y.); (Y.L.); (F.J.); (H.L.)
| | - Honghao Yang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (N.M.); (H.Y.); (J.Y.); (Y.L.); (F.J.); (H.L.)
| | - Jie Yin
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (N.M.); (H.Y.); (J.Y.); (Y.L.); (F.J.); (H.L.)
| | - Yaqian Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (N.M.); (H.Y.); (J.Y.); (Y.L.); (F.J.); (H.L.)
| | - Fuyu Jin
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (N.M.); (H.Y.); (J.Y.); (Y.L.); (F.J.); (H.L.)
| | - Tian Li
- Hebei Key Laboratory for Chronic Diseases, Basic Medical College, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (X.Y.); (Y.S.)
| | - Xinyu Yang
- Hebei Key Laboratory for Chronic Diseases, Basic Medical College, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (X.Y.); (Y.S.)
| | - Ying Sun
- Hebei Key Laboratory for Chronic Diseases, Basic Medical College, North China University of Science and Technology, Tangshan 063210, China; (T.L.); (X.Y.); (Y.S.)
| | - Heliang Liu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (N.M.); (H.Y.); (J.Y.); (Y.L.); (F.J.); (H.L.)
| | - Hong Xu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (N.M.); (H.Y.); (J.Y.); (Y.L.); (F.J.); (H.L.)
- Correspondence: (H.X.); (F.Y.); Tel.: +86-15133967479 (H.X.); +86-18832571018 (F.Y.); Fax: +86-315-8805522 (F.Y.)
| | - Fang Yang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (N.M.); (H.Y.); (J.Y.); (Y.L.); (F.J.); (H.L.)
- Correspondence: (H.X.); (F.Y.); Tel.: +86-15133967479 (H.X.); +86-18832571018 (F.Y.); Fax: +86-315-8805522 (F.Y.)
| |
Collapse
|
11
|
Speight P, Rozycki M, Venugopal S, Szászi K, Kofler M, Kapus A. Myocardin-related transcription factor and serum response factor regulate cilium turnover by both transcriptional and local mechanisms. iScience 2021; 24:102739. [PMID: 34278253 PMCID: PMC8261663 DOI: 10.1016/j.isci.2021.102739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/02/2020] [Accepted: 06/15/2021] [Indexed: 12/31/2022] Open
Abstract
Turnover of the primary cilium (PC) is critical for proliferation and tissue homeostasis. Each key component of the PC resorption machinery, the HEF1/Aurora kinase A (AurA)/HDAC6 pathway harbors cis-elements potentially targeted by the transcriptional co-activator myocardin-related transcription factor (MRTF) and/or its partner serum response factor (SRF). Thus we investigated if MRTF and/or SRF regulate PC turnover. Here we show that (1) both MRTF and SRF are indispensable for serum-induced PC resorption, and (2) they act via both transcriptional and local mechanisms. Intriguingly, MRTF and SRF are present in the basal body and/or the PC, and serum facilitates ciliary MRTF recruitment. MRTF promotes the stability and ciliary accumulation of AurA and facilitates SRF phosphorylation. Ciliary SRF interacts with AurA and HDAC6. MRTF also inhibits ciliogenesis. It interacts with and is required for the correct localization of the ciliogenesis modulator CEP290. Thus, MRTF and SRF are critical regulators of PC assembly and/or disassembly, acting both as transcription factors and as PC constituents.
Collapse
Affiliation(s)
- Pam Speight
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Matthew Rozycki
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
12
|
Li G, Chen S, Zhang Y, Xu H, Xu D, Wei Z, Gao X, Cai W, Mao N, Zhang L, Li S, Yang F, Liu H, Li S. Matrix stiffness regulates α-TAT1-mediated acetylation of α-tubulin and promotes silica-induced epithelial-mesenchymal transition via DNA damage. J Cell Sci 2021; 134:224091. [PMID: 33310909 DOI: 10.1242/jcs.243394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Silicosis is characterized by silica exposure-induced lung interstitial fibrosis and formation of silicotic nodules, resulting in lung stiffening. The acetylation of microtubules mediated by α-tubulin N-acetyltransferase 1 (α-TAT1) is a posttranslational modification that promotes microtubule stability in response to mechanical stimulation. α-TAT1 and downstream acetylated α-tubulin (Ac-α-Tub) are decreased in silicosis, promoting the epithelial-mesenchymal transition (EMT); however, the underlying mechanisms are unknown. We found that silica, matrix stiffening or their combination triggered Ac-α-Tub downregulation in alveolar epithelial cells, followed by DNA damage and replication stress. α-TAT1 elevated Ac-α-Tub to limit replication stress and the EMT via trafficking of p53-binding protein 1 (53BP1, also known as TP53BP1). The results provide evidence that α-TAT1 and Ac-α-Tub inhibit the EMT and silicosis fibrosis by preventing 53BP1 mislocalization and relieving DNA damage. This study provides insight into how the cell cycle is regulated during the EMT and why the decrease in α-TAT1 and Ac-α-Tub promotes silicosis fibrosis.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Gengxu Li
- Basic Medicine College, North China University of Science and Technology, Tangshan 063210, China
| | - Si Chen
- Department of Neurosurgery, Tangshan People's Hospital, Tangshan 063210, China
| | - Yi Zhang
- Basic Medicine College, North China University of Science and Technology, Tangshan 063210, China
| | - Hong Xu
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Dingjie Xu
- College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan 063210, China
| | - Zhongqiu Wei
- Basic Medicine College, North China University of Science and Technology, Tangshan 063210, China
| | - Xuemin Gao
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Wenchen Cai
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Na Mao
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Lijuan Zhang
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Shumin Li
- Basic Medicine College, North China University of Science and Technology, Tangshan 063210, China
| | - Fang Yang
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Heliang Liu
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Shifeng Li
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
13
|
Lei X, Qing A, Yuan X, Qiu D, Li H. A Landscape of lncRNA Expression Profile and the Predictive Value of a Candidate lncRNA for Silica-Induced Pulmonary Fibrosis. DNA Cell Biol 2020; 39:2272-2280. [PMID: 33202189 DOI: 10.1089/dna.2020.5531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Silicosis is the most common type of pneumoconiosis with the fastest progress and the most serious harm. At present, there is still a lack of effective treatment for silicosis, and the molecular mechanism of silicosis is very complex, which is not completely clear. This study aimed to identify crucial long noncoding RNA (lncRNA)-mRNA networks for silica-induced pulmonary fibrosis using microarray data from Gene Expression Omnibus database, including human lung epithelial cells Beas-2B and continuously exposed to 5 μg/mL amorphous silica nanoparticles for 40 passages. Differently expressed genes were calculated by "DESeq2" R package. Then we selected the differently expressed mRNAs (DEmRNAs) and differently expressed long noncoding RNAs (DElncRNAs) data construct lncRNA-mRNA coexpression network using weighted gene coexpression network analysis (WCGNA). A total of 1140 DEmRNA and 1406 DElncRNAs were identified, including 20 upregulated DEmRNAs, 1120 downregulated DEmRNAs as well as 213 upregulated DElncRNAs and 1193 downregulated DElncRNAs. Furthermore, we demonstrate that lncRNA AK131029 was specifically overexpressed in silicosis. Loss-of-function assay indicated that silencing AK131029 of inhibited cell proliferation in human lung fibroblast cells. In conclusion, this study preliminarily indicates that lncRNA AK131029 may play a role in pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiaohong Lei
- Department of Anesthesiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ailing Qing
- Department of Anesthesiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xuemei Yuan
- Department of Anesthesiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Delu Qiu
- Department of Anesthesiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Haiyu Li
- Department of Infectious Disease, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
14
|
Gao X, Xu D, Li S, Wei Z, Li S, Cai W, Mao N, Jin F, Li Y, Yi X, Liu H, Xu H, Yang F. Pulmonary Silicosis Alters MicroRNA Expression in Rat Lung and miR-411-3p Exerts Anti-fibrotic Effects by Inhibiting MRTF-A/SRF Signaling. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:851-865. [PMID: 32464548 PMCID: PMC7256439 DOI: 10.1016/j.omtn.2020.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
To identify potential therapeutic targets for pulmonary fibrosis induced by silica, we studied the effects of this disease on the expression of microRNAs (miRNAs) in the lung. Rattus norvegicus pulmonary silicosis models were used in conjunction with high-throughput screening of lung specimens to compare the expression of miRNAs in control and pulmonary silicosis tissues. A total of 70 miRNAs were found to be differentially expressed between control and pulmonary silicosis tissues. This included 41 miRNAs that were upregulated and 29 that were downregulated relative to controls. Among them, miR-292-5p, miR-155-3p, miR-1193-3p, miR-411-3p, miR-370-3p, and miR-409a-5p were found to be similarly altered in rat lung and transforming growth factor (TGF)-β1-induced cultured fibroblasts. Using miRNA mimics and inhibitors, we found that miR-1193-3p, miR-411-3p, and miR-370-3p exhibited potent anti-fibrotic effects, while miR-292-5p demonstrated pro-fibrotic effects in TGF-β1-stimulated lung fibroblasts. Moreover, we also found that miR-411-3p effectively reduced pulmonary silicosis in the mouse lung by regulating Mrtfa expression, as demonstrated using biochemical and histological assays. In conclusion, our findings indicate that miRNA expression is perturbed in pulmonary silicosis and suggest that therapeutic interventions targeting specific miRNAs might be effective in the treatment of this occupational disease.
Collapse
Affiliation(s)
- Xuemin Gao
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Dingjie Xu
- Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Shumin Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Zhongqiu Wei
- Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Shifeng Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Wenchen Cai
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Na Mao
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Fuyu Jin
- Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Yaqian Li
- Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Xue Yi
- Department of Basic Medicine, Fujian Collaborative Innovation Center for Accurate Medicine of Respiratory Diseases, Xiamen Medical College, Xiamen, 361023 Fujian, China
| | - Heliang Liu
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China
| | - Hong Xu
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China.
| | - Fang Yang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210 Hebei, China.
| |
Collapse
|